434 research outputs found

    On the relationship between plane and solid geometry

    Get PDF
    Traditional geometry concerns itself with planimetric and stereometric considerations, which are at the root of the division between plane and solid geometry. To raise the issue of the relation between these two areas brings with it a host of different problems that pertain to mathematical practice, epistemology, semantics, ontology, methodology, and logic. In addition, issues of psychology and pedagogy are also important here. To our knowledge there is no single contribution that studies in detail even one of the aforementioned area

    Robotic Grasping of Unknown Objects

    Get PDF

    GRASP News Volume 9, Number 1

    Get PDF
    A report of the General Robotics and Active Sensory Perception (GRASP) Laboratory

    \u3cem\u3eGRASP News\u3c/em\u3e: Volume 9, Number 1

    Get PDF
    The past year at the GRASP Lab has been an exciting and productive period. As always, innovation and technical advancement arising from past research has lead to unexpected questions and fertile areas for new research. New robots, new mobile platforms, new sensors and cameras, and new personnel have all contributed to the breathtaking pace of the change. Perhaps the most significant change is the trend towards multi-disciplinary projects, most notable the multi-agent project (see inside for details on this, and all the other new and on-going projects). This issue of GRASP News covers the developments for the year 1992 and the first quarter of 1993

    Objekt-Manipulation und Steuerung der Greifkraft durch Verwendung von Taktilen Sensoren

    Get PDF
    This dissertation describes a new type of tactile sensor and an improved version of the dynamic tactile sensing approach that can provide a regularly updated and accurate estimate of minimum applied forces for use in the control of gripper manipulation. The pre-slip sensing algorithm is proposed and implemented into two-finger robot gripper. An algorithm that can discriminate between types of contact surface and recognize objects at the contact stage is also proposed. A technique for recognizing objects using tactile sensor arrays, and a method based on the quadric surface parameter for classifying grasped objects is described. Tactile arrays can recognize surface types on contact, making it possible for a tactile system to recognize translation, rotation, and scaling of an object independently.Diese Dissertation beschreibt eine neue Art von taktilen Sensoren und einen verbesserten Ansatz zur dynamischen Erfassung von taktilen daten, der in regelmĂ€ĂŸigen ZeitabstĂ€nden eine genaue Bewertung der minimalen Greifkraft liefert, die zur Steuerung des Greifers nötig ist. Ein Berechnungsverfahren zur Voraussage des Schlupfs, das in einen Zwei-Finger-Greifarm eines Roboters eingebaut wurde, wird vorgestellt. Auch ein Algorithmus zur Unterscheidung von verschiedenen OberflĂ€chenarten und zur Erkennung von Objektformen bei der BerĂŒhrung wird vorgestellt. Ein Verfahren zur Objekterkennung mit Hilfe einer Matrix aus taktilen Sensoren und eine Methode zur Klassifikation ergriffener Objekte, basierend auf den Daten einer rechteckigen OberflĂ€che, werden beschrieben. Mit Hilfe dieser Matrix können unter schiedliche Arten von OberflĂ€chen bei BerĂŒhrung erkannt werden, was es fĂŒr das Tastsystem möglich macht, Verschiebung, Drehung und GrĂ¶ĂŸe eines Objektes unabhĂ€ngig voneinander zu erkennen

    Actuation, Sensing And Control For Micro Bio Robots

    Get PDF
    The continuing trend in miniaturization of technology, advancements in micro and nanofabrication and improvements in high-resolution imaging has enabled micro- and meso-scale robots that have many applications. They can be used for micro-assembly, directed drug delivery, microsurgery and high-resolution measurement. In order to create microrobots, microscopic sensors, actuators and controllers are needed. Unique challenges arise when building microscale robots. For inspiration, we look toward highly capable biological organisms, which excel at these length scales. In this dissertation we develop technologies that combine biological components and synthetic components to create actuation, sensing and assembly onboard microrobots. For actuation, we study the dynamics of synthetic micro structures that have been integrated with single-cell biological organisms to provide un-tethered onboard propulsion to the microrobot. For sensing, we integrate synthetically engineered sensor cells to enable a system capable of detecting a change in the local environment, then storing and reporting the information. Furthermore, we develop a bottom-up fabrication method using a macroscopic magnetic robot to direct the assembly of inorganic engineered micro structures. We showcase the capability of this assembly method by demonstrating highly-specified, predictable assembly of microscale building blocks in a semi-autonomous experiment. These magnetic robots can be used to program the assembly of passive building blocks, with the building blocks themselves having the potential to be arbitrarily complex. We extend the magnetic robot actuation work to consider control algorithms for multiple robots by exploiting spatial gradients of magnetic fields. This thesis makes contributions toward actuation, sensing and control of autonomous micro systems and provides technologies that will lead to the development of swarms of microrobots with a suite of manipulation and sensing capabilities working together to sense and modify the environment

    Tracking Extended Objects in Noisy Point Clouds with Application in Telepresence Systems

    Get PDF
    We discuss theory and application of extended object tracking. This task is challenging as sensor noise prevents a correct association of the measurements to their sources on the object, the shape itself might be unknown a priori, and due to occlusion effects, only parts of the object are visible at a given time. We propose an approach to track the parameters of arbitrary objects, which provides new solutions to the above challenges, and marks a significant advance to the state of the art
    • 

    corecore