3,399 research outputs found

    Strongly Monotone Drawings of Planar Graphs

    Get PDF
    A straight-line drawing of a graph is a monotone drawing if for each pair of vertices there is a path which is monotonically increasing in some direction, and it is called a strongly monotone drawing if the direction of monotonicity is given by the direction of the line segment connecting the two vertices. We present algorithms to compute crossing-free strongly monotone drawings for some classes of planar graphs; namely, 3-connected planar graphs, outerplanar graphs, and 2-trees. The drawings of 3-connected planar graphs are based on primal-dual circle packings. Our drawings of outerplanar graphs are based on a new algorithm that constructs strongly monotone drawings of trees which are also convex. For irreducible trees, these drawings are strictly convex

    On the tractability of some natural packing, covering and partitioning problems

    Get PDF
    In this paper we fix 7 types of undirected graphs: paths, paths with prescribed endvertices, circuits, forests, spanning trees, (not necessarily spanning) trees and cuts. Given an undirected graph G=(V,E)G=(V,E) and two "object types" A\mathrm{A} and B\mathrm{B} chosen from the alternatives above, we consider the following questions. \textbf{Packing problem:} can we find an object of type A\mathrm{A} and one of type B\mathrm{B} in the edge set EE of GG, so that they are edge-disjoint? \textbf{Partitioning problem:} can we partition EE into an object of type A\mathrm{A} and one of type B\mathrm{B}? \textbf{Covering problem:} can we cover EE with an object of type A\mathrm{A}, and an object of type B\mathrm{B}? This framework includes 44 natural graph theoretic questions. Some of these problems were well-known before, for example covering the edge-set of a graph with two spanning trees, or finding an ss-tt path PP and an s′s'-t′t' path P′P' that are edge-disjoint. However, many others were not, for example can we find an ss-tt path P⊆EP\subseteq E and a spanning tree T⊆ET\subseteq E that are edge-disjoint? Most of these previously unknown problems turned out to be NP-complete, many of them even in planar graphs. This paper determines the status of these 44 problems. For the NP-complete problems we also investigate the planar version, for the polynomial problems we consider the matroidal generalization (wherever this makes sense)

    Superization and (q,t)-specialization in combinatorial Hopf algebras

    Full text link
    We extend a classical construction on symmetric functions, the superization process, to several combinatorial Hopf algebras, and obtain analogs of the hook-content formula for the (q,t)-specializations of various bases. Exploiting the dendriform structures yields in particular (q,t)-analogs of the Bjorner-Wachs q-hook-length formulas for binary trees, and similar formulas for plane trees.Comment: 30 page

    The Planar Tree Packing Theorem

    Get PDF
    Packing graphs is a combinatorial problem where several given graphs are being mapped into a common host graph such that every edge is used at most once. In the planar tree packing problem we are given two trees T1 and T2 on n vertices and have to find a planar graph on n vertices that is the edge-disjoint union of T1 and T2. A clear exception that must be made is the star which cannot be packed together with any other tree. But according to a conjecture of Garc\'ia et al. from 1997 this is the only exception, and all other pairs of trees admit a planar packing. Previous results addressed various special cases, such as a tree and a spider tree, a tree and a caterpillar, two trees of diameter four, two isomorphic trees, and trees of maximum degree three. Here we settle the conjecture in the affirmative and prove its general form, thus making it the planar tree packing theorem. The proof is constructive and provides a polynomial time algorithm to obtain a packing for two given nonstar trees.Comment: Full version of our SoCG 2016 pape
    • …
    corecore