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General Notation
𝑥 Scalar (lowercase)
𝑥 Vector (underlined, lowercase)
A Matrix (bold, uppercase)
A𝑇 Transposed matrix
A−1 Inverse matrix
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N Natural numbers
R Real numbers
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Functions and Operators
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𝑝(𝑦|𝑥) Conditional probability distribution
𝒩 (𝜇, C) Gaussian distribution with mean 𝜇 and covariance

matrix C
𝒩 (𝑥; 𝜇, C) Gaussian distribution 𝒩 (𝜇, C) evaluated at 𝑥
𝛿( · ) Dirac-𝛿 distribution
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J Jacobian matrix
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Kurzfassung

Telepräsenzsysteme erlauben es Benutzern, mittels Tracking und Video-
brillen virtuelle oder entfernte Zielumgebungen zu besuchen und dort
intuitiv durch Umherlaufen und Umherschauen zu navigieren. Entspre-
chende Systeme sind inzwischen ausgereift genug, dass sie Einzug in
den Entertainmentmarkt gehalten haben. Um das Gefühl der Immersion
weiter zu steigern, muss den Benutzern zusätzlich ermöglicht werden, mit
der Zielumgebung intuitiv zu interagieren, indem sie vorhandene Objekte,
wie beispielsweise Möbel, Haushaltsgegenstände, Pointer oder Stifte aus
der Benutzerumgebung verwenden. Dazu muss das Telepräsenzsystem
die Form und Lage von beliebigen sich bewegenden Objekten in einem
etwa Wohnzimmer großen Bereich erfassen und verfolgen können.

Im Rahmen dieser Arbeit wird ein entsprechendes Trackingverfahren,
basierend auf Tiefenkameras, entwickelt und evaluiert. Im Gegensatz zu
herkömmlichen Kameras messen Tiefenkameras für jedes Pixel nicht nur
einen Farbwert, sondern zusätzlich auch dessen 3D Position im Raum.
Tiefenkameras haben seit 2010, mit Erscheinen der ersten Microsoft
Kinect, stark an Popularität zugenommen. Allerdings reicht ein einzelner
Sensor in der Regel nicht aus, um einen ganzen Raum zu erfassen. Aus
diesem Grund muss das gewünschte Verfahren auch Sensornetzwerke
unterstützen.

Die in dieser Arbeit betrachtete Trackingaufgabe ist besonders schwierig,
da das Sensorrauschen verhindert, dass die gemessenen Punkte eindeutig
zu ihren Messquellen auf dem zu verfolgenden Objekt zugeordnet werden
können (Herausforderung 1). Dieses Problem der Datenassoziation wird
noch dadurch verschärft, dass die Objektform selbst a priori unbekannt ist
(Herausforderung 2) und dass durch Verdeckungen und Sensorartefakte
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Kurzfassung

zu jedem Zeitpunkt nur Teile des Objekts sichtbar sind (Herausforde-
rung 3). Stand der Forschung in diesen Situationen ist es, die Objektform
zu schätzen, indem die kleinsten Abstände zwischen Messungen und
Objektoberfläche minimiert werden. Dieser Ansatz ist jedoch nachweis-
lich nicht erwartungswerttreu und liefert für hohes Sensorrauschen keine
zufriedenstellenden Schätzergebnisse.

Der Hauptbeitrag dieser Arbeit ist ein Trackingalgorithmus zur konti-
nuierlichen Schätzung der Form und Lage von beliebigen ausgedehn-
ten Objekten. Als Besonderheit liefert dieser selbst bei starkem Sensor-
rauschen noch ein erwartungswerttreues Schätzergebnis. Der vorgeschla-
gene Ansatz bietet neue Lösungen für jede der drei oben genannten
Herausforderungen und leistet einen signifikanten Beitrag zum Stand
der Technik bezüglich Robustheit und Genauigkeit des Schätzers. Im
Folgenden werden die Kernideen skizziert.

Zunächst wird ein neues probabilistiches Modell für ausgedehnte Objekte
hergeleitet, das im Gegensatz zu den Standardmodellen nur den verwert-
baren Anteil der in den Messungen enthaltenen Information verwendet.
Für dieses „Partial Information Model“ wird dazu für jede Messung
zunächst bestimmt, „wie gut“ sie zu einem gegebenen Objekt passt und
„von wo“ auf der Objektoberfläche sie stammt. Indem der Schätzer nur
den „wie gut“-Anteil der Messung verwendet und den unbekannten Teil,
woher sie stammt, ignoriert, benötigt er keine explizite Assoziations-
Heuristik mehr und ist trotzdem erwartungswerttreu. Darüber hinaus
kann das vorgeschlagene Partial Information Model unmittelbar mit ani-
sotropem Sensorrauschen umgehen und lässt sich immer noch mit einem
herkömmlichen nichtlinearen Kalmanfilter schätzen.

Im zweiten Schritt wird ein flexibles probabilistisches Modell für 3D
Objekte entwickelt, deren Oberfläche durch die Transformation einer pla-
naren Kurve konstruiert werden kann. So kann beispielsweise ein Zylinder
durch die Extrusion eines Kreises konstruiert werden. Das entwickelte
Modell ist in der Lage, auch komplizierte Formen mit einer dennoch
niedrigen Anzahl an Parametern zu repräsentieren. Im vorgeschlagenen
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Modell wird die Wahrscheinlichkeit der Transformationen explizit model-
liert, aber die Assoziation von Messungen zu ihren Messquellen auf der
Kurve durch die Verwendung des Partial Information Models vermieden.
Dabei erbt der Schätzer die Erwartungswerttreue des Partial Information
Models.

Als dritter Beitrag werden für die vorgeschlagenen Modelle Erweite-
rungen entwickelt, die den Schätzer robuster gegenüber Verdeckungen
und fehlenden Messungen machen. Dazu wird gezeigt, dass die gemes-
senen Punktwolken unter bestimmten Bedingungen in einen Bruchteil
des ursprünglichen Raums gefaltet (gespiegelt) werden können, der durch
die Objektsymmetrie bestimmt wird. Durch diese Faltung lassen sich
vereinfachte probabilistische Modelle herleiten, die nur noch in dem ent-
sprechenden Bruchteil des Raums definiert werden müssen. Der Schätzer
erreicht dadurch sowohl eine reduzierte Rechenkomplexität als auch eine
höhere Robustheit gegenüber fehlenden Messungen.

Abschließend wird der vorgeschlagene Trackingalgorithmus in Experi-
menten mit realen Sensordaten evaluiert. Dazu wird ein Sensornetzwerk,
bestehend aus vier Kinect Sensoren, installiert und ein probabilistisches
Sensormodell hergeleitet, um die Unsicherheit der gemessenen Punkt-
wolken in Form anisotroper Gaussverteilungen zu bewerten. Als Experi-
mente betrachten wir zunächst die Längen- und Lageschätzung eines sich
bewegenden Lichtschwerts und anschließend die Form- und Lageschät-
zung einer geworfenen quaderförmigen Box, ohne allerdings zu wissen,
dass es sich um eine Box handelt. Die Experimente zeigen, dass der in
der Arbeit vorgeschlagene Ansatz den aktuellen Stand der Forschung
hinsichtlich der Robustheit und Genauigkeit signifikant verbessert.
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Abstract

Telepresence systems have recently matured enough to enter the home
entertainment market. These systems transport users virtually to distant
or imaginary places, allowing them to naturally interact, look around,
and walk in the virtual world through body tracking and head mounted
displays. However, for true immersion, the user must be enabled to
interact with the virtual world by using existing physical objects from
the user environment, such as furniture, household items, and interaction
tools such as pointers and pens. This technological shift raises the need
for a mechanism to track the pose and shape of arbitrary moving objects
in the usually room-sized user environment.

In this thesis, we aim at developing an appropriate tracking algorithm
for arbitrarily shaped objects based on depth cameras. In contrast to
classical cameras, depth cameras do not only measure a color for each
pixel but also 3D information about the object geometry. These sensors
have become popular since 2010, when Microsoft introduced the first
version of the Kinect. However, as the user environment generally cannot
be covered by a single sensor, the desired algorithm should also work
with sensor networks.

The considered tracking task is challenging, as (Challenge 1) sensor
noise prevents a correct association of points in the measured cloud to
their originating sources on the object, (Challenge 2) the object shape
itself is unknown a priori which aggravates the data association problem,
and (Challenge 3) due to occlusion effects, only parts of the object are
visible at a given time. State-of-the-art tracking algorithms usually apply
distance minimization between the point cloud and the object surface,
but these techniques introduce a bias in the estimated parameters in the
presence of noise.
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Abstract

The main contribution of this thesis is a general approach to track the
pose and shape parameters of arbitrary objects that is unbiased even
for high sensor noise. This approach provides a new solution to each of
the above challenges and marks a significant advance to the state of the
art in terms of robustness and estimation accuracy. In the following, we
outline the basic ideas.

First, we propose a new probabilistic model for extended objects that uses
only the valuable part of the information encoded in the measurements.
Specifically, we propose to decouple the measurement information into
“how well” the measurements fit the object and “where” on the boundary
they correspond to. Ignoring the unknown “where”-information lets us
derive an unbiased estimator that does not rely on an explicit associa-
tion heuristic and naturally incorporates even anisotropic sensor noise
characteristics, which is typical for depth cameras. Still, the model can
be used in a standard nonlinear Kalman filter.

In a second step, we develop a flexible probabilistic model for 3D objects
whose shape can be constructed by transforming a plane curve, such as a
circle, which can be used to construct a cylinder. This “Partial Informa-
tion Model” is capable of flexibly representing complex shapes by keeping
the number of parameters manageable. By assuming a probability for
each transformed curve and ignoring the unknown information of “where”
on the curve a measurement is related to, the resulting estimator inherits
the unbiasedness of the Partial Information Model and its capability of
dealing with anisotropic noise.

Third, we develop extensions for the proposed models in order to make
the estimator more robust against occlusions and missing measurements.
Specifically, we see that, under specific conditions, the measurements
can be folded (mirrored) into a small fraction of the original domain
according to the object symmetry. This allows for designing a simplified
probabilistic model that only operates in this reduced domain. The
resulting estimator has reduced computational complexity and increased
robustness against missing measurements.
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Finally, the proposed tracking algorithm is evaluated in real tracking
experiments. For this purpose, we set up a multi-Kinect network and
derive a probabilistic sensor model to rate the measurement quality
of Kinect point clouds by anisotropic Gaussian distributions. For the
experiments we first consider length and pose tracking of a moving
lightsaber, and then look at tracking the shape and the pose of a box
in free fall without actually knowing that it is a box. In particular,
our approach manages to find the box shape in less than a second,
despite of its fast motion and rotation. In sum, the experiments confirm
our theoretical results and demonstrate the practical suitability of our
approach.

xv
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Introduction

Contents
1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Scope

Telepresence systems [1], such as the one shown in Figure 1.1, transport
users virtually to distant or imaginary places, allowing them to naturally
interact, look around, and walk long distances in a virtual world. This
is implemented by presenting the user multi-modal sensory impressions,
such as audio and video, from this target environment, as if they were
there in person, while in reality they remain in a local room called the user
environment. An essential task to keep immersion, i.e., to convincingly
maintain the illusion of being in the different place, is to ensure proper
ways of input and interaction. On the one hand, it is necessary to track
the user’s movements in the usually room-sized user environment. On
the other hand, the user must be enabled to interact with the target
environment by using physical objects from the user environment, such as
furniture, household items, and interaction tools such as pointers, pens,
or toy lightsabers.

1



Chapter 1. Introduction

Considered Task Developing an immersive telepresence system raises
the need for a mechanism to track the pose, shape, and motion of arbitrary
physical objects in the user environment. An affordable implementation
can be realized using depth cameras, which yield not only color but also
3D information about the object geometry. These sensors have become
popular since 2010, when Microsoft introduced the first version of the
Kinect [2]. As the user environment generally cannot be covered by a
single sensor, multiple sensors can be combined into a sensor network.
Figure 1.2 shows point cloud data for the lightsaber example. The desired
tracking algorithm should derive an estimate of the lightsaber’s pose,
shape, and motion based on this noisy data. However, right at the
start, the algorithm has neither information about the values of the
required parameters, nor the knowledge that the object is a lightsaber.
In consequence, all information is to be extracted from the noisy point
clouds.

Thesis Goal In this thesis, we aim at developing an algorithm for
tracking arbitrary objects with a priori unknown shapes using a network
of consumer 3D cameras, such as the Microsoft Kinect.

Figure 1.1.: Telepresence system.

2



1.1. Scope

Figure 1.2.: Example for the considered tracking task. The lightsaber must be
tracked based on the noisy point cloud data, which is captured by the
depth camera.

Related Topics and Applications The considered tracking task is known
as extended object tracking [3] and falls right in between the fields of
object tracking [4] and shape reconstruction [5, 6], having some overlap
with both. The main difference between these related fields is that object
tracking generally focuses on estimating the pose and motion parameters
of objects with known or negligible shape, while shape reconstruction gen-
erally considers estimating the shape of static objects or scenes. Against
this background, extended object tracking can be seen as connecting
link.

From a practical point of view, estimating object parameters based on
point cloud data has applications in many fields [7] including robotics [8],
autonomous driving [9], innovative control for entertainment devices [10],
telepresence applications [11], industrial production lines [12], architecture
[13], healthcare [14], to name only a few. Depending on the application,
a variety of sensor classes is used to produce the point clouds, including
laser scanners, time-of-flight cameras, structured-light cameras, stereo
cameras, and radar systems. All of these sensors produce 3D point
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Chapter 1. Introduction

measurements, where each point encodes geometric information about
the object’s surface and, depending on the sensor, its color. In particular,
any given sensor produces measurements with different degrees of quality
which is reflected by the number of measurements per scan, as well as the
degree of uncertainty introduced by sensor noise. In Figure 1.3, typical
sensors are classified according to their measurement quality and typical
application.

number of measurements

Microsoft Kinect 360

reconstruction

se
ns

or
 n

oi
se

 le
ve
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tracking

Microsoft Kinect One

PMD Technologies CamCube 2.0

Velodyne LIDAR

Radar antenna

this thesis

Figure 1.3.: Characterization of point cloud measurements and sensors.
Radar by Gunther (Own work) GFDL, CC-BY-SA-3.0, via Wikimedia
Commons, Kinect v1 and Kinect v2 by Evan-Amos (Own work) [Public
domain], via Wikimedia Commons.
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Figure 1.4.: Challenges that occur in the considered tracking task.

1.2 Challenges

In the considered tracking task, three major challenges can be highlighted,
sorted in the order they will be discussed in this thesis.

Challenge 1: Measurement Association In order to find accurate esti-
mates, the tracking algorithm needs to assess how well a point cloud and
an object boundary fit together. However, when it comes to data obtained
by real sensors, we have to deal with sensor-specific noise which yields
varying measurement quality depending on factors such as distance, angle,
surface material, and external influences. In particular, this noise may
have anisotropic characteristics, meaning that the measurement quality
of a point is not equal in all directions. For example, a depth camera
typically can measure laterally more accurate than in its depth direction
[15, 16]. Due to this sensor uncertainty, it is usually impossible to know
from which source on an object a specific measurement occurred, and,
in consequence, how well it fits to the object. In Figure 1.4a, this issue
is illustrated for an example measurement (blue), and its potential mea-
surement sources (yellow). State-of-the-art tracking approaches usually
apply distance minimization between point cloud and object surface [17]
which implicitly associates the points to their closest sources on the shape.
Unfortunately, this simple heuristic does not account for the sensor noise
and, even worse, introduces a bias in the estimated parameters in the
presence of noise [18].

5
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Challenge 2: Unknown Shape The problem of measurement associ-
ation becomes even more challenging when we take into account that,
on the one hand, the object shape itself is unknown, and, on the other
hand, it actually is in continuous motion. How could we infer the shape
of an object, when we know neither its motion, nor how to associate
measurements to its boundary? An illustrative example is shown in
Figure 1.4b, where the algorithm must distinguish whether the object
has moved from one measured point cloud to the next (black), or the
measurements just originate from another, previously unknown part of
the object (yellow). As a consequence of this uncertainty, pose, shape
and motion become inherently connected and must be estimated simulta-
neously by the tracking algorithm. Moreover, as the object shape will
not always be visible as a whole, the estimated information must be
aggregated and updated during run-time. In doing so, (i) the underlying
geometric model must be flexible enough to adapt to a wide spectrum
of shapes, and (ii) the estimator must explicitly take into account the
involved uncertainty and correlation between shape, pose, and motion.
We want to emphasize that this challenge does not occur in most related
work on tracking, as in these cases a previously learned model [19] of the
desired object is typically used.

Challenge 3: Missing Measurements In addition to the random sensor
noise that can be described by a probabilistic sensor model, there are
other unpredictable effects such as occlusion or sensor artifacts which
cause parts of the object to become invisible for a long period. For
example, the object in Figure 1.4c is observed by a sensor that can only
observe one side of the object. In consequence, as long as the object
does not move, the back of the object will never be measured, causing
an ambiguity where the yellow estimate is valid as well. State-of-the-art
approaches usually implement a physical energy mechanism [20] in order
to extrapolate the boundary, which, however, involves the definition of
problematic coefficients and, in addition, negatively affects the observed
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parts as well. In these situations, the desired algorithm should compensate
for the missing measurements by making more reasonable assumptions
about the unobserved parts. This feature is very important in practice,
as permanent occlusions occur almost always in real-world scenarios.

1.3 Contributions and Outline

As the main contribution of this thesis, we develop a general approach to
track the pose and shape parameters of extended objects. This approach
provides a new solution to each of the above challenges which mark
significant contributions to the state of the art. In the following, we
outline the basic ideas of these solutions.

Solution to Challenge 1: Partial Information Model In Chapter 2, we
propose the Partial Information Model, which is a new probabilistic model
for extended objects that avoids an explicit association of measurements to
the boundary. For this purpose, we propose to separate the measurement
information in two parts, one which describes “where” on the boundary
the measurement corresponds to, and another which describes “how well”
it fits to the object. Ignoring the unknown “where”-information lets us
derive an estimator that does not rely on explicit association heuristics.
In contrast to traditional estimators that minimize some sort of distance
between the point cloud and the object boundary, the new model yields
an unbiased estimator that can even incorporate anisotropic sensor noise
characteristics common to depth cameras. Furthermore, the simplicity
of the proposed model allows for an implementation even with standard
nonlinear Kalman filters.

Solution to Challenge 2: 3D Random Hypersurface Model In Chap-
ter 3, we develop a flexible probabilistic model for 3D objects whose
surface can be constructed by transforming a plane curve such as a cylin-
der by extruding a circle. This 3D Random Hypersurface Model is capable
of flexibly representing relatively complex shapes while keeping the num-
ber of parameters manageable. Specifically, we consider translation,
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rotation and scaling operations for surface construction. By assuming
a probability for each transformed curve and ignoring the unknown in-
formation of “where” on the curve a measurement corresponds to, the
model can be seen as combination of the traditional Spatial Distribution
Model (which assumes a probability for each measurement source) and
the Partial Information Model. In addition, we show that the resulting
estimator based on the 3DRHM inherits the unbiasedness of the Partial
Information Model.

Solution to Challenge 3: Exploiting Shape Symmetry In Chapter 4,
we develop an extension for the proposed models in order to make the
estimator more robust against occlusions and missing measurements.
For this purpose, we incorporate assumptions about symmetry in the
object geometry by exploiting the fact that, under specific conditions, the
estimator will find exactly the same estimates when the measurements
are folded into a small fraction of the original domain according to the
object symmetry. This allows us to design simplified probabilistic models
that inherently exploit the object symmetry by only operating in the
folded domain. The resulting estimator has an increased robustness
against missing measurements and, in addition, a reduced computational
complexity. We demonstrate that, even in the case of simple objects such
as a line segment, which only have one reflectional symmetry, estimation
can be significantly improved.

Experimental Evaluation in a Multi-Kinect Network Finally, in Chap-
ter 5, the proposed tracking algorithm is evaluated in real tracking
experiments. We set up a sensor network based on four Microsoft Kinect
cameras of the second generation and derive a probabilistic sensor model
that rates the measurement quality of the point clouds. The experiments
show that our approach allows for estimating shape details even for
objects observed while in free fall. In doing so, the real-data experiments
validate the previous simulations, making our approach a significant
contribution beyond the state of the art in terms of robustness and
estimation accuracy.
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1.4 Related Work

Let us briefly summarize related work on estimation approaches that fall in
the range between reconstruction and tracking. More specific discussions
on relevant literature are given at the corresponding paragraphs in the
thesis.

Focus on Reconstruction Approaches with focus on reconstruction of
a static (non-moving) object or scene can be roughly divided in whether
they describe shapes using a non-parametric model, or a parametric
model.

∙ Non-parametric Model Occupancy grids [21], point clouds [22],
or polygon meshes [23] can be used for representing the scene ge-
ometry. Occupancy grids partition the Cartesian space into small
binary [24] or probabilistic [25] cells which encode how likely they
intersect with the scene geometry. For example the popular Kinect-
Fusion algorithm [26] and its extension for larger scenes [27] use
occupancy grids. Point-based shape representations are less mem-
ory consuming, as they store the scene geometry in the form of a
set of geometric locations. In addition to the pure location, higher
level information [28] such as colors or surface normals [29] can
be stored for each point. As the Kinect-like depth sensors imme-
diately extract point measurements from the scene, point clouds
recently gained more and more popularity. This popularity resulted
in a powerful community-driven toolbox called the Point Cloud
Library (PCL) [30], which aggregates several related algorithms
for segmentation, registration, and surface reconstruction. Sur-
face reconstruction, in turn, often refers to basis functions [31] or
polygonal meshes [32], where the latter forms the third popular non-
parametric representation of scene geometry. In the last decades,
several probabilistic algorithms for detailed mesh reconstruction
have been developed, ranging from maximum likelihood [33] to full
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Bayesian approaches [34]. Other techniques, which are often used
in the context of scene reconstruction are random sample consensus
(RANSAC) [35] and the iterative closest points (ICP) algorithm
[17].

∙ Parametric Model A parametric model relates a set of parameters
to a surface that, in turn, describes the object or scene geometry.
Often, either geometric primitives [36] or splines [37] are used as
model. Popular geometric primitives include planes [38], cylinders
[39], ellipsoids [40], cones [41], and bounding boxes [42]. For the
spline-based shape reconstruction, energy functionals in the fashion
of active contours [20] are often incorporated, in order to ensure
surface properties such as smoothness. Other geometric models,
which are similar to the one proposed in this thesis, are constructed
by transforming a base shape [43], such as the case of a cylinder
constructed by translating a circle. Techniques for estimating the
parameters of these models include those mentioned for the non-
parametric models, as well as the Hough transformation [44], which
is often applied together with mean shift [45] or RANSAC.

Focus on Tracking Approaches with focus on tracking typically do not
attempt to estimate the shape of the target object. Instead, they assume
the object to have a negligible extent or a known shape.

∙ Tracking Point Objects Modeling objects as a point is reasonable
in situations where the sensor resolution is too low to distinguish
different measurement sources on the object surface, e.g., for radar
applications in Figure 1.3. Hence, related approaches often focus
on estimating the position and motion parameters of the object [4].
The majority of approaches employ instances of Bayesian recursive
estimators such as (nonlinear) Kalman filters or particle filters [46].
Accurately predicting the object motion is an important topic in
tracking algorithms and has resulted in several canonical motion
models [47], which will also be used in this thesis. In order to
allow the estimator to adapt to sudden motion changes, multiple
motion hypotheses can be incorporated [48] as well. Another line of
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related research is concerned with simultaneously tracking multiple
point objects [49]. These approaches are often based on a form of
probability hypothesis density (PHD) filter [50] and are related to
the approach in this thesis in the sense that they also have to deal
with the data association problem.

∙ Tracking Objects with Known Shape Approaches for tracking
the pose of known objects based on previously learned templates
or geometric models is another related topic. Recently, the number
of object libraries has dramatically increased, as listed in the PCL
[30], with varying scope such as furniture [51] or kitchens [52]. For
estimating the pose parameters either instances of ICP or Bayesian
estimators are used. Another major topic of interest has been
tracking the human body [53]. Of note are works tracking the pose
[54, 55], some of them with stochastic models [56, 57]. Others focus
on individual body parts such as hands [58].

Simultaneous Reconstruction and Tracking Finally, there are approach-
es which simultaneously perform reconstruction and tracking tasks. We
can roughly distinguish between approaches where a moving object wants
to localize itself in an a priori unknown environment, and approaches
where the pose and shape of a dynamic extended object is to be esti-
mated.

∙ Simultaneous Localization and Mapping (SLAM) Essen-
tially, most approaches from the “focus on reconstruction” para-
graph somehow perform an instance of SLAM [59], as they have to
align multiple point cloud measurements of a moving sensor [60].
In this context, the scene geometry (e.g., a building [61]) can be
interpreted as a priori unknown landmarks.

∙ Extended Object Tracking In contrast to the “tracking objects
with known shape” approaches, the object shape is a priori unknown
and is to be estimated online, while the object potentially is in
continuous motion. While there are several approaches using non-
parametric models [62, 9], the majority of approaches (including this
thesis) use parametric models. Well-established techniques include
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Random Hypersurface Models [63], Spatial Distribution Models [64],
and Random Matrices [65], all of which will be discussed later in
this thesis. However, up to date, these models are mostly used in
applications where a region in 2D is to be tracked based on few
measurements per scan. Furthermore, in 3D, shape and pose of
objects has been simultaneously estimated for medical applications
using splines [66, 67]. Other approaches use simpler geometric
approximations, such as bounding boxes [68]. A rather different
approach formulates the moving object as a shape in 4D [69].
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The goal in this chapter is to develop a Bayesian framework for tracking
extended objects based on noisy point measurements from their boundary.
In contrast to classical target tracking, where objects are assumed to be
points with no extent, the shape and size of an extended object is not
negligible as the sensor obtains measurements from all over the boundary.
Specifically, we will see that the major task when developing a tracking
algorithm boils down to specifying a likelihood that rates how well the
measured points fit to a given boundary. This task immediately leads to
the question

how to associate the noisy points to the object boundary?

13
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However, finding an answer to this question is non-trivial as it is typically
unknown from “where” on the boundary the measurements originate.
This is due to the fact that (i) measurements are subject to sensor noise
and (ii) the object shape itself is only uncertainly known. This association
problem refers to Challenge 1 from Section 1.2. Typically, there are two
major approaches to solve the association problem in the context of
extended object tracking and shape fitting. First, Spatial Distribution
Models [70] incorporate a probability distribution that specifies for each
location on the boundary how likely it is measured by the sensor. Second,
Greedy Association Models [159] greedily associate each measurement
to a specific location on the boundary, for example to the one that is
closest to the measurement. However, both approaches have drawbacks.
The former is computationally expensive and requires detailed knowledge
of the measurement principle. The latter is biased in the presence of
noise. Indeed, there are debiasing techniques available for the greedy
approach but, typically, they do not account for anisotropic sensor noise.
We found that partial likelihood [71], a statistical concept from related
errors-in-variables (EIV) problems [72], can be employed to design a
Partial Information Model for extended objects that compensates for
both drawbacks.

Contribution Our main contribution in this chapter is the Partial In-
formation Model (PIM), which is a new probabilistic model for extended
objects that specifies how likely a given object boundary has produced
point measurements. The main characteristics of the PIM is that it uses
only the valuable part of the available information that is encoded in
the measurements. In particular, we propose to decouple the measure-
ment information into “how well” they fit to the object boundary and
“where” on the boundary they correspond to. Ignoring the second type
of measurement information lets us derive an estimator that

∙ does not rely on a probability distribution for measurement sources
over the boundary,

∙ is unbiased according to [73] even for high sensor noise,

∙ can naturally deal with anisotropic noise characteristics,
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∙ and can be implemented using common recursive Bayesian estima-
tion techniques such as a nonlinear Kalman filter.

For the implementation of the PIM, we make a second contribution in this
chapter. That is, for evaluating the likelihood of the PIM, it is necessary
to propagate the moments of a random variable through a nonlinear
function. To achieve a low computational complexity, we propose to
approximate the first two moments of the propagated variable using
deterministic sampling. This approach can be shown to produce results
that are very close to the ground-truth for a fair number of samples.

Remark 2.1. The PIM is published in [157] and the discussion on
de-biasing techniques is based on our studies in [159].

2.1 Recursive Bayesian Object Tracking

In this section, we introduce the general concept of recursive Bayesian
estimation [46] which forms the basis of the tracking algorithm. The
object to be estimated can be modeled as a dynamic system that obeys the
Markov property and whose actual state is described by a 𝐷-dimensional
vector 𝑥 ∈ R𝐷. Typically, the parameters in the state vector encode
information related to position, orientation, shape, and its dynamics,
e.g., velocity and acceleration. Assume, at an initial time step 𝑘 − 1,
uncertain knowledge about these state parameters 𝑥 is given in the form
of a probability density 𝑝(𝑥𝑘−1). Then, at the next time step 𝑘, the
sensor network observes 𝑛𝑘 ∈ N0 noisy measurements 𝑦

𝑘,1, . . . , 𝑦
𝑘,𝑛𝑘

of
the object. Assuming the sensor noise to be mutually independent for
all measurements, the corresponding Probabilistic Graphical Model [74]
yields Figure 2.1. In this model, 𝑦

𝑘,1, . . . , 𝑦
𝑘,𝑛𝑘

are observable variables,
while 𝑥𝑘−1, 𝑥𝑘 are latent variables that are not directly accessible. The
task of the tracking algorithm is (i) to predict the object parameters over
time and (ii) to update the parameters according to the measurements.
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𝑥𝑘−1

· · ·

𝑥𝑘

𝑦
𝑘,1 · · · 𝑦

𝑘,𝑛𝑘

Figure 2.1.: Probabilistic Graphical Model for dynamic state estimation.

Time Update Step The time update step determines how a distribution
𝑝(𝑥𝑘−1) that is known at a time 𝑘 − 1, will have evolved at the time 𝑘.
Under the assumption that the object behavior can be described as a
Markov process, the time update can be calculated by means of the
Chapman–Kolmogorov equation [75]

𝑝(𝑥𝑝
𝑘) :=

∫︁
R𝐷

𝑝(𝑥𝑝
𝑘|𝑥𝑘−1) · 𝑝(𝑥𝑘−1) d𝑥𝑘−1 ,

where 𝑝(𝑥𝑝
𝑘) denotes the distribution of the predicted state, and 𝑝(𝑥𝑝

𝑘|𝑥𝑘−1)
is called the transition probability, which is specified by the dynamic model.
Related to object tracking there are classical dynamic models for the pose
that will be used in this thesis [47], including a constant velocity model
for the object position and a constant turn rate model for its orientation.
For the shape of an object we typically cannot assume any systematic
behavior, except from staying as it is. Thus, for the shape parameters,
we will always use a random walk model which accounts for unpredictable
minor changes.

Measurement Update Step Knowledge about the object that is en-
coded in the measurements 𝑦

𝑘,1, . . . , 𝑦
𝑘,𝑛𝑘

can be incorporated into a
given distribution 𝑝(𝑥𝑝

𝑘) according to Bayes’ rule

𝑝(𝑥𝑝
𝑘|𝑦𝑘,1, . . . , 𝑦

𝑘,𝑛𝑘
) =

𝑝(𝑦
𝑘,1, . . . , 𝑦

𝑘,𝑛𝑘
|𝑥𝑝

𝑘) · 𝑝(𝑥𝑝
𝑘)

𝑝(𝑦
𝑘,1, . . . , 𝑦

𝑘,𝑛𝑘
) (2.1)

∝ 𝑝(𝑦
𝑘,1, . . . , 𝑦

𝑘,𝑛𝑘
|𝑥𝑝

𝑘) · 𝑝(𝑥𝑝
𝑘) .
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The likelihood 𝑝(𝑦
𝑘,1, . . . , 𝑦

𝑘,𝑛𝑘
|𝑥𝑝

𝑘) rates how well the object parameters
fit to the measurements with respect to their measurement noise. The
term 𝑝(𝑦

𝑘,1, . . . , 𝑦
𝑘,𝑛𝑘

) is considered as a normalization constant. In order
to close the recursion, the updated distribution is considered to be the
new prior 𝑝(𝑥𝑘) := 𝑝(𝑥𝑝

𝑘|𝑦𝑘,1, . . . , 𝑦
𝑘,𝑛𝑘

).

Preliminaries In this thesis, we are mainly interested in the measure-
ment update step, specifically in the task of deriving likelihoods for
extended objects. Thus, most of the time, we consider a single time
step, which lets us drop the time index 𝑘 in 𝑦

𝑛
:= 𝑦

𝑘,𝑛
and, when it is

clear from the context, we also write 𝑥 := 𝑥𝑝
𝑘 as an abbreviation for the

predicted state. In addition, the independence of the measurement noise
lets us factorize the likelihood as

𝑝(𝑦1, . . . , 𝑦
𝑛
|𝑥) =

𝑛∏︁
𝑖=1

𝑝(𝑦
𝑖
|𝑥) .

This marks an important simplification as it allows us to consider each
measurement 𝑦

𝑖
individually. For readability, we will drop the measure-

ment index 𝑖 whenever possible.

Incorporating the sensor noise in the form of the 𝑑-dimensional random
variable 𝑣 ∼ 𝑝(𝑣), the likelihood for a single measurement 𝑦 can be
written as

𝑝(𝑦|𝑥) =
∫︁
R𝑑

𝑝(𝑦|𝑥, 𝑣) · 𝑝(𝑣) d𝑣 . (2.2)

The term 𝑝(𝑦|𝑥, 𝑣) encodes the relation between state 𝑥, measurement 𝑦,
and noise 𝑣, and can be conveniently expressed by means of a typically
nonlinear measurement function

𝑦 = ℎ(𝑥, 𝑣) . (2.3)

Note that likelihood (2.2) and measurement function (2.3) are closely
related through the Dirac-𝛿 distribution 𝑝(𝑦|𝑥, 𝑣) = 𝛿

(︀
𝑦 − ℎ(𝑥, 𝑣)

)︀
.
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When approaching to derive the Bayes update in (2.1), there are closed-
form formulas available for special cases, e.g., the Kalman filter [76] for
ℎ(𝑥, 𝑣) = 𝐻𝑥 + 𝑣 being linear, 𝑝(𝑣) being additive Gaussian, and 𝑝(𝑥)
being Gaussian as well. However, when it comes to more general problems
such as extended object tracking, measurement functions are no longer
linear and/or the probability distributions are no longer Gaussian. Then,
only approximations of the Bayes update can be derived. In Appendix A,
we briefly summarize two widely-used approximation techniques.

2.2 Modeling Extended Objects

The measurement update step in recursive Bayesian estimation requires
specifying a likelihood 𝑝(𝑦1, . . . , 𝑦

𝑛
|𝑥) that rates how well the measure-

ments 𝑦1, . . . , 𝑦
𝑛

fit to an object boundary that is parametrized by the
state vector 𝑥. In this section, we derive a prototype of this likelihood
for the case that the sensor measures the object boundary as a set of
points, affected by additive, zero-mean, and mutually independent Gaus-
sian sensor noise. In doing so, we explicitly model the probability of
measurements originating from a given object and discuss the association
problem, which was referred to as Challenge 1. Subsequently, we deal
with variations of the prototype likelihood in order to solve the association
problem.

Introductory Example The considered estimation task can be seen as
an instance of errors-in-variables (EIV) problems [157]. To show this
relation, let us start our considerations with the familiar example of fitting
a line to noisy data. Assume we want to estimate slope and intercept
parameters (both encoded in the vector 𝑥) of a linear constraint from
noisy points 𝑦. In classical regression, as illustrated in Figure 2.2a, the
abscissa can be measured exactly, while the ordinate is subject to noise.
As can be seen, for a given instance of slope and intercept parameters, the
originating source 𝑧 (black circle) of a measurement 𝑦 (blue cross) can be
uniquely determined. The likelihood then simply would be evaluating the
Gaussian (shaded blue line) centered on the source in the measurement.
In doing so, the estimator adjusts the parameters, so that the error
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(a) Classical regression. (b) EIV regression. (c) Ext. object tracking.

Figure 2.2.: In classical regression (a), each measurement 𝑦 can be exactly asso-
ciated to its originating source 𝑧, where in EIV regression (b), this
is not possible. Extended object tracking can be seen as a dynamic,
nonlinear EIV regression task (c).

between line and measurements along the ordinate is minimized. Note
that in this estimation task, the measurements are correctly associated to
their generating sources 𝑧 on the line. In contrast, in an EIV regression
task, all dimensions of 𝑦 are subject to noise, as illustrated in Figure 2.2b.
This makes the association of a measurement to its source on the line an
ambiguous task.

Extended object tracking, as considered in this thesis, is closely related
to the EIV regression. That is, essentially we want to estimate the
time-variant parameters of an object boundary based on measurements
that are subject to sensor noise in all dimensions. Figure 2.2c illustrates
this scenario for a moving ellipse. In consequence, we have to make
assumptions on the measurement source 𝑧 for each 𝑦 in order to design
an estimator. To make things worse, each additional measurement
introduces another unknown measurement source which, in turn, requires
an additional assumption. In literature, this association problem is
referred to as the Neyman-Scott problem [77] and 𝑧 is called a nuisance
parameter [73].

Formal Problem Statement We want to derive a likelihood function
𝑝(𝑦1, . . . , 𝑦

𝑛
|𝑥) for extended objects. For this purpose, we have to specify

the relationship between state and measurements. In this thesis, we
consider the following model. Each measurement 𝑦

𝑖
is assumed to be

a noisy observation of a true value 𝑧𝑖, denoted as measurement source,
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which is distorted by additive noise according to

𝑦
𝑖

= 𝑧𝑖 + 𝑣𝑖 . (2.4)

The noise terms are assumed to be mutually independent and Gaussian
distributed according to 𝑣𝑖 ∼ 𝒩 (0, C𝑣𝑖

) with known, but not neces-
sarily identical, covariance matrices. The measurement source 𝑧𝑖 lies
on the object boundary and fulfills the implicit and typically nonlinear
relationship

𝑔(𝑥, 𝑧𝑖) = 0 . (2.5)

For convenience, we will write 𝑔𝑥(𝑧𝑖) := 𝑔(𝑥, 𝑧𝑖). Note that, due to the
noise, the measurements themselves generally do not fulfill the constraint
and, thus, measurements 𝑦1, . . . , 𝑦

𝑛
and state 𝑥 are only related via the

unknown measurement sources. In consequence, designing the likelihood
𝑝(𝑦1, . . . , 𝑦

𝑛
|𝑥) requires incorporating the measurement sources through

(2.4) and (2.5). The important role of the measurement sources becomes
even clearer, when we approach to define a measurement function 𝑦

𝑖
=

ℎ(𝑥, 𝑣𝑖) for extended objects. Without modeling the source, it is not
straightforward to specify it at all.

2.2.1 Probabilistic Graphical Model

For a more intuitive treatment, we encode the dependencies between all
involved variables visually using a Probabilistic Graphical Model [74],
as shown in Figure 2.3. This graphical model details the relationship
between state 𝑥 and measurements 𝑦 from Figure 2.1.

𝑦𝑔

𝑧𝑥 𝑣

Figure 2.3.: Probabilistic Graphical Model for errors-in-variables.
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2.2. Modeling Extended Objects

That is, 𝑦 and 𝑔 are observable variables while 𝑥, 𝑧, and 𝑣 are latent
variables which are not directly accessible. Specifically, 𝑔 represents
the constant pseudo-measurement 0, which arises from the relationship
𝑔𝑥(𝑧) = 0 in (2.5). From the dependency structure that is indicated by
the directed edges between the variables in Figure 2.3, we obtain the
joint probability distribution

𝑝(𝑥, 𝑧, 𝑣, 𝑔, 𝑦) = 𝑝(𝑥) · 𝑝(𝑧) · 𝑝(𝑣) · 𝑝(𝑔|𝑥, 𝑧) · 𝑝(𝑦|𝑧, 𝑣) . (2.6)

From this joint distribution, we can derive a likelihood for 𝑦 by marginal-
izing out 𝑧, 𝑣 and dividing by 𝑝(𝑥, 𝑔) = 𝑝(𝑔|𝑥) · 𝑝(𝑥), in the form of

𝑝(𝑦|𝑥, 𝑔) =
∫︁
R𝑑

∫︁
R𝑑

𝑝(𝑥, 𝑧, 𝑣, 𝑔, 𝑦)
𝑝(𝑔|𝑥) · 𝑝(𝑥) d𝑣 d𝑧

(2.6)=
∫︁
R𝑑

∫︁
R𝑑

𝑝(𝑦|𝑧, 𝑣) · 𝑝(𝑣) d𝑣

⏟  ⏞  
𝑝(𝑦|𝑧)

· 𝑝(𝑔|𝑥, 𝑧) · 𝑝(𝑧)
𝑝(𝑔|𝑥)⏟  ⏞  
𝑝(𝑧|𝑥,𝑔)

d𝑧 (2.7)

=
∫︁
R𝑑

𝑝(𝑦|𝑧) · 𝑝(𝑧|𝑥, 𝑔) d𝑧 .

We refer to the components 𝑝(𝑦|𝑧) and 𝑝(𝑧|𝑥, 𝑔) as sensor model and
source model, where both are visualized in Figure 2.4. In the following,
we briefly discuss both models and show how they can be derived.

Sensor Model The sensor model 𝑝(𝑦|𝑧), as illustrated in Figure 2.4a,
describes the distribution of measurements 𝑦, given that it is known that
𝑧 is the source. According to the additive noise model from (2.4), it is
immediately given as the Gaussian

𝑝(𝑦|𝑧) = 𝒩 (𝑦; 𝑧, C𝑣) .

Note that, once the source 𝑧 is known, the measurement is conditionally
independent of the state. In Chapter 5, we derive a sensor model to
assess the covariance matrix C𝑣 for real data, measured by a Microsoft
Kinect. This model then is used in the real data experiments.
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Chapter 2. Unbiased Extended Object Tracking

(a) Sensor Model. (b) Source Model.

Figure 2.4.: Illustration of source model (a) and sensor model (b).

Source Model The source model 𝑝(𝑧|𝑥, 𝑔) describes how likely a point
𝑧, which fulfills the constraint 𝑔𝑥(𝑧) = 0 for a given state 𝑥 (i.e., it
lies on the object boundary), will be a measurement source. For an
elliptical object, this probability distribution could look as in Figure 2.4b.
In order to calculate 𝑝(𝑧|𝑥, 𝑔), we have to condition the probability
distribution 𝑝(𝑧) on the boundary of the object. In particular, 𝑝(𝑧) is the
overall probability that a point 𝑧 in the domain will be measured by the
sensor (e.g., uniformly), and the object boundary is a curve or a surface,
depending on the considered object. Then, in order to evaluate 𝑝(𝑧|𝑥, 𝑔),
we have to find a suitable parametrization of the boundary.

2.2.2 Object Parametrization

For the boundary parametrization, we can use a vector 𝑠 ∈ 𝑆 ⊆ R2 that
specifies each point on a surface, or a scalar 𝑠 ∈ 𝑆 ⊆ R that specifies
each point on a curve. Then, the parametrization is given by a bijective
function 𝜑𝑥 : 𝑆 → R𝑑 that maps parameters 𝑠 to their corresponding
Cartesian coordinates 𝑧 as visualized in Figure 2.5 for a curve in 2D.
Within this thesis, we refer to 𝜑𝑥 as the boundary function of the object.

Before we proceed with formally substituting 𝑧 by 𝜑𝑥(𝑠) in the proba-
bilistic model, let us study the parametrization for several examples. As
already mentioned, we can essentially distinguish two cases of modeling
an object boundary, where the first one is a parametric curve and the
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2.2. Modeling Extended Objects

second one is a parametric surface. However, this distinction is more
difficile than it might seem, as both curve and surface can be embedded
into the 2D and 3D domain, e.g., consider a 1D line segment in 3D space
or a 2D circular surface in 2D space.

Parametric Curves A parametric curve can be characterized by a 1-
dimensional parametrization of 𝑠 ∈ 𝑆 and can be used to model objects
in 2D and 3D. The special case of a line segment can be even embedded
into 1D.
Example 2.1 (Line Segment). A highly relevant shape in extended object
tracking is a line segment whose shape can be characterized by its length
2 · 𝑟, yielding a state vector 𝑥 = [𝑟]. Assuming the segment to be centered
on the origin, it can be embedded in a 1D domain by

𝜑𝑥(𝑠) = 𝑠 · 𝑟 ,

where 𝑠 ∈ 𝑆 = [−1, 1] implements a linear shift from one end −𝑟 of the
segment, to the other end 𝑟. A line segment can also be embedded into
2D and 3D space by adding dimensions to the function 𝜑𝑥(𝑠) in the form
of 𝜑𝑥(𝑠) = [𝑠 · 𝑟, 0]T and 𝜑𝑥(𝑠) = [𝑠 · 𝑟, 0, 0]T, respectively. �

Despite their simple character, line segments are an important type of
shape and form the basis for the 3D shapes that we construct in Chapter 3.
There, a detailed discussion on line segments, including the derivation of
a likelihood, is given in Section 3.3.
Example 2.2 (Ellipse). An axis-aligned ellipse with axes 𝑎 and 𝑏 that is
centered on the origin can be characterized by the state vector 𝑥 = [𝑎, 𝑏]T.
Then, we can iterate through all points on the boundary by the boundary
function

𝜑𝑥(𝑠) =
[︂
𝑎 · cos(𝑠)
𝑏 · sin(𝑠)

]︂
,

where 𝑠 can be interpreted as an angle in 𝑆 = [0, 2𝜋). Note that ellipses
contain the important special case of circles for 𝑎 = 𝑏. An ellipse can
be embedded into 3D space according to 𝜑𝑥(𝑠) = [𝑎 · cos(𝑠), 𝑏 · sin(𝑠), 0]T,
meaning that it would lie in a plane. �
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Chapter 2. Unbiased Extended Object Tracking

Figure 2.5.: Sketch of the Cartesian (left) and the constraint parametrization
(right). The object boundary is drawn as a black curve.

Parametric Surfaces A parametric surface can be characterized by a
2-dimensional parametrization of 𝑠 = [𝑠1, 𝑠2]T ∈ 𝑆 and can be used to
model objects in 3D. In addition, the special case of planar regions can
be also embedded into 2D.

Example 2.3 (Ellipsoid). An axis-aligned ellipsoid with the axes 𝑎, 𝑏, 𝑐
that is centered on the origin can be characterized by the state vector
𝑥 = [𝑎, 𝑏, 𝑐]T. Then, we can iterate through all points on the boundary by

𝜑𝑥(𝑠) =

⎡⎣𝑎 · sin(𝑠1) · cos(𝑠2)
𝑏 · sin(𝑠1) · sin(𝑠2)
𝑐 · cos(𝑠1)

⎤⎦ ,

where 𝑠1, 𝑠2 can be interpreted as angles 𝑠1 ∈ [0, 𝜋] and 𝑠2 ∈ [0, 2𝜋)
respectively. Note that ellipsoids, just as the ellipse from Example 2.2,
contain the important special case of spheres for 𝑎 = 𝑏 = 𝑐. �

Objects in this Thesis According to the principal goal of this thesis,
we are mainly interested in modeling parametric surfaces. Despite of
this focus, for the following considerations, we proceed with deriving a
likelihood for parametric curves in 2D for two reasons. First, using a
scalar parameter 𝑠 simplifies formulas and can be extended to surfaces in
a straight-forward fashion. Second, in Chapter 3, we develop a model
for surfaces in 3D based on transformed planar curves, which requires a
model for curves.
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2.2. Modeling Extended Objects

Incorporating the Object Pose All above examples have specified the
objects in their respective object coordinate systems, i.e., axis-aligned,
and centered on the origin. However, measurements are generally given
in a world coordinate system, which differs from the object coordinate
system. In order to add pose information to an object, its state 𝑥 must
include rotation and translation parameters that refer to a rotation
matrix R and a translation vector 𝑐, respectively. Then, a point 𝑦𝑊 and
covariance C𝑊 in world coordinates can be transformed into a point 𝑦
and covariance C into the object coordinate system (and vice versa) by

𝑦𝑊 = R𝑦 + 𝑐 , 𝑦 = RT𝑦𝑊 −RT𝑐 , (2.8)
C𝑊 = RCRT , C = RTC𝑊 R .

2.2.3 Prototype Likelihood for Extended Objects

Let us now proceed with substituting 𝑧 by 𝜑𝑥(𝑠) in (2.7) for a parametric
curve in 2D space. This substitution has to be applied carefully to 𝑝(𝑧)
as it also requires changing the differential d𝑧 to |𝜑′

𝑥(𝑠)|d𝑠, which follows
from the fundamental theorem of calculus. With 𝑝(𝑧) = 𝑓𝑧(𝑧) being the
probability distribution of 𝑧, we can plug in 𝜑𝑥(𝑠) and write

𝑓𝑧(𝑧) d𝑧 = 𝑓𝑧(𝜑𝑥(𝑠)) · |𝜑′
𝑥(𝑠)| d𝑠 .

Then, by expressing (2.7) in terms of 𝜑𝑥(𝑠), we obtain

𝑝(𝑦|𝑥, 𝑔) =
∫︁
𝑆

𝒩 (𝑦; 𝜑𝑥(𝑠), C𝑣)

⏟  ⏞  
sensor model

· 𝑓𝑧(𝜑𝑥(𝑠))∫︀
𝑆

𝑓𝑧(𝜑𝑥(𝑠)) ·𝜑′
𝑥(𝑠)d𝑠

· |𝜑′
𝑥(𝑠)|

⏟  ⏞  
source model

d𝑠 .(2.9)

It can be seen from this intermediate result that (i) the integration
range could be reduced from R2 to 𝑆, and (ii) the dependency on 𝑔 was
resolved. Figure 2.6b illustrates the probabilistic graphical model at this
intermediate step.
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𝑦𝑔

𝑧𝑥 𝑣

(a) Original model.

𝜑𝑥(𝑠)

𝑦𝑔

𝑥 𝑣

(b) Intermediate model.

𝑦

𝑠𝑥 𝑣

(c) Final model.

Figure 2.6.: Probabilistic Graphical Models, showing the process of directly relating
the state 𝑥 to the measurement 𝑦.

Finally, by expressing the probabilistic model with respect to 𝑠 instead
of 𝜑𝑥(𝑠) and removing the obsolete 𝑔 from the equation, we can rewrite
(2.9) to the well-known likelihood prototype for extended objects

𝑝(𝑦|𝑥) =
∫︁
𝑆

𝒩 (𝑦; 𝜑𝑥(𝑠), C𝑣)⏟  ⏞  
𝑝(𝑦|𝑥,𝑠)

· 𝑝(𝑠|𝑥) d𝑠 . (2.10)

Its probabilistic graphical model is shown in Figure 2.6c. Note that in
terms of measurement functions, the prototype likelihood (2.10) translates
to

𝑦 = ℎ(𝑥, 𝑣, 𝑠) (2.11)
= 𝜑𝑥(𝑠) + 𝑣 ,

and incorporates the parameter 𝑠. At this point, in order to evaluate the
likelihood (or the measurement function), we are left with the task of
specifying the probability distribution 𝑝(𝑠|𝑥), which is an instance of the
association problem with 𝑠 being the unknown nuisance parameter.
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2.3 Traditional Models

In the following, we discuss three existing approaches to address the
association problem for extended object tracking. In particular, we con-
sider a model, where the association is assumed to be known, the Spatial
Distribution Model (SDM), and finally a model, where the association is
greedily approximated. We chose this order of explanation according to
the amount of heuristic assumptions that are required, starting with the
most demanding one.

2.3.1 Known Association Model (KAM)

In selected cases, e.g., when unique markers are attached to the object
[67], we can exactly solve the association problem and yield a “Known
Association Model” (KAM). For this model, it is assumed that the
parameter 𝑠* of the true generating source 𝜑𝑥(𝑠*) is known for each
measurement 𝑦. Then, 𝑝(𝑠|𝑥) simplifies to a Dirac 𝛿-distribution according
to

𝑝(𝑠|𝑥) = 𝛿(𝑠− 𝑠*) .

This distribution exclusively supports the true source, and the likelihood
(2.10) can be simplified to

𝑝(𝑦|𝑥) =
∫︁
𝑆

𝒩 (𝑦; 𝜑𝑥(𝑠*), C𝑣) · 𝛿(𝑠− 𝑠*) d𝑠

= 𝒩 (𝑦; 𝜑𝑥(𝑠*), C𝑣) (2.12)

by applying the sifting property. The corresponding measurement func-
tion is given by

𝑦 = ℎ(𝑥, 𝑣, 𝑠*)
= 𝜑𝑥(𝑠*) + 𝑣 ,
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where 𝑠* acts as a deterministic model parameter. Besides its practical
relevance for specific tracking tasks (unique markers), we will use it as
a benchmark model in synthetic evaluations as it perfectly solves the
association problem.

2.3.2 Spatial Distribution Model (SDM)

When the true measurement sources are not known exactly, a straightfor-
ward way to deal with the association problem is to assign a probability
to each point on the object boundary that specifies how likely it is that
it will be the measurement source. This popular model is known as
the Spatial Distribution Model (SDM) [70] and probabilistically solves
the association problem. It is widely-used in extended object tracking
[64, 78, 149] but requires that the distribution 𝑝(𝑠|𝑥) is known a priori.
Then, likelihood and measurement function are directly given by (2.10)
and (2.11), respectively. In statistics, (2.10) is denoted as an integrated
likelihood, and the nuisance parameter 𝑠 is said to be integrated out
[79]. In practice, 𝑝(𝑠|𝑥) is generally unknown and often approximated
by a uniform distribution over the boundary [64], or, in the form of a
Gaussian distribution in the popular Random Matrices approach [80].
Recent approaches [81, 82] also incorporate heuristics based on the sensor
to object geometry. For example, when the sensor observes only one
side of the object, 𝑝(𝑠|𝑥) can be assumed as a uniform distribution over
the visible part. When incorporating the correct distribution, it was
empirically shown in [70] that the SDM yields an unbiased estimator.

However, there are three major issues that are responsible for the fact that
SDMs are only applied to rather simple estimation problems yet. First,
it is non-trivial to obtain 𝑝(𝑠|𝑥) as it has to be extracted from (2.9) and
wrong assumptions about it generally cause biased estimates [159, 157].
Second, using SDMs for complex objects is computationally demanding
as evaluating the likelihood (2.10) typically requires numerically solving
the involved integral(s) — one for a curve or two for a surface. This is
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(a) Greedy Association.

𝑦

𝑠𝑥 𝑣

(b) PGM for the GAM.

Figure 2.7.: Visual explanation of the Greedy Association Model. (a) illustrates the
association heuristic and (b) shows the resulting Probabilistic Graphi-
cal Model. The mutual dependency between 𝑠 and 𝑦 causes a cycle in
the model, which is indicated by the dashed arrow.

especially inconvenient in particle filters, as they evaluate the likelihood
for each particle and measurement. Finally, using SDMs in nonlinear
Kalman filters typically yields a poor estimation quality as 𝑠 acts as a
non-additive noise variable in (2.11) and typically is not Gaussian.

2.3.3 Greedy Association Model (GAM)

Another widely-used model, which we will denote as the Greedy Associa-
tion Model (GAM), does not require any prior knowledge about 𝑝(𝑠|𝑥)
at all. Instead, the association problem is solved greedily by finding the
specific source on the boundary that fits best to a given measurement 𝑦,
e.g., its maximum likelihood estimate. In doing so, the estimator will
minimize some sort of distance [159]. Formally, approximating 𝑠* ∈ 𝑆 of
the true generating source 𝜑𝑥(𝑠*) by its maximum likelihood estimate
can be calculated according to

𝑠* ≈ 𝜋𝑥(𝑦) := arg max
𝑠∈𝑆

𝒩 (𝑦; 𝜑𝑥(𝑠), C𝑣) . (2.13)

Then, the function 𝜋𝑥(𝑦) refers to the most likely source 𝜑𝑥(𝜋𝑥(𝑦)) on the
boundary for a measurement 𝑦, as shown in Figure 2.7a. Based on (2.13),
we can set up 𝑝(𝑠|𝑥) similarly to the KAM as the Dirac 𝛿-distribution

𝑝(𝑠|𝑥, 𝑦) = 𝛿(𝑠− 𝜋𝑥(𝑦)) , (2.14)
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except for the difference that it now additionally depends on the measure-
ment 𝑦. Intuitively, this distribution exclusively supports the greedily
selected source 𝜑𝑥(𝜋𝑥(𝑦)), and by plugging (2.14) into the likelihood
prototype (2.10), it can be simplified to

𝑝(𝑦|𝑥, 𝑦) =
∫︁
𝑆

𝒩 (𝑦; 𝜑𝑥(𝑠), C𝑣) · 𝛿
(︀
𝑠− 𝜋𝑥(𝑦)

)︀
d𝑠

= 𝒩 (𝑦; 𝜑𝑥(𝜋𝑥(𝑦)), C𝑣) . (2.15)

However, this expression is not well-defined in the sense that it has a
cyclic dependency between measurement and its originating source. This
issue is illustrated in Figure 2.7b, and in order to additionally emphasize
it, we intentionally abuse the notation 𝑝(𝑦|𝑥, 𝑦). In statistics, (2.15) is
denoted as a profile likelihood, and the nuisance parameter 𝑠 is said to be
profiled out [83]. The corresponding measurement function is given by

𝑦 = ℎ(𝑥, 𝑦, 𝑣) (2.16)
= 𝜑𝑥(𝜋𝑥(𝑦)) + 𝑣

and also contains the cyclic dependency, as 𝑦 appears on both sides of
the equation. Thus, 𝑦 simultaneously acts as a measurement and model
parameter.

One major advantage of GAMs over SDMs is that, typically, they are eas-
ier to calculate, as they replace the integration by some kind of projection.
In addition, they do not require explicitly modeling a prior distribution
for 𝑠 and are more robust to unpredictable occlusions. However, these
advantages come with the problematic issue that GAMs are not well-
defined in a mathematical sense. As a consequence, estimators based on
GAMs are generally biased for nonlinear boundaries in the presence of
noise, even for an infinite number of measurements [18]. Nevertheless, it
is worth mentioning that, despite of their mathematical issues, GAMs
mark the prototype for the popular geometric fitting approach. In the
following, we show this relationship.
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Relationship to Geometric Fitting Consider the task of fitting the
parameters 𝑥 of a boundary 𝜑𝑥(𝑠) based on noisy measurements 𝑦

𝑖
with

identical, isotropic noise covariance matrices C𝑣𝑖
= 𝜎2 · I. For this special

case, the greedy source estimate 𝜑𝑥(𝜋𝑥(𝑦
𝑖
)) coincides with the point on

the constraint that is closest to 𝑦
𝑖

in terms of the Euclidean distance.
When applying the substitution 𝑒𝑖 := 𝑦

𝑖
− 𝜑𝑥(𝜋𝑥(𝑦

𝑖
)) in the likelihood

(2.15), it can be rearranged to

𝒩 (𝑒𝑖; 0, 𝜎2 · I) = 𝑐 · exp
(︂
−1

2 · 𝑒
T
𝑖

1
𝜎2 · I 𝑒𝑖

)︂
(2.17)

= 𝑐 · exp
(︂
− 1

2𝜎2 ‖𝑒𝑖‖2
)︂

,

where 𝑐 is a normalization constant and ‖𝑒𝑖‖2 is the squared Euclidean
distance between measurement and boundary, i.e, the squared error. A
maximum likelihood estimator would try to minimize ‖𝑒𝑖‖2 and, in doing
so, would find the least-squares estimate

𝑥ML = arg max
𝑥

𝑛∏︁
𝑖=1

𝑐 · exp
(︂
− 1

2𝜎2 ‖𝑦𝑖
− 𝜑𝑥(𝜋𝑥(𝑦

𝑖
))‖2

)︂
(2.18)

= arg min
𝑥

𝑛∑︁
𝑖=1
‖𝑦

𝑖
− 𝜑𝑥(𝜋𝑥(𝑦

𝑖
))‖2 .

�

Origin of Bias in GAMs Effort [84, 85, 72, 86, 87, 88, 18, 89] has been
made to understand the bias of GAMs. A visual explanation [159] of its
origin is given in Figure 2.8. The true boundary in each figure is marked in
black, a selected source is drawn as a black dot, and isotropic uncertainty
around it is schematically indicated by the filled circle. Probability mass
for expected measurements 𝑦 = 𝜑𝑥(𝑠)+𝑣 from this source is schematically
colored in blue (inside the object) and gray (outside the object). The
estimated boundary that minimizes the least-squares of the Euclidean
distance error in (2.18) is schematically depicted as dashed, red line. This
can be thought of, roughly speaking, finding the boundary that balances
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probability mass on the left and the right side. For the line shape, this
estimate coincides with the true shape and, in consequence, the algorithm
will find the true parameters. However, for the curve and corner shape,
the estimates will not coincide with the true shape. This is due to the
fact that the there is more probability mass for points on one side of the
boundary. In consequence, the algorithm will find biased parameters, as it
assumes a balanced ratio. Thus, bias is a local phenomenon whose effect
depends on the local curve within the magnitude of the measurement
noise, as indicated in Figure 2.8c.

(a) No bias. (b) Curvature bias. (c) Corner bias.

Figure 2.8.: Origin of parameter bias in curve fitting.

In literature, there are approaches to model this ratio and to re-engineer
the likelihood in order to reduce its effect [90, 18, 159]. Some of these
approaches are related to the new model, which we will develop in the
following section.

2.4 Partial Information Model (PIM)

In this section, we propose a new, mathematically sound model for
extended objects based on the statistical concept of partial likelihood
[91, 71]. As the major advantage over SDMs and GAMs, this model
will yield an unbiased estimator while neither requiring probabilistic
assumptions about the measurement sources, nor requiring artificial re-
engineering of a model that is not well-defined. The key idea consists of
a re-parametrization of the measurements that decouples their encoded
information into “how well” they fit to the object boundary and “where”
on the boundary they correspond to. From this new parametrization,
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2.4. Partial Information Model (PIM)

Figure 2.9.: Sketch of the Cartesian (left) and the constraint-induced parametri-
zation (right). The object boundary is drawn as a black curve.

we just exploit the valuable “how well” information for the measurement
update, and ignore the unknown “where” component. As only a part of
the measurement information will be used, we denote the model as the
Partial Information Model (PIM).

2.4.1 Key Idea

Let us now explain the key idea in more detail by considering a curve
in 2D. For the traditional models in Section 2.3, we parametrized the
potential sources 𝑧 on the boundary by 𝑠 ∈ 𝑆 ⊆ R in the form of
𝜑𝑥(𝑠) = 𝑧. Now, we want to apply a similar parametrization to the
measurements 𝑦, as visualized in Figure 2.9. For this purpose, we need
to extend the previous parametrization, as the measurements occur in
the full 2D domain but 𝜑𝑥(𝑠) only describes points that lie on the curve.
Nevertheless, we want to keep 𝑠 as one dimension of the parametrization
in order to expresses “where” on the boundary a measurement corresponds
to. In addition, we introduce another parameter 𝑙 ∈ 𝐿 ⊆ R that refers to
“how well” 𝑦 fits to the boundary. Let us define that 𝑙 = 0 denotes that a
measurement fits perfectly, i.e., it lies on the boundary, and increasing
negative/positive values 𝑙 indicate that measurements increasingly differ
to the one/other side of the boundary. Using this convention, 𝑙 and 𝑠
together allow for representing measurements in the full domain by re-
defining the boundary function 𝜑𝑥 in the form of 𝜑𝑥(𝑙𝑦, 𝑠𝑦) = 𝑦. Note that
this re-defined boundary function generalizes its previous definition as
𝜑𝑥(0, 𝑠) = 𝜑𝑥(𝑠) holds, and still parametrizes the boundary for 𝑠 ∈ 𝑆.
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Chapter 2. Unbiased Extended Object Tracking

While it is clear that the true value of the measured 𝑙𝑦 is 𝑙 = 0, designing
the likelihood 𝑝(𝑙𝑦, 𝑠𝑦|𝑥) is actually difficult, as we do not know the true
originating value 𝑠 of the measured value 𝑠𝑦. Hence, the key idea of our
approach is using only the 𝑙𝑦-information of a measurement in the likeli-
hood while ignoring on the problematic 𝑠𝑦-information. Mathematically,
this refers to the statistical concept of partial likelihood, which is an
approximation of the full likelihood according to

𝑝(𝑙𝑦, 𝑠𝑦|𝑥) = 𝑝(𝑙𝑦|𝑥) · 𝑝(𝑠𝑦|𝑥)
≈ 𝑝(𝑙𝑦|𝑥) , (2.19)

and requires that 𝑙𝑦 and 𝑠𝑦 are mutually independent. Then, by dropping
𝑝(𝑠𝑦|𝑥), we ignore the association of measurements to their sources and,
in consequence, do not need a heuristic for 𝑠 anymore. Of course, we
have to trade this ignorance for the amount of measurement information
that was encoded in 𝑠𝑦. The effect of this trade-off will be discussed
in Section 2.6.3. Our tasks are now (i) finding a constraint-induced
parametrization 𝜑𝑥(𝑙𝑦, 𝑠𝑦) for measurements 𝑦, such that 𝑙𝑦 and 𝑠𝑦 become
mutually independent, and (ii) deriving the partial likelihood 𝑝(𝑙𝑦|𝑥).

2.4.2 Constraint-induced Parametrization

For the definition of the 𝑙- and 𝑠-axes, we do not need to start from
scratch. We already know that the 𝑠-axis must lie in the object boundary
as, for 𝑙 = 0, the 𝑠-component lets us iterate through the boundary via
𝜑𝑥(0, 𝑠).

Thus, we have to specify the 𝑙-axis in such a way that the measurement
noise is independent in 𝑙𝑦 and 𝑠𝑦. According to the measurement function
in (2.11), measurements 𝑦 of a source 𝜑𝑥(0, 𝑠) occur according to

𝑦 = 𝜑𝑥(0, 𝑠) + 𝑣 , (2.20)

as illustrated in Figure 2.10a. When expressing these measurements in
terms of 𝜑𝑥(𝑙𝑦, 𝑠𝑦) = 𝑦, the generative model can be rewritten to[︂

𝑙𝑦
𝑠𝑦

]︂
=
[︂
0
𝑠

]︂
+
[︂

𝑙𝑣
𝑠𝑣

]︂
, (2.21)
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2.4. Partial Information Model (PIM)

(a) Generative model. (b) Uncorrelated 𝑙 and 𝑠.

𝑠𝑦

𝑙𝑦

𝑠𝑥 𝑠𝑣

𝑙𝑣

(c) Prob. Graphical Model.

Figure 2.10.: Ideal case, where the constraint-induced parametrization makes the 𝑙𝑦
and 𝑠𝑦 dimensions (gray grid) independent.

where the measurement noise 𝑣 is also represented in terms of 𝑙𝑣 and 𝑠𝑣.
Figure 2.10b visually explains these notations. From this illustration,
it can be seen that 𝑙𝑣 and 𝑠𝑣 will be independent if (and only if) the
𝑙- and 𝑠-axes coincide with the principal components of the Gaussian
measurement covariance matrix C𝑣. As the principal components of
a Gaussian are always orthogonal to each other, we can conclude that
the 𝑙-axis must lie orthogonal to the 𝑠-axis, i.e, to the object boundary.
However, when considering anisotropic noise and/or nonlinear boundaries,
it becomes clear that these orthogonal lines will not always coincide with
the principal components of the Gaussian. Before we look at this general
case, let us study the ideal case of a linear boundary and isotropic noise
that is illustrated in Figure 2.10b, where independence can be achieved.

The Ideal Case We consider a linear boundary and isotropic Gaussian
noise 𝑣 with covariance matrix C𝑣 = 𝜎2 · I. The variances of 𝑙𝑣 and
𝑠𝑣 are both 𝜎2, due to the isotropic characteristic of the noise and the
fact that the 𝑙𝑠-coordinate system is a rotated version of the Cartesian
coordinate system. For this reason, measurements 𝑦 that originate from
a source 𝜑𝑥(0, 𝑠) according to (2.21) are independent in their 𝑙𝑦 and 𝑠𝑦

component. Thus, we can write the prototype likelihood from (2.10) in
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terms of 𝑙 and 𝑠 according to

𝑝(𝑙𝑦, 𝑠𝑦|𝑥) =
∫︁
𝑆

𝒩
(︂[︂

𝑙𝑦
𝑠𝑦

]︂
;
[︂
0
𝑠

]︂
,

[︂
𝜎2 0
0 𝜎2

]︂)︂
· 𝑝(𝑠|𝑥) d𝑠

= 𝒩 (𝑙𝑦; 0, 𝜎2)

⏟  ⏞  
𝑝(𝑙𝑦|𝑥)

·
∫︁
𝑆

𝒩 (𝑠𝑦 − 𝑠; 0, 𝜎2) · 𝑝(𝑠|𝑥) d𝑠

⏟  ⏞  
𝑝(𝑠𝑦|𝑥)

.

The corresponding probabilistic graphical model for this example is
illustrated in Figure 2.10c.

Note that all information about the unknown 𝑠 is isolated in the term
𝑝(𝑠𝑦|𝑥) and, thus, when deriving the partial likelihood 𝑝(𝑙𝑦|𝑥), we do not
need to explicitly model 𝑝(𝑠|𝑥) anymore. As an important observation,
note that the 𝑙𝑠-coordinate system can be constructed using the signed
Euclidean distance of points to the boundary. Specifically, for all points
𝑦 = 𝜑𝑥(𝑙𝑦, 𝑠𝑦), their closest point on the boundary in terms of the
Euclidean distance is given by 𝜑𝑥(0, 𝑠𝑦). From this observation, we can
formally define the concepts “how well” and “where” as

∙ “How well:” all points on a level 𝑙𝑦 have the same signed Euclidean
distance to the boundary.

∙ “Where:” all points on a level 𝑠𝑦 have the same closest point
𝜑𝑥(0, 𝑠𝑦) on the boundary.

As a remark, the maximum likelihood estimator for the partial likelihood
in this example corresponds to the orthogonal least squares estimator as
it will minimize the squared Euclidean error between measurements and
line, analogously to (2.17).

The General Case While for the linear constraint and isotropic noise,
perfect independence could be achieved, for a nonlinear constraint (and/or
anisotropic noise), we find ourselves in a dilemma. On the one hand, the
𝑠-axis in the boundary dictates the 𝑙-axis to lie orthogonal, as indicated in
Figure 2.11a. On the other hand, the noise will only be independent if the

36



2.4. Partial Information Model (PIM)

(a) Constraint-induced (b) Noise-induced (c) Compromise

Figure 2.11.: Competing design properties for the 𝑙𝑠-parametrization.

axes coincide with the principal components of the Gaussian measurement
covariance matrix as shown in Figure 2.11b. However, these noise-induced
axes no longer have a meaningful interpretation in terms of “how well”
and “where” measurements correspond to the boundary.

As a compromise, we propose to sacrifice orthogonality of the 𝑙𝑠-coordinate
system, in order to come up with the parametrization in Figure 2.11c,
which retains the meaning of the axes for the Mahalanobis distance with
respect to the noise covariance. That is, 𝑠𝑦 specifies the closest point
𝜑𝑥(0, 𝑠𝑦) on the boundary by

𝑠𝑦 = 𝜋𝑥(𝑦) := arg min
𝑠∈𝑆

(𝑦 − 𝜑𝑥(0, 𝑠))TC−1
𝑣 (𝑦 − 𝜑𝑥(0, 𝑠)) , (2.22)

and 𝑙𝑦 specifies the signed distance of 𝑦 to this point by

𝑙𝑦 = 𝑔𝑥(𝑦) := ±
(︀
(𝑦 − 𝜑𝑥(0, 𝑠𝑦))TC−1

𝑣 (𝑦 − 𝜑𝑥(0, 𝑠𝑦))
)︀ 1

2 , (2.23)

where the sign indicates on which side of the constraint the measurement
lies. We intentionally re-use the symbols 𝜋𝑥 and 𝑔𝑥 here in order to
emphasize that the former exactly corresponds to the projection of
measurements to the boundary from (2.13) and the latter is a specific
implementation of the boundary constraint from (2.5). Note that the
sign for 𝑙𝑦 naturally comes into play as the 𝑙-axis is 0 on its intersection
with the constraint. Based on (2.22) and (2.23) we can finally define the
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desired parametrization according to[︂
𝑙𝑦
𝑠𝑦

]︂
= 𝜑−1

𝑥 (𝑦) :=
[︂

𝑔𝑥(𝑦)
𝜋𝑥(𝑦)

]︂
. (2.24)

Note that this parametrization includes the ideal case that was discussed
before, as the Mahalanobis distance corresponds to the Euclidean distance
for an isotropic noise covariance matrix C𝑣. Figure 2.12 illustrates
the 𝑙𝑠-coordinate system for several examples where the measurement
covariances C𝑣 are indicated as shaded blue ellipses/circles. The levels
for more complex objects can generally not be obtain in closed-form, as
evaluating 𝜑𝑥(𝑙𝑦, 𝑠𝑦) usually involves a nonlinear optimization for 𝑠𝑦 in
(2.22). Fortunately, in practice, we will only have to evaluate 𝜑𝑥 at a few
points. Nevertheless, for the special case of a circular boundary, we can
find closed-form solutions for 𝑠𝑦 and 𝑙𝑦.

Example 2.4 (Circle). We consider a circle that is centered on the
origin with radius 𝑥 = [𝑟]. For measurements 𝑦 of the circular bound-
ary, let us assume isotropic measurement noise. From this follows the
𝑙𝑠-parametrization in Figure 2.12a, which is closely related to polar co-
ordinates with 𝜋𝑥(𝑦) = atan2(𝑦2, 𝑦1) being the angular coordinate, and
𝑔𝑥(𝑦) = ‖𝑦‖ − 𝑟 being the radial coordinate. Then, 𝜑𝑥(𝑙𝑦, 𝑠𝑦) can be
specified by

𝜑𝑥(𝑙𝑦, 𝑠𝑦) = (𝑟 + 𝑙𝑦) ·
[︂
cos(𝑠𝑦)
sin(𝑠𝑦)

]︂
. (2.25)

�

Due to the skewness of the 𝑙𝑠-coordinate system and potential nonlin-
earities in the boundary, 𝑙𝑣 and 𝑠𝑣 may be still slightly correlated. In
consequence, the partial likelihood for extended objects will generally
rather look like 𝑝(𝑙𝑦|𝑥, 𝑠𝑦) instead of 𝑝(𝑙𝑦|𝑥) (2.19) as

𝑝(𝑙𝑦, 𝑠𝑦|𝑥) = 𝑝(𝑙𝑦|𝑥, 𝑠𝑦) · 𝑝(𝑠𝑦|𝑥)
≈ 𝑝(𝑙𝑦|𝑥, 𝑠𝑦) .

38



2.4. Partial Information Model (PIM)

(a) Circular boundary, iso. noise (b) Circular boundary, aniso. noise.

(c) Elliptical boundary, iso. noise. (d) Elliptical boundary, aniso. noise.

(e) Parabolic boundary, iso. noise. (f) Parabolic boundary, aniso. noise.

Figure 2.12.: Examples of the 𝑙𝑠-parametrization.

39



Chapter 2. Unbiased Extended Object Tracking

(a) Measurement. (b) Original noise. (c) Partial noise.

Figure 2.13.: The partial likelihood is obtained by evaluating the partial noise in 𝑙𝑦 .

2.4.3 Partial Likelihood

Prepared with the constrained-induced parametrization of measurements
𝑦 = 𝜑𝑥(𝑙𝑦, 𝑠𝑦) from (2.24), we can now derive the partial likelihood
𝑝(𝑙𝑦|𝑥, 𝑠𝑦). The following considerations are visually explained in Fig-
ure 2.13. As can be seen from Figure 2.13a, we only want to consider 𝑙𝑦
as measurement information of 𝑦, while taking 𝑠𝑦 as a given parameter.
Then, a given 𝑠𝑦-value immediately refers to the source 𝜑𝑥(0, 𝑠𝑦) which
in turn refers to the generative model in Figure 2.13b. Incorporating the
known relationship 𝑙𝑦 = 0 + 𝑙𝑣 as known from (2.21), we can express the
partial likelihood in terms of

𝑝(𝑙𝑦|𝑥, 𝑠𝑦) =
∫︁
𝐿

𝑝(𝑙𝑦|𝑥, 𝑠𝑦, 𝑙𝑣) · 𝑝(𝑙𝑣|𝑥, 𝑠𝑦) d𝑙𝑣

=
∫︁
𝐿

𝛿 (𝑙𝑦 − (0 + 𝑙𝑣)) · 𝑓𝑙𝑣 (𝑙𝑣) d𝑙𝑣

= 𝑓𝑙𝑣 (𝑙𝑦) ,

where 𝑝(𝑙𝑣|𝑥, 𝑠𝑦) = 𝑓𝑙𝑣
(𝑙𝑣) is the distribution of the noise variable 𝑙𝑣. In

consequence, the partial likelihood essentially is the distribution 𝑓𝑙𝑣 (𝑙𝑣)
that describes the 𝑙-value of the sensor noise, evaluated in 𝑙𝑦. This
distribution is schematically shown in Figure 2.13c and will be referred
to as partial noise.
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Partial Noise As the next step, we have to derive the distribution of
the partial noise 𝑝(𝑙𝑣|𝑥, 𝑠𝑦). Conceptually, it can be extracted from the
distribution of the original sensor noise 𝑝(𝑣). This requires (i) expressing
the variable 𝑣 in terms of 𝑙𝑣 and 𝑠𝑣, (ii) deriving their joint distribution
𝑝(𝑙𝑣, 𝑠𝑣|𝑥, 𝑠𝑦), and (iii) marginalizing out the 𝑠𝑣-component

𝑝(𝑙𝑣|𝑥, 𝑠𝑦) =
∫︁
𝑆

𝑝(𝑙𝑣, 𝑠𝑣|𝑥, 𝑠𝑦) d𝑠𝑣 . (2.26)

Let us start with expressing 𝑝(𝑣) in terms of 𝑙𝑣 and 𝑠𝑣. Given the
state 𝑥 and the 𝑠𝑦-value of 𝑦, hypothetical measurements 𝑦 from the
source 𝜑𝑥(0, 𝑠𝑦) occur according to the additive noise model in (2.20)
as 𝑦 = 𝜑𝑥(0, 𝑠𝑦) + 𝑣 (see Figure 2.13b). We use the tilde symbol in
order to distinguish the hypothetical measurements from the original one
𝑦. By solving this generative model for the noise 𝑣 and applying the
𝑙𝑠-parametrization to 𝑦, we obtain

𝑣 = 𝑦 − 𝜑𝑥(0, 𝑠𝑦) (2.27)
= 𝜑𝑥(�̃�𝑦, 𝑠𝑦)− 𝜑𝑥(0, 𝑠𝑦)
= 𝜑𝑥(0 + 𝑙𝑣, 𝑠𝑦 + 𝑠𝑣)− 𝜑𝑥(0, 𝑠𝑦) .

Based on this relationship, we can apply a change of variables to the
distribution 𝑝(𝑣), which is actually known to be the zero-mean Gaussian
𝒩 (𝑣; 0, C𝑣). The general formula for changing variables of a probability
distribution follows from the fundamental theorem of calculus according
to

𝑝(𝑙𝑣, 𝑠𝑣|𝑥, 𝑠𝑦) (2.28)
= 𝑝(𝑣) ·

⃒⃒
det
(︀
J𝑣(𝑙𝑣, 𝑠𝑣)

)︀ ⃒⃒
= 𝒩 (𝑣; 0, C𝑣) ·

⃒⃒
det
(︀
J𝑣(𝑙𝑣, 𝑠𝑣)

)︀ ⃒⃒
= 𝒩 (𝜑𝑥(0 + 𝑙𝑣, 𝑠𝑦 + 𝑠𝑣)− 𝜑𝑥(0, 𝑠𝑦); 0, C𝑣) ·

⃒⃒
det
(︀
J𝑣(𝑙𝑣, 𝑠𝑣)

)︀ ⃒⃒
and incorporates the determinant of the Jacobian matrix

J𝑣(𝑙𝑣, 𝑠𝑣) =
[︂

𝜕𝑣

𝜕𝑙𝑣

𝜕𝑣

𝜕𝑠𝑣

]︂
. (2.29)
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Note that (2.28) is nothing else but the distribution of the measurement
noise 𝑝(𝑣) expressed in 𝑙𝑠-coordinates, where the differential expression
(2.29) accounts for the skewness of the coordinate system. Then, by
marginalizing 𝑠𝑣 out of 𝑝(𝑙𝑣, 𝑠𝑣|𝑥, 𝑠𝑦) according to (2.26) we obtain the
distribution of the partial noise as

𝑝(𝑙𝑣|𝑥, 𝑠𝑦) =
∫︁
𝑆

𝒩 (𝜑𝑥(𝑙𝑣, 𝑠𝑦 + 𝑠𝑣); 𝜑𝑥(0, 𝑠𝑦), C𝑣) ·
⃒⃒
det
(︀
J𝑣(𝑙𝑣, 𝑠𝑣)

)︀ ⃒⃒
d𝑠𝑣

= 𝑓𝑙𝑣
(𝑙𝑣) . (2.30)

Main Result Finally, by plugging 𝑙𝑦 into the distribution 𝑓𝑙𝑣
(𝑙𝑣) of the

partial noise (2.30), we arrive at the partial likelihood, which marks the
main result of this chapter. Its definition is given as follows.

Definition 2.1 (Patial Likelihood for Extended Objects). For a given
state 𝑥 and a measurement 𝑦 = 𝜑𝑥(𝑙𝑦, 𝑠𝑦) that is parametrized in terms
of its Mahalanobis distance to the object boundary according to (2.24)
(with respect to the noise covariance matrix C𝑣), the partial likelihood
for 𝑙𝑦 is given by

𝑝(𝑙𝑦|𝑥, 𝑠𝑦) = 𝑓𝑙𝑣
(𝑙𝑦) (2.31)

=
∫︁
𝑆

𝒩 (𝜑𝑥(𝑙𝑦, 𝑠𝑦 + 𝑠𝑣); 𝜑𝑥(0, 𝑠𝑦), C𝑣) ·
⃒⃒
det
(︀
J𝑣(𝑙𝑦, 𝑠𝑣)

)︀ ⃒⃒
d𝑠𝑣 .

�

The partial likelihood has an intuitive geometric interpretation. Essen-
tially, it is the integral of a Gaussian (centered on the most likely source
𝜑𝑥(0, 𝑠𝑦)) over all potential measurements that fit equally well (i.e., 𝑙𝑦)
to the given boundary. In order to illustrate this idea, let us look at a
circle.
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Example 2.5 (Partial Likelihood for a Circle). We consider a circle that
is centered on the origin with radius 𝑥 = [𝑟] and assume the sensor noise
to be isotropic with C𝑣 = 𝜎2 · I. In order to derive the partial likelihood
(2.31), we need the function 𝜑𝑥(𝑙𝑦, 𝑠𝑦) that specifies the 𝑙𝑠-coordinate
system. For the circle, we can use (2.25) from Example 2.4. Using this
formula, the determinant of the Jacobian J𝜑(𝑙𝑦, 𝑠𝑦) evaluates to

det (J𝜑(𝑙𝑦, 𝑠𝑣)) = det
(︂[︂

cos(𝑠𝑦 + 𝑠𝑣) −(𝑟 + 𝑙𝑦) · sin(𝑠𝑦 + 𝑠𝑣)
sin(𝑠𝑦 + 𝑠𝑣) (𝑟 + 𝑙𝑦) · cos(𝑠𝑦 + 𝑠𝑣)

]︂)︂
= 𝑟 + 𝑙𝑦 ,

and the partial likelihood evaluates to

𝑝(𝑙𝑦|𝑥, 𝑠𝑦) (2.32)

=
2𝜋∫︁

0

𝒩
(︂

(𝑟 + 𝑙𝑦) ·
[︂
cos(𝑠𝑦 + 𝑠𝑣)
sin(𝑠𝑦 + 𝑠𝑣)

]︂
; 𝑟 ·

[︂
cos(𝑠𝑦)
sin(𝑠𝑦)

]︂
, C𝑣

)︂
· (𝑟 + 𝑙𝑦) d𝑠𝑣 .

Note that all potential measurements with 𝑙𝑦 lie on a circle with radius
𝑟 + 𝑙𝑦. Thus, the partial likelihood requires integrating over this circle. As
the skewness of the 𝑙𝑠-coordinate system is constant for each location on
the circle (for isotropic noise), the partial likelihood is independent of the
specific instance 𝑠𝑦, which allows us to set 𝑠𝑦 = 0 and obtain 𝑝(𝑙𝑦|𝑥). �

Measurement Equation The underlying generative model that yields
the partial likelihood from (2.31) can be obtained from the relationship
𝑙𝑦 = 0 + 𝑙𝑣. We can rearrange this equation to a measurement equation
in classical notation in the form of

0 = ℎ(𝑥, 𝑣, 𝑦) (2.33)
= 𝑔𝑥(𝑦)− 𝑔𝑥(𝜑𝑥(0, 𝜋𝑥(𝑦)) + 𝑣) ,

by substituting 𝑙𝑦 = 𝑔𝑥(𝑦) and 𝑙𝑣 = 𝑔𝑥(𝜑𝑥(0, 𝜋𝑥(𝑦)) + 𝑣), where the latter
can be obtained from (2.27). In this measurement equation, 𝑥 is the
state, 𝑣 is non-additive Gaussian noise, 𝑦 acts as a model parameter, and
0 is a pseudo-measurement.
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Relationship to the Greedy Association Model Conceptually, the PIM
from (2.33) is related to the GAM 𝑦 = 𝜑𝑥(0, 𝜋𝑥(𝑦)) + 𝑣 from (2.16) in
the sense that it can be obtain by first taking 𝑔𝑥( · ) on both sides and
then rearranging it. However, the GAM derives the likelihood of a
measurement producing itself (roughly speaking), the PIM derives the
likelihood of one dimension of the measurement (𝑠𝑦) producing another
dimension (𝑙𝑦).

2.5 Implementation

Generally, analytic solutions to the integral in (2.31) cannot be found,
not even for the circle and the case of isotropic noise (2.32). This raises
the need for approximation techniques. In this section, we show how
to implement an estimator based on approximations of the new Partial
Information Model (PIM). For this purpose, we first derive a measurement
equation with additive Gaussian noise as an approximation for (2.33).
Then, for its evaluation, we propose a sampling-based approach and, for
special cases, a closed-form approach.

2.5.1 Measurement Equation with Additive Gaussian Noise

Let us start with approximating the measurement equation from (2.33)
by a simpler one with additive noise. For this purpose, we can interpret
𝑙𝑣 = 𝑔𝑥(𝜑𝑥(0, 𝜋𝑥(𝑦)) + 𝑣) as a distinct noise variable which lets us rewrite
the original measurement equation to

0 = ℎ(𝑥, 𝑙𝑣, 𝑦) (2.34)
= 𝑔𝑥(𝑦)− 𝑙𝑣 .

In this measurement equation, 𝑥 is the state, 𝑙𝑣 is an additive, but not
necessarily Gaussian noise variable, 𝑦 acts as a model parameter, and
0 is a pseudo-measurement. For practical purposes, it is convenient to
use moment matching in order to approximate the distribution of 𝑙𝑣
as a Gaussian distribution 𝑓𝑙𝑣

(𝑙𝑣) ≈ 𝒩 (E{𝑙𝑣)} , Var{𝑙𝑣}). Mathemati-
cally, this requires propagating the moments of the random variable 𝑣
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Figure 2.14.: Sampling-based approximation of the partial noise.

through 𝑙𝑣 = 𝑔𝑥(𝜑𝑥(0, 𝜋𝑥(𝑦)) + 𝑣). Then, the measurement equation
(2.34) immediately refers to the likelihood

𝑝(𝑙𝑦|𝑥, 𝑠𝑦) = 𝑓𝑙𝑣
(𝑙𝑦) (2.35)

≈ 𝒩 (𝑙𝑦; E{𝑙𝑣} , Var{𝑙𝑣})
= 𝒩

(︀
𝑔𝑥(𝑦); E{𝑙𝑣} , Var{𝑙𝑣}

)︀
,

which, thus, can be seen as approximation of the partial likelihood from
(2.31). Next, we propose two approaches to derive the moments E{𝑙𝑣}
and Var{𝑙𝑣}.

2.5.2 Sampling-based Moment Matching

A well-known approach to propagate moments of a random variable
𝑣 through a nonlinear function 𝑙𝑣 = 𝑔𝑥(𝜑𝑥(0, 𝜋𝑥(𝑦)) + 𝑣) is based on
samples, which are drawn randomly or deterministically [92, 93] from the
original distribution 𝑝(𝑣). We can adapt this idea to calculate the mean
E{𝑙𝑣} and the variance Var{𝑙𝑣} of 𝑙𝑣 based on 𝐽 samples of 𝑝(𝑣). This
approach boils down to

1. calculate 𝜋𝑥(𝑦) using (2.13) (see Figure 2.14 left),

2. draw 𝐽 samples {𝑣1, . . . , 𝑣𝐽} from 𝒩 (𝑣; 0, C𝑣) ,

45



Chapter 2. Unbiased Extended Object Tracking

3. simulate 𝐽 measurements 𝑦
𝑗

= 𝜑𝑥(0, 𝜋𝑥(𝑦)) + 𝑣𝑗 (see Figure 2.14
right), and

4. calculate sample moments according to

E{𝑙𝑣} ≈
1
𝐽

𝐽∑︁
𝑗=1

𝑔𝑥(𝑦
𝑗
) , (2.36)

Var{𝑙𝑣} ≈
1
𝐽

𝐽∑︁
𝑗=1

(︁
𝑔𝑥(𝑦

𝑗
)2 − E{𝑙𝑣}2

)︁
.

It is important to note that this sampling-based approach can easily
be also applied to anisotropic noise with covariance matrices C𝑣. We
recommend drawing the noise samples deterministically (e.g., by using
[92]) as this allows keeping the numbers of samples low and, in addition,
ensures reproducible results.

2.5.3 Closed-Form Moment Matching

For the special case of the Euclidean distance and a boundary with
existing derivatives, there is a closed-form solution available for E{𝑙𝑣}
and Var{𝑙𝑣}. This solution goes back to [94] and was used by Okatani
[18], in order to re-engineer a biased GAM-likelihood. That is, for
a given source 𝜑𝑥(𝑠) on the boundary, the signed Euclidean distance
of its expected measurements to the curve is approximately Gaussian
distributed, where the moments of the Gaussian depend on the local mean
curvature 𝜅𝑥(𝑠) of the boundary and the extent 𝜎2

𝑣 of the noise. Generally,
the mean curvature is the arithmetic average of the principal curvatures
[95]. For the case of a 1D curve in 2D space, the mean curvature is given
by

𝜅𝑥(𝑠) = 𝜑
(1)′

𝑥 (𝑠) ·𝜑(2)′′

𝑥 (𝑠)− 𝜑
(1)′′

𝑥 (𝑠) ·𝜑(2)′

𝑥(︁
𝜑

(1)′
𝑥 (𝑠)2 + 𝜑

(2)′′
𝑥 (𝑠)2

)︁ 3
2

, (2.37)
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where 𝜑
(1)
𝑥 (𝑠), 𝜑

(2)
𝑥 (𝑠) are abbreviations for the first and second compo-

nents of 𝜑𝑥(0, 𝑠), and the terms ( · )′ and ( · )′′ represent the first and
second derivatives of these scalar components with respect to 𝑠. General-
izations to higher dimensions are discussed in [95, 96].

Based on the mean curvature, the closed-form approximation for con-
straints in a 𝑑-dimensional space can be boiled down to

1. calculate 𝑠𝑦 = 𝜋𝑥(𝑦) using (2.13) (see Figure 2.15 left)

2. calculate mean curvature 𝜅𝑥(𝑠𝑦) at 𝜑𝑥(0, 𝑠𝑦) using (2.37) (see Fig-
ure 2.15 right)

3. calculate moments according to

E{𝑙𝑣} = 𝜎2
𝑣

(︂
1
2 · (𝑑− 1) ·𝜅𝑥(𝑠𝑦)

)︂
, (2.38)

Var{𝑙𝑣} = 𝜎2
𝑣

(︃
1− 𝜎2

𝑣

(︂
1
2 · (𝑑− 1) ·𝜅𝑥(𝑠𝑦)

)︂2
)︃2

,

where 𝑑 is the dimension of the measurements.

In 2D for 𝑑 = 2, approximating the constraint locally by its mean
curvature allows for a very intuitive geometric interpretation, based on
the fact that the curvature 𝜅 actually is the absolute reciprocal radius of
the osculating circle 𝑟 = 1/|𝜅|. In consequence, the constraint is locally
approximated by its osculating circle as indicated in the right part of
Figure 2.15. Note that the sign of the curvature in (2.38) is important,
as it distinguishes concave from convex parts of the constraint.

2.5.4 Deriving the Measurement Update

Finally, for deriving the measurement update step using the new Partial
Information Model, we can either use a nonlinear Kalman filter update, or
a Particle Filter update, both of which are introduced in Appendix A.
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Figure 2.15.: Analytic approximation of the partial noise using the local mean
curvature 𝜅 of the constraint.

Nonlinear Kalman Filter Update For the nonlinear Kalman filter up-
date according to Algorithm A.1, the joint distribution of measurement
and state has to be calculated using the PIM measurement equation. In
contrast to the generic measurement function 𝑦 = ℎ(𝑥, 𝑣) from (2.3), the
proposed PIM measurement equation 0 = ℎ(𝑥, 𝑙𝑣, 𝑦) from (2.34) slightly
differs in the sense that it produces pseudo measurements 0 rather than
the original measurement 𝑦. Nevertheless, the classical measurement
update can be derived by simply assuming 0 to be the measurement and
𝑦 to be a parameter.

Particle Filter Update For the particle filter update according to Algo-
rithm A.2, we have to evaluate the likelihood for a set of instances of the
state 𝑥. For using the PIM, we can simply substitute the generic likelihood
function 𝑝(𝑦|𝑥) by the partial likelihood 𝑝(𝑙𝑦|𝑥, 𝑠𝑦) from (2.35).

2.6 Evaluation

Let us now study the new model and its estimation quality. For this
purpose, we (i) show that the PIM theoretically yields an unbiased
estimator, (ii) investigate the quality of its Gaussian approximation,
and (iii) evaluate its performance in two recursive ellipse estimation
experiments against the state of the art.
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2.6.1 Unbiasedness

We start with a theoretical analysis of potential estimation bias in PIMs.
Godambe and Thompson [73] defined that an estimating equation, i.e.,
an implicit measurement equation ℎ*(𝑥, 𝑦) = 0, is unbiased if

E
{︀

ℎ*(𝑥, 𝑦)
}︀

= 0 (2.39)

holds for the true parameters 𝑥. That is, if we had an infinite num-
ber of measurements 𝑦, the estimating equation would be fulfilled in
average. This definition was motivated by the fact that the likelihood
𝒩 (ℎ*(𝑥, 𝑦); 0, 𝜎2) then has a maximum for the true parameters which, in
consequence, ensures that a maximum likelihood estimator theoretically
can converge to the true parameters. In addition, they found that an orig-
inally biased estimating equation ℎ(𝑥, 𝑦) = 0, which includes a nuisance
parameter 𝑠, can be modified in order to make it unbiased in the sense
of (2.39). For this purpose, let 𝜑𝑥(𝑠) with 𝑠 ∈ 𝑆 denote all points, which
fulfill the original estimating equation ℎ(𝑥, 𝜑(𝑠)) = 0. Then, in order to
obtain an unbiased estimating equation, they propose to subtract the ex-
pected value E{ℎ(𝑥, 𝜑𝑥(𝑠) + 𝑣} from the original measurement equation
in the form of ℎ*(𝑥, 𝑦) = ℎ(𝑥, 𝑦)− E{ℎ(𝑥, 𝜑𝑥(𝑠) + 𝑣} with respect to the
noise variable 𝑣 . For this derivation, the unknown nuisance parameter 𝑠
is to be substituted by its maximum likelihood estimate.

Following this approach, the PIM measurement equation (2.33) can be
interpreted as an unbiased estimating equation

ℎ*(𝑥, 𝑦) = 𝑔𝑥(𝑦)− E
{︀

𝑔𝑥(𝜑𝑥(𝜋𝑥(𝑦)) + 𝑣)
}︀

, (2.40)

where the nuisance parameter 𝑠 has been set to its maximum likelihood
estimate 𝜋𝑥(𝑦). In consequence, The PIM is theoretically unbiased
according to (2.39).
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Figure 2.16.: Considered parabola. Three locations A = (−2, 4), B = (−1, 1), and
C = (0, 0) are used for evaluation.

Unbiasedness of PIMs with other 𝑙𝑠-coordinate systems From the un-
biasedness condition in (2.39), we can conclude a general statement about
𝑙𝑠-coordinate systems in a PIM. That is, as long as the 𝑠𝑦-component
is chosen to referring to the most likely source on the boundary, we can
choose any other constraint function 𝑔𝑥(𝑦) and still obtain an unbiased
estimating equation (2.40).

2.6.2 Approximation Quality of the Partial Noise

In Section 2.5, we presented two approaches to approximate the partial
noise 𝑝(𝑙𝑣|𝑥, 𝑠𝑦) for the PIM by a Gaussian distribution𝒩 (E{𝑙𝑣} , Var{𝑙𝑣}).
We considered sampling-based and closed-form moment matching of the
propagated sensor noise variable 𝑣 ∼ 𝒩 (0, C𝑣). In this section, we em-
pirically compare both techniques against the true moments. We decided
for a parabola to be the test shape as it has a varying curvature along the
curve. Evaluating different curvatures is important, as we can conclude
from [18] that the moments of the partial noise essentially depend on (i)
the local curvature of the boundary and (ii) the level of the noise. By
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considering different parts of the parabola, we can compare the moments
for different local curvatures and different levels of noise. In order to
allow a fair comparison, we focus on isotropic noise as the closed-form
approach cannot deal with anisotropic noise.

Modeling a Parabola A parabola is a polynomial of degree two that
can be described by three parameters 𝑥 = [𝑎, 𝑏, 𝑐]T and has a boundary
function

𝜑𝑥(𝑠) =
[︂

𝑠
𝑎 · 𝑠2 + 𝑏 · 𝑠 + 𝑐

]︂
, (2.41)

where 𝑠 ∈ R. We consider the task of approximating the moments E{𝑙𝑣},
Var{𝑙𝑣} of the partial noise. For the sampling-based moment matching,
it is required to simulate 𝐽 measurements 𝑦 of 𝜑𝑥(𝑠) and then find their
most likely points on the parabola. This calculation can be performed
by solving

𝑠𝑦 = arg min
𝑠∈R

‖𝑦 − 𝜑𝑥(𝑠)‖ ,

which refers to finding the minimum root of the derivative ‖𝑦 − 𝜑𝑥(𝑠)‖′

with respect to 𝑠. As the expression simplifies to a polynomial of de-
gree three, all roots can be calculated analytically. For the closed-form
approach [18], the parabola boundary is to be approximated by its os-
culating circle at 𝜑𝑥(𝑠). For this purpose, we need the formula for the
parabola curvature 𝜅(𝑠), which can be evaluated by plugging (2.41) into
(2.37) according to

𝜅(𝑠) = 2𝑎

((2𝑎𝑠 + 𝑏)2 + 1)
3
2

.

Experiment For the empirical comparison, the parabola in Figure 2.16
with 𝑥 = [1, 0, 0]T is used. We focus on three locations A, B, and C, with
increasing local curvature. The ground truth moments of the partial noise
for noise levels from 𝜎2 = 0.01 to 𝜎2 = 0.75 are calculated using sampling-
based moment matching (2.36) with 107 random samples. Against this
ground truth we compare three approaches.
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Figure 2.17.: Approximating the moments of the partial noise for a parabola at po-
sition C = (0, 0) and isotropic noise with variance 𝜎2. Each column
shows one technique. Within each column, the cells illustrate different
noise levels. The 3𝜎-bounds are drawn as light blue circles.
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Figure 2.18.: Moments of the partial noise of the parabola at the different locations
A, B, and C.
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∙ Okatani: closed-form moment matching using (2.38),

∙ 5 Samples: sampling-based moment matching using (2.36) and
the deterministic sampling technique known from the unscented
Kalman filter [92], and

∙ 51 Samples: sampling-based moment matching using (2.36) and
the deterministic sampling technique proposed in [93].

Results Figure 2.17 illustrates intermediate steps for the different ap-
proaches at location C.

In each image, the 3𝜎-bounds of the actual sensor noise are drawn as
a blue circle. These circles encompass 99.7% of the probability mass
and can be interpreted as the region of interest where the curvature
of the boundary affects the moments of the partial noise. In the left
column, the 3𝜎-bounds are drawn against the osculating circle (gray)
that approximates the parabola boundary in “Okatani”. The second and
third column show the simulated measurements 𝑦 for the “5 Samples”
and “51 Samples” approach, respectively. As can be seen from the figure,
the approximation of the parabola boundary by its osculating circle in
“Okatani” is only valid for small regions of interest, i.e., for low noise
levels. In contrast, the sampling-based approaches always consider the
entire boundary. In consequence, we expect the sampling-based moment
matching to yield more accurate results than the closed-form approach
with increasing noise.

Figure 2.18 visualizes the numerical results of the comparison. In the
first column, the graphs show the mean E{𝑙𝑣} at each location for the
different noise levels and the second column shows the variances Var{𝑙𝑣}.
For location C, the dashed black lines in Figure 2.18 refer to the noise
levels that are considered in Figure 2.17. The mean determines the
average signed distance from measurements of 𝜑𝑥(𝑠) to the curve. At
location A, the parabola is approximately linear and results in a mean
of value 0 for all considered noise levels, as the probability mass divided
equally on both sides of the curve [159]. As can be seen in Figure 2.18a,
all approaches approximately coincide with the ground truth. This also
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holds for the closed-form approach, as the osculating circle at location A
has a large radius about 35 and approximates the linear part of the curve
quite well. At location B and C, the curvature becomes increasingly large
and causes a biased ratio of probability mass which results in increasing
values for the mean.

While all approaches perform very similar for low noise, the sampling-
based approaches are more accurate than “Okatani” for high noise. This
result is as we expected due to the invalid circular approximation of the
parabola curve. The closed-form moment matching (2.38) is even subject
to a singularity where the variance for specific combinations of noise level
and curvature yields 0 values. This issue can be seen in Figure 2.18f. The
comparison of the sampling-based approaches lets us conclude that the
mean E{𝑙𝑣} can be approximated accurately in both approaches, while
the variance Var{𝑙𝑣} can only be accurately approximated by the “51
Samples” approach.

2.6.3 Estimation Quality of the Partial Information Model

In this section, we evaluate the PIM in the common task of tracking a
moving ellipse. Specifically, we conducted two Monte Carlo experiments,
one without and one with occlusion.

Experiment We consider recursively estimating an ellipse with size
[𝑎, 𝑏]T = [2, 1]T that moves along the U-shaped track in Figure 2.19. While
it is moving, a simulated sensor performs 250 point cloud measurements,
where each of contains 10 noisy points. For some selected locations,
exemplary measurements are drawn as black dots in Figure 2.19. In the
first experiment, the measurement sources are uniformly drawn from the
full ellipse boundary and distorted by anisotropic Gaussian noise with
C𝑣 = 2 · diag(10−1, 10−2) (see Figure 2.19a). In the second experiment,
we simulate a permanent occlusion of the ellipse front and draw sources
only from the visible fraction (see Figure 2.19b). For the evaluation, we
consider the traditional models from Section 2.3, as well as the proposed
Partial Information Model.
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Figure 2.19.: Ellipse tracking experiments. In (a), measurements originate from the
whole ellipse. In (b), only a part of the ellipse is measured. The labels
“D” and “E” mark motion changes.

∙ Known Association Model: For reference, we set up the KAM
from (2.12) and provide it with the true source index 𝑠* for each
measurement. Due to the perfect association of the KAM, it can
be seen as a benchmark for the other models.

∙ Spatial Distribution Model: We also consider an SDM (2.10),
where 𝑝(𝑠|𝑥) is modeled by a uniform distribution over the full
ellipse boundary. This uniform distribution is indeed true for the
experiment without occlusion, but not for the one with occlusion.
The integral is numerically evaluated, using a polygon approxima-
tion [159] for the ellipse with 72 vertices.

∙ Greedy Association Model: As a representative for the distance-
minimizing approaches, we set up a GAM according to (2.15). For
finding the most likely sources on the ellipse, we again approximate
the ellipse by a polygon.

∙ Partial Information Model: For the proposed PIM (2.35), we
use the sampling-based moment-matching technique from Sec-
tion 2.5.2 with 5 samples [92] for calculating mean E{𝑙𝑣}, and
variance Var{𝑙𝑣} of the partial noise. Again, we use a polygon
approximation of the ellipse for finding the most likely sources.
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In order to allow for a fair comparison of these models, we want to
use the same filter for all models. Actually, we would prefer using a
simple nonlinear Kalman filter such as the EKF or UKF. However, due
to the high complexity of the SDM, these filters are not suitable. In
consequence, we decide for a Progressive Gaussian Filter (PGF) [97],
which is a nonlinear Gaussian filter with a particle-based measurement
update. Between the measurement update steps, we add prediction steps
using a constant velocity model for the position [47], and a constant turn
rate model for the orientation [47]. The process covariance matrix is set
to a diagonal matrix 10−6 · I for position, angle and axes, and 10−5 · I for
velocity and turn rate, in order to adapt to motion changes. The initial
ellipse state 𝑥 for the estimators is set to an ellipse that is obtained from
a set of initial measurements. Specifically, the center is set to the mean
of the initial measurements, and the angle and ellipse axes 𝑎, 𝑏 are set
according to the principal components of their covariance. The initial
covariance is set to a diagonal matrix 10−1 · I. The following results are
obtained from 1000 runs of each experiment.

Results Figure 2.20 and Figure 2.21 visualize the intermediate results
for both experiments. In (a-d), the average estimated ellipses are drawn
against the black ground truth ellipses and in (e-g), the RMSEs for
selected parameters are shown. As can be seen, the KAM approach
obtains unbiased average estimates for both experiments, as the blue
ellipses perfectly cover the black ground truth. This unbiasedness is also
true for the PIM approach, as the red ellipses perfectly cover the true
ones, too. In contrast, the SDM approach finds the true ellipse in the
experiment without occlusion, yet in the presence of occlusion it produces
biased estimates. This can be seen in Figure 2.21d, where the purple
ellipses do not cover the black ground truth. This systematic error for
position and semi-major axis also affects the RMSE for position and
extent in Figure 2.21f and Figure 2.21g. The GAM approach is even
worse than the SDM, as it is subject to bias for both experiments. The
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average ellipses are representative, as their standard deviation through
all runs and parameters is in a magnitude of 10−2. In order to illustrate
what that means, several estimates for the last time step 250 are drawn
together in Figure 2.22 and Figure 2.23.

These behaviors have an intuitive interpretation: The SDM bias boils
down to the correct (without occlusion) and incorrect (with occlusion)
assumptions about 𝑝(𝑠|𝑥), and the GAM bias is a result of its corrupt
likelihood (see Section 2.3.3). As our approach neither requires assump-
tions on 𝑝(𝑠|𝑥), nor builds upon a corrupt probabilistic model, it is not
affected by these systematic errors.

However, the proposed PIM-based estimator has a slightly slower con-
vergence compared to the SDM approach. We suspect this issue to be
the price of ignoring the source distribution. In numerical terms, where
the SDM approach finds the true ellipse right after 10 update steps, our
approach takes approximately 25 updates until convergence. Even though
this drawback should be of minor importance in practice, it must be kept
in mind when designing the initialization procedure.

2.7 Conclusions from Chapter 2

In this chapter, we have developed a new probabilistic model for extended
object tracking that can be used in situations when (i) there is no
knowledge about the distribution of the measurement sources and (ii) in
the presence of high (potentially anisotropic) sensor noise. Under these
conditions, traditional models, such as the Spatial Distribution Model
and the Greedy Association Model are likely to be biased.

The key idea of the new Partial Information Model essentially is to remove
the association heuristics from the general probabilistic model. For this
purpose, we transform the coordinate system of the measurement domain
in a way that one axis lies in the object boundary, and place the remaining
one such that the correlation of the sensor noise is minimal to those in
the boundary. The axis in the boundary then specifies “where” on the
object a measurement corresponds to and the remaining axis determines
“how well” it fits to the boundary. Usually, designing a probabilistic
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model for the “where”-component requires knowledge of the originating
source of a measurement. However, by expressing the measurements in
this transformed coordinate system, a partial likelihood can be derived
for the “how well”-component exclusively that does not require modeling
the originating source.

The resulting estimator based on this model was shown to be theoreti-
cally unbiased and to outperform state-of-the-art models in a simulated
tracking experiment. Specifically, we considered the common task of recur-
sively estimating the parameters of a moving ellipse based on sequentially
arriving measurements with anisotropic Gaussian noise characteristics
and unexpected occlusions.

In the considered tracking experiment, we observed that our approach
converges to the true ellipse boundary, regardless of whether measure-
ments originate only from a part of the ellipse boundary or whether they
were affected by high anisotropic noise. The common approaches that
(i) use a spatial distribution or (ii) minimize a distance to the boundary
were either biased when applied to a non-uniform source distribution
or biased in the case of high noise. In numerical terms, the systematic
error in the estimated parameters could be reduced by a full order of
magnitude compared to both traditional approaches.
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Figure 2.20.: Results of the experiment without occlusion.
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Figure 2.21.: Results of the experiment with occlusion.
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Figure 2.22.: Estimates at time step 250 for the experiment without occlusion.
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Figure 2.23.: Estimates at time step 250 for the experiment with occlusion.
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In this chapter, we develop a tracking algorithm for objects in 3D based
on the theoretical insights from the previous chapter. In contrast to
situations, where the object shape is known in advance and only its pose
is to be estimated, we look at situations where the shape initially is
unknown as well (Challenge 2). Then, the question is

how to model arbitrary shapes in 3D?

As the primary requirement, the desired model should be capable of
representing a wide spectrum of geometries in order to adapt to various
objects. In addition, it must be flexible enough to scale the shape detail
from rough to fine in order to adapt to a different amount of measurement
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information. Thus, the goals in this chapter are (i) to specify a flexible
model that relates a manageable number of parameters to potentially
complex surfaces in 3D and (ii) to develop a tracking algorithm for this
model.

In literature, there are roughly two lines of research to this task. On
the one side, non-parametric models can represent detailed shapes by
occupancy grids [26], point clouds [9], or polygon meshes [23]. However,
varying the shape complexity requires non-trivial refinement and coars-
ening operations. On the other side, parametric models typically use
only a small number of parameters, as they focus on simple shapes such
as ellipsoids [40] or bounding boxes [42]. In this thesis, we follow the
parametric approach, but, in contrast to related approaches, we consider
more general 3D objects. For this purpose, we propose to construct
surfaces by transforming plane curves. In particular, using a combination
of translation, rotation, and scaling operations allows for constructing
complex shapes, such as the ones shown in Figure 3.1. However, devel-
oping a probabilistic model for these shapes is challenging, as it may
have issues such as bias or unobservable parameters. Even the proposed
Partial Information Model from Section 2.4 may yield an estimator that
is not capable of finding values for specific parameters, e.g., the length of
an object.

(a) Trans-
lation.

(b) Translation
and rotation.

(c) Translation
and scaling.

(d) Translation
of complex
curve.

Figure 3.1.: Considered types of transformation: while (a) and (b) only affect the
pose of the plane curve, (c) and (d) also affect its shape.
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Contribution Our main contribution in this chapter is the 3D Random
Hypersurface Model (3DRHM), a new probabilistic model for extended
objects in 3D which combines ideas from the elemental models from the
previous chapter. Specifically, by assuming a probability for each trans-
formed curve and ignoring (or approximating) the unknown information
of “where” on the curve a measurement corresponds to, the new model
can be seen as a combination of the Spatial Distribution Model and the
Partial Information Model (or Greedy Association Model). In addition,
it is closely related to the Random Hypersurface Model for region and
group tracking from [63]. The resulting estimator

∙ is capable of estimating all parameters, including the object length,

∙ inherits the unbiasedness from the Partial Information Model,

∙ and can still be implemented using common recursive Bayesian
estimation techniques such as a nonlinear Kalman filter.

For illustration, we explicitly develop estimators for a cylinder, torus,
cone, and extruded complex curve. In simulations, we show that our
approach outperforms state-of-the-art estimation techniques in terms of
accuracy.

Remark 3.1. This chapter builds on work presented in [151, 149, 156,
166, 160].

3.1 Related Work

Let us briefly discuss related tracking approaches and modeling techniques.
In doing so, we focus on works that simultaneously estimate pose and
shape parameters of objects or scenes.

Random Hypersurface Models were proposed in [63] as a means for
modeling extended objects in 2D, where measurements not only originate
from the boundary of the object, but also from its interior. Based
on RHMs, regions with different shape were modeled, such as ellipses
[63], star-convex shapes [98], ellipse mixtures [99], as well as non-convex
polygons [163]. We will heavily rely on the idea of RHMs when deriving
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the probabilistic model for transformed curves in this chapter. In the
context of region tracking, there are also approaches using the popular
Random Matrices approach [65, 80], where the extent of an object is
represented as the mean and covariance matrix of a Gaussian distribution.
Multiple random matrices were combined to model more complex shapes
in 2D [100]. Using Extended Gaussian images [101] to represent shapes
was proposed in [102, 103] for pose estimation and in [104] for surface
reconstruction.

Spherical harmonics [105] were already used in medical applications [106]
to represent complex shapes in 3D. Transforming a curve along another
curve was proposed in [43], in order to reconstruct missing parts of a
measured point cloud (see Figure 3.2a). In [107], the authors proceed
one step further by generating a complex shape from back-projecting
and intersecting silhouettes (see Figure 3.2b). Active contours [20] and
active surfaces [108] can be used to reconstruct the shape of objects by
minimizing some kind of energy function. However, active contours are
typically used together with dense image measurements, as the energy
terms depend on the number of measurements.

Another related line of work is estimating shapes that are connected
via joints [109, 110]. These approaches essentially perform extended
object tracking of multiple objects, which are connected via geometrical
or physical constraints. Note that the models that are developed in this
thesis can be easily incorporated in their frameworks.

(a) Transformed curves [43]
c○ 2012 IEEE.

(b) Backprojection of silhouettes [107]
c○ 2010 Association for Computing

Machinery, Inc. Reprinted by permission.

Figure 3.2.: Related Approaches.
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(a) Cylin-
der.

(b) Torus. (c) Cone. (d) Extrusion.

Figure 3.3.: Geometric shapes, constructed by plane curve transformations.

3.2 Considered Types of Transformation

In this section, we show how to use plane curves to construct the surface
of an object. A plane curve is one that can be embedded into a 2D plane,
such as the circle in Figure 3.1(a-c). Let the parameters that are required
to specify the pose and shape of the surface be aggregated in the state
vector 𝑥. Then, modeling a surface refers to the task of (i) specifying
a function 𝜑𝑥 : 𝑆 → R2 that lets us iterate through all points in the
curve, and (ii) embedding it into 3D space by applying a transformation
Φ𝑥 : 𝑆 × 𝑈 → R3. In particular, we consider transformations

Φ𝑥,𝑢(𝑠) = R𝑢

[︂
𝑓𝑢 ·𝜑𝑥(𝑠)

0

]︂
+ 𝑐𝑢 , (3.1)

where 𝑠 ∈ 𝑆 ⊆ R iterates through the curve and 𝑢 ∈ 𝑈 ⊆ R controls the
transformation. We will denote (3.1) as the surface function.

Using these parameters, the plane curve can be translated and rotated
using the vector 𝑐𝑢 ∈ R3, and the 3× 3 rotation matrix R𝑢, respectively.
The scalar 𝑓𝑢 ∈ R allows scaling a given curve, and by using different
curve functions 𝜑𝑥(𝑠), the shape itself can be modified. Note that in
(3.1), we considered the object in its local coordinate system. Arbitrary
object poses can be implemented by applying a rigid transformation
R𝑥Φ𝑥,𝑢(𝑠) + 𝑐𝑥 to the surface function. In the following, we derive
specific instances of (3.1) for the shapes in Figure 3.3.
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3.2.1 Translation (Cylinder)

Let us start with modeling the mantle of the cylinder in Figure 3.3a,
which can be characterized by the state vector 𝑥 = [𝑟, 𝑑]T, where 𝑟 is
the radius and 𝑑 is the length. For the object coordinate system, let
the bottom of the cylinder be centered on the origin, axis aligned, and
let 𝑦3 be the axis of extrusion. For the circular plane curve (black), we
can use the function 𝜑𝑥(𝑠) = 𝑟 · [cos(𝑠), sin(𝑠)]T with 𝑠 ∈ [0, 2𝜋). The
translation can be modeled as a linear shift according to 𝑐𝑢 = [0, 0, 𝑢 · 𝑑]T
with 𝑢 ∈ [0, 1]. The remaining transformation mechanisms for rotation
and scaling are not needed and set to their respective identities R𝑢 = I
and 𝑓𝑢 = 1. Plugging all into the general formula (3.1) yields

Φ𝑥,𝑢(𝑠) =

⎡⎣𝑟 · cos(𝑠)
𝑟 · sin(𝑠)

𝑢 · 𝑑

⎤⎦ , (3.2)

where each 𝑢 refers to a circle in a plane that lies parallel to the 𝑦1𝑦2-plane
and is shifted along the 𝑦3-axis.

3.2.2 Translation and Rotation (Torus)

By allowing translation and rotation, we can model more complex surfaces
such as the torus in Figure 3.3b. Its surface can be specified by the state
vector 𝑥 = [𝑟1, 𝑟2]T where 𝑟1 is the central radius and 𝑟2 is the lateral
radius. For the object coordinate system, let the center of mass lie in the
origin and the central circle lie in the 𝑦1𝑦2-plane. For the circular plane
curves (black), we can again use the function 𝜑𝑥(𝑠) = 𝑟2 · [cos(𝑠), sin(𝑠)]T
with 𝑠 ∈ [0, 2𝜋). The translation can be modeled as a circular function
𝑐𝑢 = 𝑟1 · [cos(𝑢), sin(𝑢), 0]T with 𝑢 ∈ [0, 2𝜋). Then, the rotation matrix
R𝑢 can be obtained using the tangent vector to the central circle at 𝑐𝑢.
Finally, by setting the scaling to 𝑓𝑢 = 1, we arrive at

Φ𝑥,𝑢(𝑠) =

⎡⎣(𝑟1 + 𝑟2 · cos(𝑠)) · cos(𝑢)
(𝑟1 + 𝑟2 · cos(𝑠)) · sin(𝑢)

𝑟2 · sin(𝑠)

⎤⎦ . (3.3)
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s1

(a) Object contour.
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(b) Radius function.

Figure 3.4.: The polar function 𝑟(𝑠) specifies a radius for each angle 𝑠. The cor-
respondence between polar function and shape contour is marked for
a given 𝑠1.

3.2.3 Translation and Scaling (Cone)

The cone in Figure 3.3c can be constructed in a similar way as the
cylinder, except from an additional scaling term that controls the circle
radius. The state vector is given by 𝑥 = [𝑟, 𝑑]T, where 𝑟 is the radius
at the bottom and 𝑑 is the height of the cone. Then, we can modify
the cylinder model from (3.2) by replacing the formerly constant scaling
factor by 𝑓𝑢 = 1− 𝑢, which yields the cone model

Φ𝑥,𝑢(𝑠) =

⎡⎣(1− 𝑢) · 𝑟 · cos(𝑠)
(1− 𝑢) · 𝑟 · sin(𝑠)

𝑢 · 𝑑

⎤⎦ , (3.4)

where again 𝑠 ∈ [0, 2𝜋) and 𝑢 ∈ [0, 1].

3.2.4 Translation of Star-convex Curve (Extruded Curve)

Instead of using circular curves, we could also use more general ones. In
[98], it was proposed to use polar functions for star-convex curves in R2.
Star-convex means that there is a point within the shape, where each line
segment to any point on the boundary remains in the shape. This allows
for a convenient representation by means of a polar function 𝑟(𝑠) that
returns the radius for a given angle 𝑠 ∈ [0, 2𝜋), as shown in Figure 3.4.
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Specifically, 𝑟(𝑠) can be implemented by means of a Fourier series

𝑟(𝑠) = 𝑎0

2 +
𝑀∑︁

𝑚=1
𝑎𝑚 cos(𝑚 · 𝑠) + 𝑏𝑚 sin(𝑚 · 𝑠) (3.5)

that is controlled by a list of 2𝑀 + 1 coefficients 𝑎, 𝑏.

Using this polar function, we can iterate through all points on the curve
by 𝜑𝑥(𝑠) = 𝑟(𝑠) · [cos(𝑠), sin(𝑠)]T. For the special case of 𝑀 = 0, the
corresponding function 𝑟(𝑠) = 𝑎0

2 specifies the constant radius of a
circle. For a generalized cylinder based on star-convex curves, the state
vector is given by the height 𝑑 and the Fourier coefficients in the form
of 𝑥 = [𝑑, 𝑎0, 𝑎1, 𝑏1, . . . , 𝑎𝑀 , 𝑏𝑀 ]T. Adapting the cylinder formula from
(3.2), we obtain

Φ𝑥,𝑢(𝑠) =

⎡⎣𝑟(𝑠) · cos(𝑠)
𝑟(𝑠) · sin(𝑠)

𝑢 · 𝑑

⎤⎦ . (3.6)

Next, we discuss the task of designing probabilistic models for these
surfaces.

3.3 Probabilistic Model for
Plane Curve Transformations

In this section, we derive a prototype likelihood 𝑝(𝑦|𝑥) for objects whose
surface is constructed by transforming plane curves, and discuss solutions
to the association problem. It turns out that, when using a PIM or a
GAM, the resulting estimator is not capable of estimating the length
parameter of the object, while it actually is when using an SDM. We
study this issue for line segments, which are a special case of cylinders.
Then, we introduce the Random Hypersurface Model (RHM), which will
help us to overcome the length issue.
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Likelihood Prototype Let us now derive a likelihood prototype 𝑝(𝑦|𝑥)
for the considered objects from (3.1). For a given state vector 𝑥, we have
to model how likely it is for the surface Φ𝑥,𝑢(𝑠) with 𝑢 ∈ 𝑈 and 𝑠 ∈ 𝑆 to
produce a measurement 𝑦 ∈ R3. As we assume additive Gaussian sensor
noise, the generative measurement model can be written as

𝑦 = Φ𝑥,𝑢(𝑠) + 𝑣 , (3.7)

where 𝑣 ∼ 𝒩 (0, C𝑣) is the noise term. This generative model can be
rewritten as the likelihood

𝑝(𝑦|𝑥) =
∫︁
𝑈

∫︁
𝑆

𝑝(𝑦|𝑥, 𝑠, 𝑢) · 𝑝(𝑠, 𝑢|𝑥) d𝑠 d𝑢

=
∫︁
𝑈

∫︁
𝑆

𝒩
(︀
𝑦; Φ𝑥,𝑢(𝑠), C𝑣

)︀⏟  ⏞  
sensor model

· 𝑝(𝑠, 𝑢|𝑥)⏟  ⏞  
source model

d𝑠 d𝑢 (3.8)

by assuming the probabilities of 𝑢 and 𝑠 to be known. As a reminder,
the sensor model specifies the expected Gaussian sensor noise with
covariance matrix C𝑣 when measuring a specific source Φ𝑥,𝑢(𝑠), and the
source model specifies how likely it is that this source is measured at
all. When designing the source model 𝑝(𝑠, 𝑢|𝑥), we are again faced with
the association problem (Challenge 1), as it is generally not known from
which point in the surface a measurement originated.

Solving the Association Problem In Chapter 2, we already discussed
three elemental probabilistic models that solve the association problem,
i.e., the Spatial Distribution Model, the Greedy Association Model and
the proposed Partial Information Model. However, so far, we exclusively
focused on shapes with a single boundary parameter 𝑠. Now, in (3.8), we
additionally have to deal with the transformation parameter 𝑢. In order to
explore the effect of this parameter in the probabilistic model, let us study
line segments, which are a special case of plane curve transformations
(3.1).
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(a) Length issue for line
segment.

(b) Same issue for
cylinder.

Figure 3.5.: When greedily associating measurements to a line segment (or cylinder)
the estimator cannot distinguish the true black length and the over-
estimated red length.

3.3.1 Line Segments

A line segment of length 𝑥 = [𝑑] can be seen as a special case of a cylinder
with radius 𝑟 = 0. Hence, it can be modeled using the cylinder formula
(3.2) according to

Φ𝑥,𝑢(𝑠) =

⎡⎣0 · cos(𝑠)
0 · sin(𝑠)

𝑢 · 𝑑

⎤⎦ =

⎡⎣ 0
0

𝑢 · 𝑑

⎤⎦ ,

where 𝑢 ∈ [0, 1] scales a point along the 𝑦3-axis. In consequence, each
parameter 𝑢 directly refers to a distinct point on the segment which
renders Φ𝑥,𝑢 independent of the choice of the parameter 𝑠. This allows
us to simplify the prototype likelihood (3.8) according to

𝑝(𝑦|𝑥) =
∫︁
𝑈

𝑝(𝑦|𝑥, 𝑢) · 𝑝(𝑢|𝑥) d𝑢 (3.9)

=
∫︁
𝑈

𝒩 (𝑦; Φ𝑥,𝑢, C𝑣) · 𝑝(𝑢|𝑥) d𝑢 ,

where Φ𝑥,𝑢 := Φ𝑥,𝑢(𝑠) is used as an abbreviation. In the following, we
study the properties of the different probabilistic models for (3.9). For
simplicity, we assume the noise to be isotropic according to C𝑣 = 𝜎2 · I.
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3.3. Probabilistic Model for Plane Curve Transformations

Spatial Distribution Model The traditional way of evaluating the like-
lihood for line segments is assuming measurement sources to be uniformly
distributed along the segment according to 𝑝(𝑢|𝑥) = 1 for 𝑈 = [0, 1].
Then, plugging 𝑝(𝑢|𝑥) and Φ𝑥,𝑢 into (3.9) yields

𝑝(𝑦|𝑥) =
1∫︁

0

𝒩 (𝑦; [0, 0, 𝑢 · 𝑑]T, C𝑣) d𝑢 , (3.10)

where the integral can be solved in closed-form using the Gaussian error
function [70]. Roughly speaking, an estimator based on (3.10) associates
a measurement to each point on the segment and then minimizes their
distances. In doing so, overestimated lengths are naturally penalized, as
points far away on the segment have larger distance values.

Greedy Association Model When using a traditional curve fitting ap-
proach, the estimator minimizes the distance between measurements and
their respective closest points on the line segment. An example associa-
tion is depicted in Figure 3.5a. However, after a certain value, increasing
the length further does not change the associations. Thus, there is no
mechanism to penalize overestimated lengths and, for this reason, no
estimator based on a GAM will be capable of accurately estimating the
length of a line segment. Note that, analogously, this issue also applies
to the cylinder in Figure 3.5b.

Partial Information Model When modeling line segments (or linear
parts of a boundary), the PIM is locally equivalent to the GAM. That
is, the estimator will also essentially minimize the distances between the
measurements and their closest points on the line segment. This can be
seen from Figure 3.6, where the 𝑙-levels lie parallel to the line segment,
and do not change when varying the segment length. In consequence, a
PIM-based estimator will find parameters so that all measurements lie on
their closest 𝑙-level to the boundary and does not penalize overestimated
lengths either.
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(a) Short line segment, isotropic noise. (b) Long line segment, isotropic noise.

Figure 3.6.: 𝑙𝑠-parametrization for the Partial Information Model of a line segment.
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Figure 3.7.: Simulated measurements of a line segment.

Experimental Validation In order to illustrate the length issue, we per-
formed a Monte Carlo simulation. Specifically, we consider the situation
in Figure 3.7, where the parameters of the black line segment should be
estimated based on 1000 noisy measurements. The segment is centered on
[0, 0]T, axis aligned with angle 0, and has length 2. Measurement sources
are uniformly drawn along the segment, and additively distorted with
isotropic Gaussian noise with variance 𝜎2 = 0.1. We performed three
experiments where, for each, we set all parameters to the ground truth
except for one. Specifically, we compare the loglikelihood for varying
values of (i) the horizontal position, (ii) the angle, and (iii) the length.
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3.3. Probabilistic Model for Plane Curve Transformations

Results The results of the line segment experiments are shown in Fig-
ure 3.8. The right column shows the loglikelihoods and the left column
shows snapshots for the parameter values that are marked by dashed,
black lines. When looking at the loglikelihoods for the position and the
angle in (b,d), it can be seen that all models yield the correct maximum
at their respective ground truth values. When varying the length, it can
be seen in (f) that the loglikelihood values for the SDM increase up to
the true length of 2, and then decrease, which is the desired behavior.
However, even though the values for the GAM and the PIM also increase
up to the true length, they do not decrease for larger length values.
Instead, they further increase up to a maximum value and then become
constant, which is a completely undesired behavior. Generally, it can be
said that when varying a parameter does not affect the likelihood, this
parameter cannot be correctly found by the estimator.

Discussion In related work on active contours [20], it is proposed to
implement artificial penalties for underdetermined shapes by introducing
energy terms that affect the object boundary. However, this approach
would introduce problematic shrinking parameters which cannot be set
intuitively, as they depend on the number of measurements, the magni-
tude of the measurement noise, and on the distribution of measurement
sources along the boundary. Another approach would be using negative
information [167] or object silhouettes [152]. However, these approaches
are based on other types of measurements which are out of the scope
of this thesis. In conclusion, we must accept that estimating the length
of line segments, and more general extrusions, will inherently require a
certain amount of probabilistic association heuristics in the form of an
SDM.

A similar issue occurs when estimating the extent of a region. For example
when considering a filled circle, its radius can be estimated arbitrarily
large, once all measurements lie in the region. In these situations, Random
Hypersurface Models [63] can be used to overcome this issue.
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(f) Varying the length.

Figure 3.8.: Results of the line segment experiments. (a,c,e) show snapshots when
varying the respective free parameter. (b,d,f) show the values of the
loglikelihood.
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Figure 3.9.: Sketch of the Random Hypersurface Model for a filled circle in 2D. The
shape is composed of scaled versions of a circle.

3.3.2 Random Hypersurface Model (RHM)

The Random Hypersurface Model (RHM) [63] is a probabilistic model
for extended objects that combines two solutions to the association
problem. Specifically, when the shape requires two parameters 𝑢 and 𝑠
to be described (e.g., a region in 2D), it is assumed that one parameter
𝑢 has a known probability distribution, while the distribution of the
other parameter 𝑠 is unknown. To see what that means, let us consider
a unit circle (with radius 1), which is centered on the origin. Using
the function 𝜑𝑥,𝑢(𝑠) = 𝑢 · [cos(𝑠), sin(𝑠)]T with 𝑢 ∈ 𝑈 = [0, 1], and
𝑠 ∈ 𝑆 = [0, 2𝜋), we can describe the interior of the circular region.
Plugging 𝜑𝑥,𝑢(𝑠) into the likelihood prototype from (3.8) and substituting
𝑝(𝑠, 𝑢|𝑥) = 𝑝(𝑠|𝑥, 𝑢) · 𝑝(𝑢|𝑥) we obtain

𝑝(𝑦|𝑥) =
∫︁
𝑈

∫︁
𝑆

𝒩 (𝑦; 𝜑𝑥,𝑢(𝑠), C𝑣) · 𝑝(𝑠|𝑥, 𝑢) d𝑠 𝑝(𝑢|𝑥) d𝑢 , (3.11)

where C𝑣 is the covariance matrix of the sensor noise, and the source
model is divided into two parts. A visual explanation of (3.11) is shown
in Figure 3.9.

For a fixed 𝑢, the parameter 𝑠 iterates through all sources on a circle
around the origin with radius 𝑢. For an RHM, it is assumed to be known
how likely it is for each scaled version of the circle to be measured, but
unknown how likely it is for points on these circles to be measured. In
consequence, 𝑝(𝑢|𝑥) can be seen as an SDM, and 𝑝(𝑠|𝑥, 𝑢) could me
modeled using a GAM or a PIM. When deciding for a GAM for the
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parameter 𝑠, the term 𝑝(𝑠|𝑥, 𝑢) becomes a Dirac-𝛿 distribution 𝛿(𝑠 −
𝜋𝑥,𝑢(𝑦)) and (3.11) can be rewritten as

𝑝(𝑦|𝑥) =
∫︁
𝑈

𝒩 (𝑦; 𝜑𝑥,𝑢(𝜋𝑥,𝑢(𝑦)), C𝑣) · 𝑝(𝑢|𝑥) d𝑢 .

In this formula, 𝜑𝑥,𝑢(𝜋𝑥,𝑢(𝑦)) is a greedy estimate for the measurement
source on the transformed curve according to

𝜋𝑥,𝑢(𝑦) = arg max
𝑠∈𝑆

𝒩 (𝑦; 𝜑𝑥,𝑢(𝑠), C𝑣) . (3.12)

Being a combination of different modeling approaches, the RHM inherits
some of their individual properties. In particular, an RHM-based estima-
tor for a filled circle is capable of estimating its radius while a GAM- or
PIM-based estimator cannot [166]. Next, we show how we can adapt the
ideas of RHMs to the length issue of 3D objects.

3.4 3D Random Hypersurface
Model (3DRHM)

In this section, we derive a new type of Random Hypersurface Model for
objects in 3D, which are modeled as transformed plane curves according
to (3.1). As the major advantages of this model over the elemental
models from Chapter 2, the resulting estimator (i) allows for estimating
the object length, (ii) is unbiased when using a PIM-component, and (iii)
allows for easier calculation compared to the SDM. In addition, it will
still be possible to use 3DRHMs together with a nonlinear Kalman filter.
The key idea refers to cutting the shape into slices and then assigning
a “slice selection” probability to each slice, while the “slice likelihood”
is modeled without assuming a probability distribution. Figure 3.9 and
Figure 3.10 illustrate the relationship between traditional RHMs and
3DRHMs.
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3.4. 3D Random Hypersurface Model (3DRHM)

Figure 3.10.: Sketch of the new RHM for a cylinder in 3D. The cylinder is con-
structed from the extrusions of a circle. It is assumed to be known
how likely it is for each extruded version of the circle to be measured.

3.4.1 Key Idea

Let us explain the key idea in more detail. As discussed in Section 3.2,
each transformed plane curve is embedded into a plane in 3D, which
we will refer to as slice. According to (3.1), each slice is specified by 𝑢
and the curve itself is parametrized by 𝑠. As our studies in the previous
section have revealed, we require probabilistic assumptions for modeling
𝑢, in order to accurately estimate the length of objects. Taking this
insight into account, we can rearrange the likelihood prototype from (3.8)
in a similar way as the traditional RHM from (3.11) according to

𝑝(𝑦|𝑥) =
∫︁
𝑈

∫︁
𝑆

𝒩 (𝑦; Φ𝑥,𝑢(𝑠), C𝑣) · 𝑝(𝑠|𝑥, 𝑢) d𝑠

⏟  ⏞  
slice likelihood 𝑝(𝑦|𝑥,𝑢)

𝑝(𝑢|𝑥)

⏟  ⏞  
slice selection

d𝑢 . (3.13)

Then, we assume the “slice selection” probability 𝑝(𝑢|𝑥) to be known and
the probability 𝑝(𝑠|𝑥, 𝑢) for a point on the transformed plane curve to
be unknown. Hence, our tasks are (i) explicitly modeling 𝑝(𝑢|𝑥) and (ii)
deriving the “slice likelihood” without making assumptions about 𝑠. A
visual explanation of both tasks is given in Figure 3.10.
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(a) Slice selection probability. (b) Slice likelihood.

Figure 3.11.: A “slice selection” probability (a) is defined for each slice. The “slice
likelihood” (b) determines how likely its embedded black curve has
produced the measurement.

3.4.2 Slice Selection Probability

Let us start with deriving the slice selection probability 𝑝(𝑢|𝑥) in (3.13)
that acts as the SDM-component in the 3DRHM. In Figure 3.11a, the
cylinder for a given instance of the state vector 𝑥 is shown together with
exemplary slices. The slice selection probability rates for each 𝑢 how likely
a measurement 𝑦 originates from the curve that is embedded into this
slice. Mathematically, this distribution can be obtained by aggregating
the individual probabilities of each point Φ𝑥,𝑢(𝑠) on the curve according
to

𝑝(𝑢|𝑥) =
∫︁
𝑆

𝑝(𝑠, 𝑢|𝑥) d𝑠 .

An important special case occurs when all points on the object‘s mantle
are assumed to have the same probability, i.e., when 𝑝(𝑠, 𝑢|𝑥) is a uniform
distribution. Then, 𝑝(𝑢|𝑥) is proportional to the curve perimeter which
results in a uniform distribution for the cylinder (3.2), torus (3.3) and
star-convex cylinder (3.6). In contrast, the uniform distribution does
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3.4. 3D Random Hypersurface Model (3DRHM)

not hold for the cone (3.4) as the perimeter scales linearly with 𝑢 from
bottom to top. Thus, 𝑝(𝑢|𝑥) becomes a triangle distribution. Note that,
for more general cases, where 𝑝(𝑠, 𝑢|𝑥) cannot be assumed to be uniform,
the distribution of slices could also be derived by taking into account
sensor to object geometry [82]. For example when the viewing frustum
(field of view) of a camera sensor is known, the visible part of the object
could be modeled as a uniform distribution, while all other parts are set
to 0.

3.4.3 Slice Likelihood

The slice likelihood 𝑝(𝑦|𝑥, 𝑢) in (3.13) determines for a given state 𝑥
and a given slice 𝑢, how likely the measurement 𝑦 originated from the
curve, which is embedded into this slice. This task is visually explained
in Figure 3.11b. As an effect of the association problem (Challenge 1),
the term 𝑝(𝑠|𝑥, 𝑢) appears in the slice likelihood

𝑝(𝑦|𝑥, 𝑢) =
∫︁
𝑆

𝒩 (𝑦; Φ𝑥,𝑢(𝑠), C𝑣) · 𝑝(𝑠|𝑥, 𝑢) d𝑠 , (3.14)

and must be taken it into account. In contrast to the slice selection,
where we modeled explicit probabilities for 𝑢, we do not want to make
assumptions about the individual probabilities for 𝑠. Instead, we want to
use a GAM or a PIM for solving the association problem.

3DRHM with GAM-Component (3DRHM-GAM) Deriving the GAM-
component in order to model 𝑠 is a straightforward application of Sec-
tion 3.3.2, where 𝑝(𝑠|𝑥, 𝑢) becomes a Dirac-𝛿 distribution 𝛿(𝑠− 𝜋𝑥,𝑢(𝑦))
and the slice likelihood (3.14) can be rewritten as

𝑝(𝑦|𝑥, 𝑢) = 𝒩 (𝑦; Φ𝑥,𝑢(𝜋𝑥,𝑢(𝑦)), C𝑣) . (3.15)
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In this formula, Φ𝑥,𝑢(𝜋𝑥,𝑢(𝑦)) again is a greedy estimate for the measure-
ment source on the transformed curve, analogously to (3.12), according
to

𝜋𝑥,𝑢(𝑦) = arg max
𝑠∈𝑆

𝒩 (𝑦; Φ𝑥,𝑢(𝑠), C𝑣) .

Plugging the GAM-component (3.15) into the likelihood prototype from
(3.13), we obtain

𝑝(𝑦|𝑥) =
∫︁
𝑈

𝒩 (𝑦; Φ𝑥,𝑢(𝜋𝑥,𝑢(𝑦)), C𝑣) · 𝑝(𝑢|𝑥) d𝑢 , (3.16)

where the parameter 𝑠 is greedily approximated using the measurement
𝑦, and the parameter 𝑢 needs to be modeled explicitly through 𝑝(𝑢|𝑥).
The corresponding measurement equation in classical notation is given
by

𝑦 = ℎ(𝑥, 𝑦, 𝑢, 𝑣)
= Φ𝑥,𝑢(𝜋𝑥,𝑢(𝑦)) + 𝑣 .

As we will see in the evaluation, the 3DRHM with GAM-component
(3DRHM-GAM) is a suitable model in situations, when the noise level
is moderate. However, for higher noise levels, the GAM-component is
subject to bias. In these cases, we can substitute it by a PIM-component
in the slice likelihood.

3.5 PIM-Component

In this section, we derive a PIM-component for 3DRHMs that can be used
as slice likelihood in (3.13) in situations with higher measurement noise.
As a reminder, let us briefly review the key idea of the Partial Information
Model (PIM) from Section 2.4. Based on a re-parametrization of the
measurements in terms of “how well” they fit to the object boundary
and “where” on the boundary they correspond to, we could design a
probabilistic model for the valuable “how well” information only, while
ignoring the unknown “where” information. In the following, we explain
how to adapt this idea for deriving the PIM-component.

84



3.5. PIM-Component

(a) 𝑡-coordinate. (b) 𝑙- and 𝑠-coordinates.

Figure 3.12.: Constraint-induced parametrization of measurements with respect to
a curve in a slice and the sensor noise.

First, we again need a constraint-induced parametrization for the mea-
surements. In Section 2.4, we extended the boundary function 𝜑𝑥(𝑠)
by a second parameter 𝑙, in order to specify the entire 2D domain by
𝜑𝑥(𝑙, 𝑠). As the measurements are in 3D this time, we need to extend
Φ𝑥,𝑢(𝑠) to three parameters in the form of Φ𝑥,𝑢(𝑡, 𝑙, 𝑠). Again, 𝑙 ∈ 𝐿 ⊆ R
and 𝑠 ∈ 𝑆 ⊆ R should express “how well” measurements fit to the curve
and “where” on the curve they correspond to. A sketch of the 𝑙- and
𝑠-coordinates for a circular curve is illustrated in Figure 3.12b. In ad-
dition, the parameter 𝑡 ∈ 𝑇 ⊆ R fills the remaining degree of freedom
and encodes “how well” measurements fit on the slice (see Figure 3.12a).
Let us define that 𝑡 = 𝑙 = 0 denotes that a measurement fits perfectly
(i.e., it is located on the curve) and increasing negative (positive) values
𝑡, 𝑙 indicate that the measurement increasingly differs to the one (or
the other) side. It can be seen that Φ𝑥,𝑢(𝑡, 𝑙, 𝑠) generalizes the previous
definition, as Φ𝑥,𝑢(0, 0, 𝑠) = Φ𝑥,𝑢(𝑠) holds.

Second, we can use the constraint-induced parametrization Φ𝑥,𝑢(𝑡𝑦, 𝑙𝑦, 𝑠𝑦)
of a measurement 𝑦, in order to design a partial likelihood for the
valuable information. Specifically, the variables 𝑙𝑦 and 𝑡𝑦 are valuable,
as it is known that both are noisy observations of the true value 0. In
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consequence, we only have to remove the probabilistic assumptions about
𝑠𝑦 from the full likelihood according to

𝑝(𝑡𝑦, 𝑙𝑦, 𝑠𝑦|𝑥, 𝑢) = 𝑝(𝑡𝑦, 𝑙𝑦|𝑥, 𝑠𝑦, 𝑢) · 𝑝(𝑠𝑦|𝑥, 𝑢) (3.17)
≈ 𝑝(𝑡𝑦, 𝑙𝑦|𝑥, 𝑠𝑦, 𝑢) .

By dropping 𝑝(𝑠𝑦|𝑥, 𝑢), we ignore the association heuristics and only rate
how well a measurement fits to the slice and the curve. In the following
we derive explicit formulas for 𝑝(𝑡𝑦, 𝑙𝑦|𝑥, 𝑠𝑦, 𝑢), which will be denoted as
the PIM-component.

3.5.1 Constraint-induced Parametrization of Slice Curves

We start by formally developing the constraint-induced parametrization
for a curve in a slice. The following considerations are closely related to
those in Section 2.4.2. Again, we already know that the 𝑠-axis must lie
in the curve as for 𝑙 = 𝑡 = 0, the 𝑠 component lets us iterate through
the curve via Φ𝑥,𝑢(0, 0, 𝑠). In addition, we know that the 𝑠-axis lies
in the slice. Thus, we have to specify the 𝑡- and 𝑙-axes in such a way
that the measurement noise is independent in 𝑡𝑦, 𝑙𝑦, and 𝑠𝑦. From the
measurement function in (3.7), it follows that measurements 𝑦 from a
source Φ𝑥,𝑢(0, 0, 𝑠) occur according to

𝑦 = Φ𝑥,𝑢(0, 0, 𝑠) + 𝑣 , (3.18)

where 𝑠 ∈ 𝑆 specifies the point on the curve and 𝑣 is the additive noise
variable. When expressing measurements in terms of Φ𝑥,𝑢(𝑡𝑦, 𝑙𝑦, 𝑠𝑦) = 𝑦
the generative model from (3.18) can be rewritten as⎡⎣𝑡𝑦

𝑙𝑦
𝑠𝑦

⎤⎦ =

⎡⎣0
0
𝑠

⎤⎦+

⎡⎣𝑡𝑣

𝑙𝑣
𝑠𝑣

⎤⎦ , (3.19)
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(a) 𝑡-coordinate. (b) 𝑙- and 𝑠-coordinates.

Figure 3.13.: Ideal constraint-induced parametrization of measurements where all
dimensions become independent.

where the measurement noise 𝑣 is also represented in terms of 𝑡𝑣, 𝑙𝑣
and 𝑠𝑣. Analogously to our previous considerations, the axes will be
independent when they coincide with the principal components of the
Gaussian measurement covariance matrix C𝑣 (which are always orthog-
onal). Hence, we can conclude that the 𝑡- and 𝑙-axes both must lie
orthogonal to the 𝑠-axis, i.e, to the curve in the slice. Again, before we
look at the general (anisotropic/nonlinear) case, let us study a special
case where independence can be achieved.

The Ideal Case We consider a linear curve and isotropic Gaussian noise
𝑣 in the Cartesian coordinate system with covariance matrix C𝑣 = 𝜎2 · I
(see Figure 3.13). As the 𝑡𝑙𝑠-coordinate system is actually a rotated and
translated version of the Cartesian coordinate system, the noise retains
its isotropic characteristics. Thus, measurements 𝑦 that originate from
a source Φ𝑥,𝑢(0, 0, 𝑠) according to (3.18) are independent in their 𝑡𝑦, 𝑙𝑦
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and 𝑠𝑦 component and we can write the likelihood from (3.14) as

𝑝(𝑡𝑦, 𝑙𝑦, 𝑠𝑦|𝑥, 𝑢)

=
∫︁
𝑆

𝒩

⎛⎝⎡⎣𝑡𝑦

𝑙𝑦
𝑠𝑦

⎤⎦ ;

⎡⎣0
0
𝑠

⎤⎦ ,

⎡⎣𝜎2 0 0
0 𝜎2 0
0 0 𝜎2

⎤⎦⎞⎠ · 𝑝(𝑠|𝑥, 𝑢) d𝑠

= 𝒩 (𝑡𝑦; 0, 𝜎2)

⏟  ⏞  
𝑝(𝑡𝑦|𝑥,𝑢)

· 𝒩 (𝑙𝑦; 0, 𝜎2)

⏟  ⏞  
𝑝(𝑙𝑦|𝑥,𝑢)

·
∫︁
𝑆

𝒩 (𝑠𝑦; 𝑠, 𝜎2) · 𝑝(𝑠|𝑥, 𝑢) d𝑠

⏟  ⏞  
𝑝(𝑠𝑦|𝑥,𝑢)

.

Note that all information about the unknown parameter 𝑠 is isolated
in the term 𝑝(𝑠𝑦|𝑥, 𝑢) and, thus, when deriving the partial likelihood
𝑝(𝑡𝑦, 𝑙𝑦|𝑥, 𝑢) = 𝑝(𝑡𝑦|𝑥, 𝑢) · 𝑝(𝑙𝑦|𝑥, 𝑢), we do not need to explicitly model
𝑝(𝑠|𝑥, 𝑢) anymore.

As an important observation, note that the 𝑡 and 𝑙 components are closely
related to the signed Euclidean distance of points to the slice and to the
curve, respectively. Specifically, for all measurements 𝑦 = Φ𝑥,𝑢(𝑡𝑦, 𝑙𝑦, 𝑠𝑦),
their closest point on the slice and on the curve in terms of the Euclidean
distance is given by Φ𝑥,𝑢(0, 𝑙𝑦, 𝑠𝑦) and Φ𝑥,𝑢(0, 0, 𝑠𝑦), respectively. Based
on this observation, we can formally define the concepts “how well” and
“where” measurements correspond to a slice (curve) according to:

∙ “How well:” all points on a level 𝑡𝑦 have the same signed Euclidean
distance to the slice.

∙ “How well:” all points on a level 𝑙𝑦 have the same signed Euclidean
distance to the curve.

∙ “Where:” all points on a level 𝑠𝑦 have the same closest point
Φ𝑥,𝑢(0, 0, 𝑠𝑦) on the curve.

The General Case While for the line in the slice and isotropic noise
perfect independence could be achieved, for a nonlinear constraint (and/or
anisotropic noise), we find us in the same dilemma as for the general
case in Section 2.4.2. On the one hand, the 𝑠-axis dictates that the 𝑡-
and 𝑙-axes lie orthogonal to the slice and to the curve, respectively. On
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the other hand, the noise will only be independent if the axes coincide
with the principal components of the Gaussian measurement covariance
matrix. As a compromise, we again propose to sacrifice orthogonality of
the 𝑡𝑙𝑠-coordinate system, in order to come up with the parametrization
in Figure 3.12, which retains the meaning of the axes for the Mahalanobis
distance with respect to the noise covariance.

For the following derivations, let us assume the slice is centered on
the origin and axis aligned in the 𝑦1𝑦2-plane. Technically, this can be
realized by transforming the measurements and the noise from the global
frame into the local slice frame by applying (2.8). In particular, the
local coordinates are given by 𝑦 ← RT

𝑢 𝑦 − RT
𝑢 𝑐𝑢 , 𝑣 ← RT

𝑢 𝑣 , and
C𝑣 ← RT

𝑢 C𝑣R𝑢. In addition, let the function 𝜑𝑥(0, 𝑠) already include
the scaling variable 𝑓𝑢 so that 𝜑𝑥(0, 𝑠) ← 𝑓𝑢 ·𝜑𝑥(0, 𝑠). Using these
substitutions, we can rewrite the measurement function from (3.18) as

𝑦 =
[︂
𝜑𝑥(0, 𝑠)

0

]︂
+ 𝑣 .

Deriving the 𝑡-Component For deriving 𝑡𝑦 of a point 𝑦, we must calcu-
late its minimum Mahalanobis distance to the 𝑦1𝑦2-plane with respect to
C𝑣. The point 𝑦0 = [𝑦0

1 , 𝑦0
2 ]T that minimizes this distance can be found

by solving

𝑦0 = arg min
𝑦0

1 ,𝑦0
2

⎡⎣𝑦1 − 𝑦0
1

𝑦2 − 𝑦0
2

𝑦3 − 0

⎤⎦T

·C−1
𝑣 ·

⎡⎣𝑦1 − 𝑦0
1

𝑦2 − 𝑦0
2

𝑦3 − 0

⎤⎦ . (3.20)

The closed-form solution of this optimization problem has the well-known

form 𝑦0 =
(︀
HTC−1

𝑣 H
)︀−1 HTC−1

𝑣 𝑦 with H =
[︂
1 0 0
0 1 0

]︂T
. Based on

(3.20) we define the function ↓(𝑦) := 𝑦0 that projects a point 𝑦 to its
closest point in the 𝑦1𝑦2-plane, in terms of the Mahalanobis distance. An
example of this projection is illustrated in Figure 3.12a. The Mahalanobis
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distance to this point is then given by

𝑡𝑦 = 𝜂𝑥(𝑦) := ±
(︃(︂

𝑦 −
[︂
𝑦0

0

]︂)︂T

C−1
𝑣

(︂
𝑦 −

[︂
𝑦0

0

]︂)︂)︃ 1
2

, (3.21)

where the sign indicates on which side of the slice the measurement lies.

Deriving the 𝑙- and 𝑠-Components In order to derive 𝑙𝑦 and 𝑠𝑦 of a
measurement, we can essentially use their original formulas from Chap-
ter 2, i.e., (2.23) and (2.22). However, besides the point 𝑦0 in the
𝑦1𝑦2-plane, these formulas also require its covariance matrix C0

𝑣, which
can be calculated according to

C0
𝑣 = HTC−1

𝑣 H . (3.22)

An example of the projected covariance is illustrated in Figure 3.12b.
Based on 𝑦0 from (3.20) and C0

𝑣 from (3.22), we can now proceed to
derive the 𝑠- and 𝑙-components using their original formulas. Then, 𝑠𝑦

specifies the closest point 𝜑𝑥(0, 𝑠𝑦) to 𝑦0 on the boundary by

𝑠𝑦 = 𝜋𝑥(↓(𝑦)) (3.23)

:= arg min
𝑠∈𝑆

(︀
(𝑦0 − 𝜑𝑥(0, 𝑠))T(C0

𝑣)−1(𝑦0 − 𝜑𝑥(0, 𝑠))
)︀ 1

2 ,

and 𝑙𝑦 specifies the signed distance of 𝑦0 to this point by

𝑙𝑦 = 𝑔𝑥(↓(𝑦)) (3.24)

:= ±
(︀
(𝑦0 − 𝜑𝑥(0, 𝑠𝑦))T(C0

𝑣)−1(𝑦0 − 𝜑𝑥(0, 𝑠𝑦))
)︀ 1

2 ,

where the sign indicates on which side of the curve the measurement lies.
Again, note that the sign naturally comes into play as the 𝑙-axis is 0 on
its intersection with the constraint. Based on (3.21), (3.23), and (3.24)
we can finally define the desired parametrization according to⎡⎣𝑡𝑦

𝑙𝑦
𝑠𝑦

⎤⎦ = Φ−1
𝑥,𝑢(𝑦) :=

⎡⎣ 𝜂𝑥(𝑦)
𝑔𝑥(↓(𝑦))
𝜋𝑥(↓(𝑦))

⎤⎦ , (3.25)
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It is important to note that this parametrization includes the ideal case
as a special case of isotropic noise, where it holds that 𝑦0 = [𝑦1, 𝑦2]T and
C0

𝑣 = 𝜎2 · I.

3.5.2 Deriving the Partial Slice Likelihood

Prepared with the constrained-induced parametrization of measure-
ments 𝑦 = Φ𝑥,𝑢(𝑡𝑦, 𝑙𝑦, 𝑠𝑦), we can now derive the partial slice likeli-
hood 𝑝(𝑡𝑦, 𝑙𝑦|𝑥, 𝑢, 𝑠𝑦) from (3.17). For the following derivations, we use
a simplified notation in order to improve readability. As all probabil-
ity distributions (except from 𝑝(𝑣)) depend on a given state 𝑥 and a
given slice 𝑢, we will drop their symbols whenever possible, e.g., in
𝑝(𝑡𝑦, 𝑙𝑦|𝑠𝑦) := 𝑝(𝑡𝑦, 𝑙𝑦|𝑥, 𝑢, 𝑠𝑦).

Then, for deriving the partial slice likelihood 𝑝(𝑡𝑦, 𝑙𝑦|𝑠𝑦), we can adapt
the approach from Section 2.4.3 in the following straightforward way.
First, the given 𝑠𝑦-value refers to the source Φ(0, 0, 𝑠𝑦). Second, this
source refers to the generative model in (3.18). For the partial slice
likelihood, we are interested in 𝑡𝑦 = 0 + 𝑡𝑣 and 𝑙𝑦 = 0 + 𝑙𝑣, which finally
refer to

𝑝(𝑡𝑦, 𝑙𝑦|𝑠𝑦) =
∫︁∫︁
𝑇 𝐿

𝑝(𝑡𝑦, 𝑙𝑦|𝑠𝑦, 𝑡𝑣, 𝑙𝑣) · 𝑝(𝑡𝑣, 𝑙𝑣|𝑠𝑦) d𝑙𝑣 d𝑡𝑣

=
∫︁∫︁
𝑇 𝐿

𝛿

(︂[︂
𝑡𝑦 − (0 + 𝑡𝑣)
𝑙𝑦 − (0 + 𝑙𝑣)

]︂)︂
· 𝑓𝑡𝑣,𝑙𝑣 (𝑡𝑣, 𝑙𝑣) d𝑙𝑣 d𝑡𝑣

= 𝑓𝑡𝑣,𝑙𝑣 (𝑡𝑦, 𝑙𝑦) .

where 𝑝(𝑡𝑣, 𝑙𝑣|𝑠𝑦) = 𝑓𝑡𝑣,𝑙𝑣
(𝑡𝑣, 𝑙𝑣) is the joint distribution of the noise

variables 𝑡𝑣 and 𝑙𝑣. According to this formula, the partial slice likelihood
essentially is the distribution 𝑓𝑡𝑣,𝑙𝑣 (𝑡𝑣, 𝑙𝑣) that describes the 𝑡-value and
𝑙-value of the sensor noise, evaluated in 𝑡𝑦 and 𝑙𝑦.
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Deriving the Partial Noise Then, analogously to Section 2.4.3, the next
step is calculating the partial noise distribution 𝑝(𝑡𝑣, 𝑙𝑣|𝑠𝑦). Again, we
have to extract it from the original distribution of the sensor noise 𝑝(𝑣).
In the first place, this requires expressing the variable 𝑣 in terms of 𝑡𝑣,
𝑙𝑣, and 𝑠𝑣 in order to derive the joint noise distribution 𝑝(𝑡𝑣, 𝑙𝑣, 𝑠𝑣|𝑠𝑦).
Then, by marginalizing out the 𝑠𝑣-component, we obtain the partial noise
distribution

𝑝(𝑡𝑣, 𝑙𝑣|𝑠𝑦) =
∫︁
𝑆

𝑝(𝑡𝑣, 𝑙𝑣, 𝑠𝑣|𝑠𝑦) d𝑠𝑣 . (3.26)

Let us again start with expressing 𝑝(𝑣) in terms of 𝑡𝑣, 𝑙𝑣, and 𝑠𝑣. Given
the 𝑠𝑦-value of 𝑦, hypothetical measurements 𝑦 of the source Φ(0, 0, 𝑠𝑦)
occur according to the additive noise model 𝑦 = Φ(0, 0, 𝑠𝑦) + 𝑣 from
(3.18). We use the tilde symbol in order to distinguish the hypothetical
measurements from the original measurement 𝑦. By solving this equation
for the noise 𝑣 and applying the 𝑡𝑙𝑠-parametrization to 𝑦, we obtain

𝑣 = 𝑦 − Φ(0, 0, 𝑠𝑦) (3.27)
= Φ(𝑡𝑦, �̃�𝑦, 𝑠𝑦)− Φ(0, 0, 𝑠𝑦)
= Φ(0 + 𝑡𝑣, 0 + 𝑙𝑣, 𝑠𝑦 + 𝑠𝑣)− Φ(0, 0, 𝑠𝑦) .

Based on this relationship, we can apply a change of variables to the
distribution 𝑝(𝑣), which is known to be zero-mean Gaussian 𝒩 (𝑣; 0, C𝑣).
Then, analogously to (2.28), we can apply the general formula for changing
variables of a probability distribution according to

𝑝(𝑡𝑣, 𝑙𝑣, 𝑠𝑣|𝑠𝑦) (3.28)
= 𝑝(𝑣) ·

⃒⃒
det
(︀
J𝑣(𝑡𝑣, 𝑙𝑣, 𝑠𝑣)

)︀ ⃒⃒
= 𝒩 (𝑣; 0, C𝑣) ·

⃒⃒
det
(︀
J𝑣(𝑡𝑣, 𝑙𝑣, 𝑠𝑣)

)︀ ⃒⃒
= 𝒩 (Φ(0 + 𝑡𝑣, 0 + 𝑙𝑣, 𝑠𝑦 + 𝑠𝑣)− Φ(0, 0, 𝑠𝑦); 0, C𝑣) ·

⃒⃒
det
(︀
J𝑣(𝑡𝑣, 𝑙𝑣, 𝑠𝑣)

)︀ ⃒⃒
with the Jacobian matrix

J𝑣(𝑡𝑣, 𝑙𝑣, 𝑠𝑣) =
[︂

𝜕𝑣

𝜕𝑡𝑣

𝜕𝑣

𝜕𝑙𝑣

𝜕𝑣

𝜕𝑠𝑣

]︂
. (3.29)
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Again, note that (3.28) is nothing else but the measurement noise 𝑝(𝑣)
expressed in 𝑡𝑙𝑠-coordinates, where the differential expression (3.29) ac-
counts for the skewness of the coordinate system. Then, by marginalizing
𝑠𝑣 out of 𝑝(𝑡𝑣, 𝑙𝑣, 𝑠𝑣|𝑠𝑦) according to (3.26) we obtain the distribution of
the partial noise

𝑝(𝑡𝑣, 𝑙𝑣|𝑠𝑦) (3.30)

=
∫︁
𝑆

𝒩 (Φ(𝑡𝑣, 𝑙𝑣, 𝑠𝑦 + 𝑠𝑣); Φ(0, 0, 𝑠𝑦), C𝑣) ·
⃒⃒
det
(︀
J𝑣(𝑡𝑣, 𝑙𝑣, 𝑠𝑣)

)︀ ⃒⃒
d𝑠𝑣

= 𝑓𝑡𝑣,𝑙𝑣 (𝑡𝑣, 𝑙𝑣) .

3DRHM with PIM-Component (3DRHM-PIM) Finally, by plugging
𝑡𝑦 and 𝑙𝑦 into the distribution of the partial noise (3.30), we obtain the
partial slice likelihood (PIM-component)

𝑝(𝑡𝑦, 𝑙𝑦|𝑥, 𝑢, 𝑠𝑦) (3.31)

=
∫︁
𝑆

𝒩 (Φ𝑥,𝑢(𝑡𝑦, 𝑙𝑦, 𝑠𝑦 + 𝑠𝑣); Φ𝑥,𝑢(0, 0, 𝑠𝑦), C𝑣) ·
⃒⃒
det
(︀
J𝑣(𝑡𝑦, 𝑙𝑦, 𝑠𝑣)

)︀ ⃒⃒
d𝑠𝑣,

where we returned to the full notation, i.e., explicitly writing out de-
pendencies of 𝑥 and 𝑢. The partial slice likelihood (3.31) has the same
intuitive geometric interpretation as the partial likelihood (2.31) from
Chapter 2. Essentially, it is the integral of a Gaussian (centered on the
most likely source Φ𝑥,𝑢(0, 0, 𝑠𝑦)) over all potential measurements that fit
equally well (i.e., 𝑡𝑦 and 𝑙𝑦) to the slice and curve.
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By substituting the slice likelihood 𝑝(𝑦|𝑥, 𝑢) in the likelihood prototype
from (3.13) by the PIM-component 𝑝(𝑡𝑦, 𝑙𝑦|𝑥, 𝑠𝑦, 𝑢) (3.31), we obtain the
3D Random Hypersurface Model with PIM-component (3DRHM-PIM)

𝑝(𝑦|𝑥) (3.32)

≈
∫︁
𝑈

𝑝(𝑡𝑦, 𝑙𝑦|𝑥, 𝑢, 𝑠𝑦) · 𝑝(𝑢|𝑥) d𝑢

=
∫︁∫︁
𝑈 𝑆

𝒩 (Φ𝑥,𝑢(𝑡𝑦, 𝑙𝑦, 𝑠𝑦 + 𝑠𝑣); Φ𝑥,𝑢(0, 0, 𝑠𝑦), C𝑣)

·
⃒⃒
det
(︀
J𝑣(𝑡𝑦, 𝑙𝑦, 𝑠𝑣)

)︀ ⃒⃒
d𝑠𝑣 · 𝑝(𝑢|𝑥) d𝑢 .

In this model, only the valuable “how well” information 𝑡𝑦 and 𝑙𝑦 of a
measurement 𝑦 is used for evaluating the slice likelihood 𝑝(𝑡𝑦, 𝑙𝑦|𝑥, 𝑢, 𝑠𝑦),
while the parameter 𝑢 needs to be modeled explicitly through 𝑝(𝑢|𝑥). We
will see in the evaluation that an estimator based on the 3DRHM-PIM
still finds unbiased estimates, even in situations where the noise level is
high.

Remark 3.2. Note that all parameters 𝑡𝑦, 𝑙𝑦, and 𝑠𝑦 of the constraint-
induced parametrization are defined with respect to a given slice (and
curve) and cannot exist without a given state 𝑥 and transformation 𝑢. As
a consequence of this dependence, we have to re-calculate 𝑡𝑦, 𝑙𝑦, and 𝑠𝑦

for each instance of 𝑥 and 𝑢.

Measurement Equation The underlying generative model that yields
the 3DRHM-PIM (3.32) can be obtained from the relationship in (3.19)[︂

𝑡𝑦

𝑙𝑦

]︂
𝑥,𝑢

=
[︂
0 + 𝑡𝑣

0 + 𝑙𝑣

]︂
𝑥,𝑢

,
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where we added indices in order to indicate the dependence of 𝑥 and
𝑢 (see Remark 3.2). We can rearrange this equation to a measurement
equation in classical notation

0 = ℎ(𝑥, 𝑣, 𝑢, 𝑦) =
[︂
𝑡𝑦

𝑙𝑦

]︂
𝑥,𝑢

−
[︂
𝑡𝑣

𝑙𝑣

]︂
𝑥,𝑢

(3.33)

=
[︂
𝜂(𝑦)
𝑔(↓(𝑦))

]︂
𝑥,𝑢

−
[︂
𝜂(Φ(0, 0, 𝜋(↓(𝑦)))) + 𝑣)
𝑔(↓(Φ(0, 0, 𝜋(↓(𝑦)))) + 𝑣))

]︂
𝑥,𝑢⏟  ⏞  

𝐴

by substituting 𝑡𝑦, 𝑙𝑦 according to (3.25), and 𝑡𝑣, 𝑙𝑣 according to (3.27).
Formally, in this measurement equation, 𝑥 is the state, 𝑣 is non-additive
Gaussian noise, 𝑢 is non-additive, (potentially) non-Gaussian noise, 𝑦
acts as a model parameter, and 0 is a constant pseudo-measurement.
Note that the measurement equation (3.33) can immediately be used to
derive a nonlinear Kalman filter update according to Algorithm A.1.

3.5.3 Implementation

Analogously to the PIM in Chapter 2, analytic solutions to the integrals
in the 3DRHM-PIM (3.32) cannot be found. Thus, in order to derive a
likelihood-based measurement update according to Algorithm A.2, we
have to apply approximation techniques. In this section, we show how
to get rid of both integrals by means of (i) moment matching and (ii)
sampling. For the inner integral over 𝑠 ∈ 𝑆, we propose to approximate
the slice likelihood 𝑝(𝑡𝑦, 𝑙𝑦|𝑥, 𝑢, 𝑠𝑦) as a Gaussian by means of moment
matching [92, 93]

𝑝(𝑦|𝑥) (3.34)

=
∫︁
𝑈

𝒩

(︃[︂
𝑡𝑦

𝑙𝑦

]︂
𝑥,𝑢

; E
{︃[︂

𝑡𝑣

𝑙𝑣

]︂
𝑥,𝑢

}︃
, Var

{︃[︂
𝑡𝑣

𝑙𝑣

]︂
𝑥,𝑢

}︃)︃
· 𝑝(𝑢|𝑥) d𝑢 .
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Specifically, mean and variance of the Gaussian are to be calculated
by propagating the moments of the original noise variable 𝑣 through
the expression 𝐴 in (3.33). Again, please note that these moments
generally differ for each slice (except from special cases) and, thus, must
be calculated for each 𝑢.

In order to evaluate the outer integral over 𝑢 ∈ 𝑈 , we propose to approx-
imate 𝑝(𝑢|𝑥) as a Dirac-mixture distribution according to

𝑝(𝑢|𝑥) =
𝐽∑︁

𝑗=1
𝜔𝑗 · 𝛿(𝑢− 𝑢𝑗) ,

by means of moment matching [111, 112], where 𝜔𝑗 with 𝑗 = 1 . . . 𝐽 are
scalar weights, one for each Dirac-component. Using this approximation,
we can apply the sifting property of the Dirac-𝛿 distribution and further
simplify (3.34) according to

𝑝(𝑦|𝑥) (3.35)

=
𝐽∑︁

𝑗=1
𝜔𝑗 · 𝒩

(︃[︂
𝑡𝑦

𝑙𝑦

]︂
𝑥,𝑢𝑗

; E
{︃[︂

𝑡𝑣

𝑙𝑣

]︂
𝑥,𝑢𝑗

}︃
, Var

{︃[︂
𝑡𝑣

𝑙𝑣

]︂
𝑥,𝑢𝑗

}︃)︃
.

At this point, we have arrived at a tractable version of the RHM-PIM,
which can be used, e.g., in a particle filter.

3.6 Modeling Guide

In this section, we take a more practical view and propose specific
probabilistic models for the example objects from Section 3.2. In doing
so, we want to identify the “simplest” model that still ensures two
properties of the resulting estimator: (i) it should be capable of finding
estimates for all parameters, and (ii) these estimates should be unbiased
even in the presence of higher sensor noise. Both properties refer to issues
that we have already discussed earlier in this thesis.
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3.6.1 Potential Issues

Issue 1 (The estimator cannot find a parameter at all). In order to
enable the estimator to find the value of a parameter, the likelihood must
produce different values when changing this parameter. However, when
ignoring the distributions for 𝑢, 𝑠, and using distances instead (GAM
and PIM), the likelihood could become invariant to parameter changes.
We have discussed this issue for the length parameter of a line segment
and a cylinder in Section 3.3.1. For these shapes, the closest distance
of measurements to the object surface is identical for the true and any
overestimated height parameter. Then, varying the height parameter does
not affect the closest distances and, in turn, the value of the likelihood.
As a result, the height is likely to be unobservable. This issue can be
either resolved by introducing regularization terms or by incorporating
knowledge about the distribution of measurement sources [70, 149, 156]
in the fashion of SDMs and RHMs. In sum, when GAM- or PIM-
based estimators are subject to unobservable parameters, switching to an
3DRHM-GAM, 3DRHM-PIM, or SDM may render the desired parameter
observable.

Issue 2 (The estimator finds a biased parameter). It is well-known that
when using a GAM, estimates of curvature parameters are likely to be
biased in the presence of noise [113]. We have theoretically discussed
this issue in Section 2.3.3 for a circle and a corner, and then showed
numerical examples for a parabola in Section 2.6.2. Essentially, curvature
causes that measurements of a given source on the boundary are more
likely to occur on the concave side of the boundary. However, a GAM-
based estimator will find a boundary that, roughly speaking, balances the
probability mass on both sides [159], as it tries to minimize the distances to
the curve. As the imposed balance is incorrect except for linear boundaries,
the estimated boundary will be biased when it has a significant curvature
within the magnitude of the noise. In these situations, we can use an
SDM, PIM or 3DRHM-PIM [113, 159, 157] that do not suffer from this
issue.
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3.6.2 Proposed Estimators

We can now design probabilistic models for the considered objects that
will not cause these issues in the estimator. In doing so, we also propose
a compatible recursive Bayesian estimators, including the unscented
Kalman filter (UKF) [92], the smart sampling Kalman filter (S2KF) [93],
and the progressive Gaussian filter (PGF) [97]. While UKF and S2KF
both are nonlinear Kalman filters based on deterministic sampling (the
latter with a variable number of samples), the PGF is a sophisticated
nonlinear estimator that uses a particle-filter like measurement update.

Proposed Cylinder Estimator A cylinder is potentially subject to both
issues, i.e., an unobservable length and a biased radius. In consequence,
we propose to use an RHM-PIM according to (3.35), where the known
distribution for 𝑢 enables the length estimation and the PIM-component
prevents bias. If measurements originate uniformly from the cylinder
mantle, 𝑝(𝑢|𝑥) can be modeled as 𝒰(0, 1) with E{𝑢} = 1

2 and Var{𝑢} = 1
12 .

In this form [151], the RHM-PIM can be used with a nonlinear estimator,
such as the PGF. However, we found in [149] that the structure of the
measurement equation (3.33) causes that the state cannot be directly
estimated when using a nonlinear Kalman filter. In order to allow for
using these simpler estimators, we show in the next chapter how to exploit
the reflectional symmetry of the cylinder.

Proposed Torus Estimator In contrast to the cylinder, the torus is not
affected by Issue 1, as there is no length parameter and varying the radii
will always have an effect on the closest distances of points to the surface.
However, as both radii are subject to Issue 2, we propose to use a PIM
according to (2.34). Thus, the torus parameters can be estimated with a
standard UKF.
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Proposed Cone Estimator Similar to the cylinder, the cone is subject
to both issues, i.e., an unobservable height and a biased radius. In
consequence, we again propose to use an RHM-PIM according to (3.35),
where the known distribution for 𝑢 enables the height estimation and
the PIM component prevents bias. The probability 𝑝(𝑢|𝑥) of each scaled
circle is proportional to its perimeter 2𝜋 · (1− 𝑢) · 𝑟 and scales linearly
with 𝑢. As such, the variable 𝑢 can be modeled as a triangle distribution
between 0 and 1 with E{𝑢} = 1

3 and Var{𝑢} = 1
18 . Thus, an S2KF can

be used for estimation together with the measurement equation (3.33).

Proposed Extruded Curve Estimator Being essentially a cylinder, the
extruded curve is subject to both issues, as well. However, as estimating
higher shape detail is more relevant in low noise scenarios, we assume
the curvature to be negligible within the magnitude of the noise. Given
this situation, we propose to use an RHM-GAM according to (3.16)
with 𝑝(𝑢|𝑥) = 𝒰(0, 1). In addition, instead of using the Mahalanobis
distance-based projection of measurements to the boundary, we propose
to approximate it by a polar projection according to [98], which can be
calculated much faster. For estimation, we propose to use a PGF.

3.7 Evaluation

In this section, we evaluate the proposed probabilistic models in two
estimation scenarios with synthetic data. Specifically, we consider the
tasks of estimating a static cylinder, torus, and cone, and compare the
results of the proposed approach to those of a publicly available estimation
toolbox [41]. In a second scenario, we look at the task of tracking an
unknown moving object based on a star-convex extrusion model, and
evaluate the estimation quality for different degrees of modeled shape
detail.
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Trad. Batch Trad. Recursive Prop. Recursive
Model Filter Model Filter

Cylinder LSGE GAM PGF RHM-PIM PGF
Torus LSGE GAM PGF PIM UKF
Cone LSGE GAM PGF RHM-PIM S2KF

Table 3.1.: Overview of the implemented estimators.

3.7.1 Estimating Pose and Shape of Static Objects

Let us first look at the task of estimating pose and shape of a static
cylinder, torus, and cone. We conduct two experiments, one with low
noise and another with high noise. For both experiments, we compare
the “Proposed Recursive” approaches from Section 3.6.2 to the following
traditional approaches.

Traditional Approaches For a static object, the “Traditional Batch”
approach is processing all measurements using an instance of GAM (2.15)
together with a maximum likelihood estimator. A reference implemen-
tation for cylinder, torus, and cone is publicly available in the LSGE
toolbox [41]. For a potentially dynamic object, the “Traditional Recursive”
approach is using an instance of GAM (2.15) together with a recursive
Bayesian estimator such as a particle filter [46]. For the ease of a lower
computational complexity, we use a similar PGF implementation [114]
instead. A summary of all implemented estimation approaches is given
in Table 3.1.

Experiments For ground truth, we model all objects at the position
[0.1, 0.4, 0.2]T with an orientation [0, 0.5, 0]T in axis-angle representation.
The shape parameters are set to [𝑟, 𝑑] = [1, 2]T (cylinder), [𝑟, 𝑑] = [1.5, 4]T
(cone), and [𝑟1, 𝑟2]T = [1, 0.5] (torus). Then, we simulate 1250 measure-
ments of each object by uniformly drawing measurement sources from
the surface and then adding Gaussian sensor noise with C𝑣 = 0.01 · I
(low noise) and C𝑣 = 0.1 · I (high noise).
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Low noise High noise
T.B. T.R. P.R. T.B. T.R. P.R.

Cylinder 𝑟 5.9 6.3 3.7 52 53 12
Torus 𝑟1, 𝑟2 8.0 8.3 6.1 86 90 31
Cone top 63 70 201 594 616 330

Table 3.2.: RMSE of selected parameters ×10−3 units.

We initialize all parameters with Gaussian random values, drawn from the
ground truth using variances of 5 · 10−2 · I. In the recursive approaches,
we incorporate a random walk model [46] into the prediction step, which
inflates the state covariance matrix with process noise in order to pre-
vent local minimums. We choose a logarithmically decreasing diagonal
covariance in the magnitude from 10−2 to 10−12. Measurement updates
are performed in 250 steps with stacks of 5 measurements. The following
results are obtained from 100 Monte-Carlo runs.

Results The average estimation results after processing all measure-
ments are illustrated in Figure 3.14 for the low noise experiment, and in
Figure 3.15 for the high noise experiment, respectively. It can be seen
that all estimators can find the object orientation very accurately. This
accuracy also applies to the position estimates, except from a random
linear shift along the length axis (cylinder, cone) in the traditional
approaches, which is due to their missing capability of estimating the
length (Issue 1).

From the third column in Figure 3.14 and Figure 3.15, it can be seen
that the proposed approach finds accurate parameters for all objects.
Specifically, “Proposed Recursive” finds the height parameter of the
cylinder and the cone (and is not subject to Issue 1). In addition, even
in the presence of high noise, the radii still remain unbiased (and are not
subject to Issue 2).
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Traditional Batch Traditional Recursive Proposed Recursive

Figure 3.14.: Average estimates for 100 Monte Carlo runs of the low noise exper-
iment. Exemplary measurements illustrate the noise level.
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Traditional Batch Traditional Recursive Proposed Recursive

Figure 3.15.: Average estimates for 100 Monte Carlo runs of the high noise exper-
iment. Exemplary measurements illustrate the noise level.
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In contrast, the curvature parameters of the traditional approaches are
biased for high noise, as Table 3.2 numerically confirms. This result can be
explained by the PIM-component that accounts for the bias in “Proposed
Recursive”. However, evaluating the PIM is relatively sophisticated and
might perform worse than a simpler GAM in some situations. An example
can be found when considering the top of the cone, which is estimated
more accurately by the traditional approaches for low noise.

In sum, traditional GAM-based approaches are suitable when the prob-
lematic length parameters are known in advance, and when the surface
has a negligible curvature with respect to the magnitude of the noise.
Otherwise, the experiments show that RHM and PIM can effectively
compensate for Issue 1 and Issue 2, respectively. Note that in situations
with low noise and the task of estimating length parameters, it might be
also reasonable to combine an RHM with a GAM instead of a PIM. For
the second evaluation, we consider such a scenario.

3.7.2 Tracking a Moving Box-Object

In this section, we illustrate the performance of the 3DRHM by means
of a tracking example.

Experiment We consider the task of tracking a moving box. As a
challenging aspect in this experiment, the estimator actually is not given
any prior knowledge about the fact that the object is a box. As a
reminder, this lack of knowledge was referred to as Challenge 2. Instead,
the estimator assumes the object to be an extruded star-convex curve
according to Section 3.6.2.

Figure 3.16 shows the track, together with the ground truth box with an
edge length of 6× 4× 8, drawn at some selected locations. While the box
moves, a simulated sensor performs 250 point cloud measurements, where
each of contains 25 noisy points. For the selected locations, exemplary
measurements are drawn as black dots in Figure 3.16. The measurement
sources are uniformly drawn from the four longer sides of the box and
then distorted by adding Gaussian sensor noise with C𝑣 = 5 · 10−2 · I.
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Figure 3.16.: Box tracking experiment. The box moves with constant speed along
the S-shaped track while performing a rotation.

As the noise level is relatively low with respect to the object size, we
decide for an RHM-GAM (instead of a RHM-PIM) together with a PGF
according to Section 3.6.2. The state to be estimated consists of the
Fourier-coefficients for the star-convex curve, the height, the pose, as
well as the object’s velocity. Then, for the evaluation, we consider four
different number of Fourier coefficients: 1, 5, 9, and 13.

For initialization, all parameters (except from the Fourier coefficients)
are set to Gaussian random values, drawn from the ground truth using
variances of 10−2. The Fourier coefficients are initialized as a circular
curve with 𝑎0 = 5 and 𝑎1 = 𝑏1 = 0. In order to predict the object location,
we incorporate a 3D constant velocity model [46] into the prediction step,
with a process covariance in the magnitude of 10−5. The following results
are obtained from 100 Monte-Carlo runs.

105



Chapter 3. Modeling 3D Extended Objects by Transforming Plane Curves

Intermediate results Final result

Figure 3.17.: Average results of the box-tracking example for different numbers of
Fourier coefficients.
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Intermediate results Final result

Figure 3.18.: Average results of the box-tracking example for different numbers of
Fourier coefficients (continued).
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Results Figure 3.17 and Figure 3.18 visualize the average intermediate
and final results of the tracking example for different numbers of Fourier
coefficients. From the figures, it can be seen that all approaches manage
to find the orientation and position of the box quite accurate. In addition,
all estimators find correct height parameters, thanks to the 3DRHM. As
we would have expected, the major difference can be found in the shape,
which becomes more accurate and detailed with increasing number of
Fourier coefficients. The “1 Coefficient” approach, which only uses a
radius, essentially results in a cylinder-estimator. In addition, the “5
Coefficients” approach already is capable of finding the proportions of
the box. For more coefficients, the estimated shapes steadily approach
the corners of the box. However, perfectly representing corners with
Fourier series requires even higher coefficients, or, as we will discuss in
the next chapter, assumptions about the object symmetry. Finally, note
that there is no significant bias in the estimated shapes, even though we
are using the 3DRHM with GAM-component here. This behavior is due
to the low noise and demonstrates the eligibility of the 3DRHM-GAM.

3.8 Conclusions from Chapter 3

In this chapter, we have developed a tracking algorithm for 3D objects
that can be constructed by transforming plane curves. In particular, we
considered translation, rotation and scaling operations for the surface
construction. However, when applying the elemental probabilistic models
from Chapter 2 to these shapes, we encountered that only an estimator
based on the Spatial Distribution Model would be capable of finding
accurate values for all parameters. Unfortunately, SDMs for more complex
shapes are computationally demanding.

We studied the origin of the estimation failure in the Greedy Association
Model and the Partial Information Model by means of a simple line
segment shape. Based on this analysis, we proposed a new probabilistic
model for 3D shapes—the 3D Random Hypersurface Model. By assum-
ing a probability for each transformed curve and ignoring (or greedily
approximating) the unknown information of “where” on the curve a
measurement corresponds to, this model is a combination of an SDM
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and a PIM (or GAM). The resulting estimator based on the 3DRHM
inherited the capability of finding accurate values for all parameters from
the SDM and, either the lower computational complexity from the GAM,
or the unbiasedness from the PIM.

We confirmed these properties in the evaluation for four different shapes.
Specifically, we modeled a cylinder, torus, cone, as well as an extruded
star-convex curve. Compared to a state-of-the-art fitting approach, we
could reduce the RMSE in the curvature parameters by 44%-77% in the
presence of high noise. Moreover, in a tracking scenario, where the pose
and shape of a moving box should be estimated (with no prior knowledge
about its shape), we demonstrated the flexibility of the new 3DRHM.
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In this chapter, we develop an extension to the proposed tracking algo-
rithms in order to make them more robust against occlusions and missing
measurements. These issues (Challenge 3) are inherent when acquiring
point clouds by depth sensors, as they always observe only one side of
the target object at a time. Even when considering a sensor network, it
is rather unlikely to observe an object as a whole. In this chapter, we
deal with the question

how to compensate for missing measurements?
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(a) Traditional model. (b) Symmetric model.

Figure 4.1.: Where traditional models (a) require modeling measurements 𝑦 (blue)
in the full domain, we propose to use symmetric representatives (pur-
ple) of these measurements 𝑦′ (b).

The motivation of our approach is that many objects in everyday life have
geometric symmetries, i.e., they look the same from different perspectives.
For these objects, measurements from one part of the shape also contain
information about their occluded counterparts. In the context of com-
puter vision and point cloud processing, known geometric symmetries
are already used as a compression tool for shapes [115], a means for
improving segmentation [116], as well as a means for scan consolidation
[117]. However, to the best of our knowledge, this is the first approach
to explicitly incorporate geometric symmetries into probabilistic models
for Bayesian extended object tracking.

Object symmetry can be interpreted as shape redundancy that allows
it to be constructed from a fraction by some unfolding operation, such
as mirroring. Conversely, under specific conditions, we can just fold
the measurements and design the probabilistic model only in the re-
duced domain. This idea is illustrated in Figure 4.1. While the original
probabilistic model in Figure 4.1a considers the full domain, the desired
model in Figure 4.1b should operate on the folded measurements (purple)
and one-eight of the shape (yellow) only. As the two major advantages,
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the simplified probabilistic model (i) inherently considers the object
symmetry, and (ii) has a potentially lower computational complexity.
However, transforming measurements has to be applied carefully, as it
affects the sensor noise and the association heuristics of measurements
to the boundary.

Contribution Our main contribution in this chapter is a scheme for
simplifying probabilistic models for Bayesian extended object tracking,
given a known object symmetry. We consider rotoreflectional symmetry,
which is a generalization of radial and axial symmetry. Aggregating all
measurements into the non-redundant part of the domain allows us to
design simplified probabilistic models, which only need to be specified
and evaluated using a fraction of the original object. The resulting
estimator

∙ compensates for missing measurements by inferring unobserved
shape geometry from symmetry, and

∙ has a generally reduced computational complexity.

In addition, and to our surprise, when applying symmetric simplification
to the SDM for a line segment, its pose and length can be accurately
estimated using a simple extended Kalman filter, where the original
SDM required more sophisticated nonlinear filtering techniques. In order
to demonstrate the power of our approach, we consider a line segment
tracking scenario, and extend the moving-box tracking scenario from
Chapter 3 by a permanent occlusion.
Remark 4.1. This chapter builds on work presented in [158, 156].

4.1 Related Work

There are many approaches related to computer vision that exploit
geometric symmetries, e.g., surveyed in [5] and [118]. In the context of
[118], our work would be classified as model acquisition and representation.
In the following, we highlight related work that shares similarities with
the approach in this thesis.
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(a) Segmentation
[116] c○ 2006
IEEE.

(b) Scan consolidation [117]
c○ 2005 IEEE.

(c) Compression
[115]. Printed
with kind per-
mission of the
authors.

Figure 4.2.: Related approaches which exploit symmetry.

Reflectional symmetry was incorporated into an image-based tracking
algorithm [116] that estimates the bounding box of a moving symmetric
object (see Figure 4.2a). The popular Scale-invariant feature transform
(SIFT) from [119] makes assumptions about symmetry, as it is invariant
under rotation and scaling. Reflectional symmetry has also been ex-
ploited for segmentation purposes [120] and scan consolidation [117] (see
Figure 4.2b). Rotational symmetry with respect to a skeleton was used
in [121] in order to compensate for a significant lack of measurements.
Simplifying a symmetric mesh was proposed in [115], where the authors
incorporate symmetry in the data structure of the mesh in order to re-
move redundancies (see Figure 4.2c). Treating symmetric multimodalities
with directional statistics [122] is also a related field of research, as well
as symmetric measurement functions [123] that consider symmetry in
the sense of invariance to switching specific parts of the state. In [124],
symmetric measurement equations were used together with Gaussian
kernels in the context of multi-object tracking.
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(a) Symmetric
equivalents.

(b) Aggregation
function.

(c) Symmetric
representatives.

Figure 4.3.: The aggregation function 𝑇 (𝑦) transforms all points 𝑦 in the domain to
their symmetric representatives in the non-redundant part (yellow).

4.2 Considered Types of Symmetry

In this section, we explain the types of symmetry to be considered in this
thesis, and introduce their mathematical formulations. While there are
many ways to describe geometric symmetries in general [118], we treat
symmetry of as the repetition of a non-redundant part of the shape. In
other words, the domain is partitioned into a number of symmetric parts
and it is sufficient to know the object shape in only one of them in order
to infer the rest.

Formally, symmetry can be described by an aggregation function 𝑇 :
R𝑑 → R𝑑 that is idempotent with 𝑇 (𝑇 (𝑦)) = 𝑇 (𝑦), and maps each point
𝑦 ∈ R𝑑 in the domain on its symmetric representative 𝑦′ := 𝑇 (𝑦) in the
non-redundant part. In the following, we will denote all points, which
are mapped on the same representative as its symmetric equivalents. A
visual explanation of these concepts is given in Figure 4.3 for a 2-axial
symmetry. As can be seen, all information to recover the object shape
is contained in the non-redundant part, e.g., the first quadrant for the
2-axial symmetry. The blue crosses and the filled black circles serve to
emphasize that both measurements and sources can be aggregated by
𝑇 ( · ). In the following, we discuss in detail what types of 2D and 3D
symmetry are considered in this thesis.
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(a) 1-axial (b) 2-axial (c) 3-axial (d) 4-axial (e) radial

Figure 4.4.: Symmetry examples: The non-redundant part of each shape is marked
in yellow. One representative and its symmetric equivalents are marked
as filled black circles.

4.2.1 2D Symmetry

In 2D, we focus on rotoreflections with 2𝑛-fold rotation angle, which means
a shape is generated by reflecting its non-redundant part with respect
to 𝑛 ∈ N1 rotated axes that intersect in the origin. The corresponding
2D symmetries of some selected shapes are visualized in Figure 4.4, and
their non-redundant parts are marked in yellow. Rotoreflections include
special cases such as axial symmetries in Figure 4.4(a-d), as well as
radial symmetry for 𝑛→∞ in Figure 4.4e. Next, we derive formulas for
appropriate aggregation functions 𝑇 ( · ).

General Rotoreflection When dealing with rotoreflections in 2D, po-
lar coordinates offer a convenient representation. The conversion of a
point 𝑦 from Cartesian coordinates 𝑦 = [𝑦1, 𝑦2]T into its corresponding
representation in polar coordinates is defined as

𝜃(𝑦) = atan2(𝑦2, 𝑦1) , (4.1)

𝑟(𝑦) =
√︁

𝑦2
1 + 𝑦2

2 ,

where 𝜃(𝑦) is the angle to the 𝑦1-axis and 𝑟(𝑦) is the Euclidean norm of
𝑦. For a rotoreflection, its 2𝑛-fold rotation angle is given by

Θ = 𝜋

𝑛
,
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which means that each of the 𝑛 axes of symmetry is rotated about Θ. In
terms of polar coordinates, we then define the non-redundant part to lie
in the period from 0 to Θ. The corresponding aggregation function 𝑇 ( · )
should map all points onto their equivalents in this part. This mapping
only requires a modulo operation on the angle 𝜃(𝑦) according to

𝜃(𝑦, 𝑛) =
{︃

mod(𝜃(𝑦), Θ) if ⌊ 𝜃(𝑦)
Θ ⌋ is even

Θ−mod(𝜃(𝑦), Θ) if ⌊ 𝜃(𝑦)
Θ ⌋ is odd ,

(4.2)

while leaving the radius 𝑟(𝑦) untouched. The final aggregation function
then is given by

𝑇 (𝑦) =
[︂
𝑟(𝑦) · cos(𝜃(𝑦, 𝑛))
𝑟(𝑦) · sin(𝜃(𝑦, 𝑛))

]︂
. (4.3)

Special Cases The general aggregation function (4.3) for rotoreflections
includes several special cases. For example, given a reflectional symmetry
with respect to the 𝑦2-axis (see Figure 4.4a), the non-redundant part is a
half-plane, and the aggregation function

𝑇 (𝑦) = [|𝑦1|, 𝑦2]T

aggregates points 𝑦 according to their absolute values |𝑦1|. Analogously,
the aggregation function for a 2-axial symmetry (see Figure 4.3 and
Figure 4.4b) maps each point 𝑦 to the first quadrant, according to

𝑇 (𝑦) = [|𝑦1|, |𝑦2|]T . (4.4)

A rotoreflection with 𝑛 → ∞ axes causes the non-redundant part to
collapse into a ray, e.g., the positive 𝑦1-axis, where the aggregation
function can be written as

𝑇 (𝑦) = [‖𝑦‖, 0]T ,

and maps each point 𝑦 to this axis, according to its Euclidean distance
‖ · ‖ to the origin.
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4.2.2 3D Symmetry

For rotoreflections in 3D, cylindrical coordinates are chosen. The con-
version of a point 𝑦 from Cartesian coordinates 𝑦 = [𝑦1, 𝑦2, 𝑦3]T into
cylindrical coordinates is very similar to the 2D case. First, (4.1) can
be used to derive polar coordinates for the 𝑦1- and 𝑦2-component and
second, the height component is immediately given by 𝑦3. Symmetry in
𝑦1 and 𝑦2 can be incorporated by applying (4.3). For symmetry of the 𝑦3
component, we allow a reflection with respect to the 𝑦1𝑦2-plane, which
results in taking the absolute value of 𝑦3. Then, an aggregation function
with reflectional symmetry in the height can be defined as

𝑇 (𝑦) =

⎡⎣ 𝑦1
𝑦2
|𝑦3|

⎤⎦ . (4.5)

As a brief remark, the shape in the motivating example in Figure 4.1 has
both a 2-axial symmetry in 𝑦1𝑦2 and a reflectional symmetry in 𝑦3.

4.3 Simplified Probabilistic Models
for Symmetric Objects

In this section, we develop symmetric versions of the elemental proba-
bilistic models, i.e., the Spatial Distribution Model (SDM), the Greedy
Association Model (GAM), and the Partial Information Model (PIM). It
will turn out that due to their structural differences, each model needs
individual treatment. Based on the studies in this section, we will subse-
quently develop a symmetric version of the 3D Random Hypersurface
Model (3DRHM).

Formal Problem Statement We consider the task of estimating the
parameters 𝑥 of an extended object based on the likelihood prototype

𝑝(𝑦|𝑥) =
∫︁
𝑆

𝒩 (𝑦; 𝜑𝑥(𝑠), C𝑣) · 𝑝(𝑠|𝑥) d𝑠 ,
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4.3. Simplified Probabilistic Models for Symmetric Objects

which was introduced in (2.10). In this formula, the term 𝜑𝑥(𝑠) with
𝑠 ∈ 𝑆 represents the boundary function which specifies each point on the
object boundary, 𝑝(𝑠|𝑥) is a probability distribution that models how
likely it is for each source on the boundary to be measured, and C𝑣 is
the covariance matrix of the Gaussian sensor noise. As a reminder, we
showed in Chapter 2 that the elemental probabilistic models essentially
differ in the assumptions they make about 𝑝(𝑠|𝑥).

We assume that knowledge is given about the object shape being sym-
metric in relation to the aggregation function 𝑇 ( · ). From this symmetry
follows that, for each point 𝜑𝑥(𝑠) on the boundary, its symmetric repre-
sentative lies also on the boundary. In consequence, it holds that

𝑇 (𝜑𝑥(𝑠)) = 𝜑𝑥(𝑠′) , (4.6)

where 𝑠′ ∈ 𝑆′ ⊆ 𝑆 is the index of the symmetric representative. Then, the
non-redundant part of the boundary can be specified by 𝑆′ := {𝑠 ∈ 𝑆 |
𝑇 (𝜑𝑥(𝑠)) = 𝜑𝑥(𝑠)}. The task now is to find simpler expressions for the el-
emental probabilistic models by incorporating the symmetric relationship
(4.6). We start the derivations with two simplifying assumptions, which
will be removed subsequently: (i) we consider a 1D boundary which is
embedded in the 2D domain, and (ii) we assume the sensor noise to be
isotropic.

4.3.1 Key Idea

A straightforward approach to incorporate symmetry into a tracking
algorithm consists of unfolding the non-redundant part of the shape in
order to generate the full shape, and then use it in one of the probabilistic
models in its original form. However, we observed that under specific
conditions, the likelihood 𝑝(𝑦|𝑥) for a symmetric shape is symmetric too,
and it holds that

𝑝(𝑦|𝑥) = 𝑝(𝑦′|𝑥) ,
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where 𝑦′ = 𝑇 (𝑦) is the symmetric representative of 𝑦 in the non-redundant
part. This observation motivated us to fold the measurements to the non-
redundant part 𝑇 (R𝑑) instead of unfolding the non-redundant boundary
to the full domain R𝑑 (see Figure 4.3).

Expected Benefits First, in GAMs and PIMs, where the most likely
point on the boundary has to be found for each measurement, the
computational complexity could be significantly reduced by only focusing
on a fraction of the domain. As an intuitive example, let us assume
the boundary function 𝜑𝑥(𝑠) would be implemented by a polygon with
𝑁 edges in total. Finding the most likely point on this polygon for a
given measurement then would require processing all 𝑁 edges. If we
could only consider the boundary in the non-redundant part, we could
potentially reduce the number of required edges to the fraction 𝑁

2𝑛 , where
𝑛 is the number of axes for the rotoreflection. In turn, this reduction of
complexity could be either used to speed up calculations, or to increase
the number of edges (i.e. the shape detail) by keeping the calculation
effort.

Second, in SDMs, the folding operation coincidentally aggregates not
only the symmetric equivalents of each measurement source 𝜑𝑥(𝑠) but
also their individual probabilities 𝑝(𝑠|𝑥). This introduces ignorance on
the symmetric parts of the object, and, in sampling-based estimators
where a Gaussian is to be evaluated for a set of points on the boundary,
the resolution of these points could be significantly increased.

Figure 4.5.: Property 1: Symmetry of the Gaussian distribution for reflection.
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Figure 4.6.: Property 2: The Euclidean distance of a symmetric representative 𝑏′ to
the symmetric equivalents of another point 𝑎 is minimum for its sym-
metric representative 𝑎′.

Approach to Achieve Symmetric Simplification We want to specify
the object boundary only in the non-redundant part of the domain
through a (potentially) simpler boundary function 𝜑′

𝑥(𝑠′) with 𝑠 ∈ 𝑆′

and then use 𝑦′ = 𝑇 (𝑦) in the estimator. Our tasks are now

1. proving that 𝑝(𝑦|𝑥) = 𝑝(𝑦′|𝑥) holds, i.e., the likelihood produces
the same value for all symmetric equivalents, and

2. ensuring that for the symmetric representative 𝑦′, all calculations
can be performed in the non-redundant part of the domain, i.e.,
the symmetric parts are not required.

For these derivations, we will employ the following two properties.

Property 1: Symmetry of the Gaussian Distribution Consider a Gaus-
sian distribution 𝒩 (𝑏; 𝑎, C) with mean 𝑎 and isotropic covariance matrix
C that is evaluated in 𝑏. Given an aggregation function 𝑇 ( · ) that imple-
ments a rotoreflection, the symmetric representatives for 𝑎 and 𝑏 can be
derived according to 𝑎′ = 𝑇 (𝑎) and 𝑏′ = 𝑇 (𝑏). Given that 𝑎 and 𝑏 both
lie in the same symmetric part it will always hold that

𝒩 (𝑏; 𝑎, C) = 𝒩
(︀
𝑏′; 𝑎′, C

)︀
.

This relationship is visually explained in Figure 4.5. The isotropic
covariance matrix is not affected by the aggregation. �

121



Chapter 4. Exploiting Geometric Shape Symmetries

Property 2: Minimum Euclidean Distance to Symmetric Points Con-
sider a point 𝑏′ in the non-redundant part, and the symmetric equivalents
of another point 𝑎. Then it follows that the Euclidean distance between
𝑏′ and the symmetric representative 𝑎′ = 𝑇 (𝑎) is always shorter than the
distance between 𝑏′ and 𝑎. In Figure 4.6 the proof for this relationship is
illustrated. As can be seen, 𝑎 and 𝑎′ are symmetric with respect to the
dashed black line, and the non-redundant part is colored in yellow. Let
𝑑 = ‖𝑏′ − 𝑎‖ and 𝑑′ = ‖𝑏′ − 𝑎′‖ denote the Euclidean distances between
the point 𝑏′ and 𝑎, 𝑎′. For the individual components of these distances
it is always true that 𝑑2 = 𝑑′

2 and 𝑑1 ≥ 𝑑′
1. From this relationship, it

follows that

𝑑 =
√︀

(𝑑1)2 + (𝑑2)2 ≥
√︁

(𝑑′
1)2 + (𝑑′

2)2 = 𝑑′

holds, which means that the distance 𝑑′ is always smaller than 𝑑. �

Even though we only proved the validity of the properties for one re-
flection axis, they immediately generalize to arbitrary rotoreflections by
successively processing one axis after another. Let us now start simplify-
ing the probabilistic models. We start with the GAM, which allows for a
straightforward incorporation of symmetry, and then look at the more
challenging SDM and PIM.

4.3.2 Symmetric Greedy Association Model

We consider an object with boundary function 𝜑𝑥(𝑠) for 𝑠 ∈ 𝑆. As a
reminder, for a measurement 𝑦 and a state 𝑥, the GAM (2.15) is given
by 𝑝(𝑦|𝑥) = 𝒩 (𝑦; 𝜑𝑥(𝜋𝑥(𝑦)), C𝑣), where 𝜋𝑥(𝑦) refers to the source with
the shortest Euclidean distance to the measurement. Let the object have
a rotoreflectional symmetry according to the aggregation function 𝑇 ( · )
and let 𝑦′ = 𝑇 (𝑦) be the symmetric representative of the measurement
𝑦. In order to use the symmetric representative 𝑦′ in the likelihood, we
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have to show that

𝑝(𝑦|𝑥) = 𝒩 (𝑦; 𝜑𝑥(𝜋𝑥(𝑦)), C𝑣) (4.7)
= 𝒩 (𝑦′; 𝜑𝑥(𝜋𝑥(𝑦′)), C𝑣)
= 𝑝(𝑦′|𝑥)

holds. For the proof, we can exploit Property 1 and Property 2 in the
following way. The identity in (4.7) immediately follows from Property 1
for 𝑦 and 𝜑𝑥(𝜋𝑥(𝑦)) lying in the same symmetric part. Property 2,
in turn, ensures this condition by stating that the closest symmetric
equivalent of a point to another is the one that lies in the same symmetric
part. In consequence, we can define and evaluate (4.7) exclusively in the
non-redundant part.

Simplification First, we define 𝜑′
𝑥(𝑠) as an arbitrary boundary function

in the non-redundant part that might exploit one of the expected benefits
mentioned in Section 4.3.1 (e.g., a polygon with more vertices). Then,
we substitute 𝜑𝑥(𝑠) by 𝜑′

𝑥(𝑠) in (4.7) and write

𝑝(𝑦|𝑥) = 𝒩 (𝑦′; 𝜑′
𝑥(𝜋𝑥(𝑦′)), C𝑣) (4.8)

= 𝒩 (𝑇 (𝑦); 𝜑′
𝑥(𝜋𝑥(𝑇 (𝑦))), C𝑣) .

The corresponding simplified generative model is given by

0 = ℎ(𝑥, 𝑦, 𝑣)
= 𝑇 (𝑦)− 𝜑′

𝑥(𝜋𝑥(𝑇 (𝑦)))− 𝑣 .

4.3.3 Symmetric Spatial Distribution Model

Again, we consider an object whose boundary is specified by 𝜑𝑥(𝑠) with
𝑠 ∈ 𝑆. The SDM (2.10) is given by 𝑝(𝑦|𝑥) =

∫︀
𝑆
𝒩 (𝑦; 𝜑𝑥(𝑠), C𝑣) · 𝑝(𝑠|𝑥) d𝑠,

where 𝑝(𝑠|𝑥) explicitly specifies how likely it is for each source on the
object boundary to be measured. Let the object again be symmetric
with respect to 𝑇 ( · ) and let 𝑦′ = 𝑇 (𝑦) be the symmetric representative
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of the measurement 𝑦. Unfortunately, evaluating the SDM for different
symmetric equivalents may produce different values in the likelihood

𝑝(𝑦|𝑥) =
∫︁
𝑆

𝒩 (𝑦; 𝜑𝑥(𝑠), C𝑣) · 𝑝(𝑠|𝑥) d𝑠

̸=
∫︁
𝑆

𝒩 (𝑦′; 𝜑𝑥(𝑠), C𝑣) · 𝑝(𝑠|𝑥) d𝑠

= 𝑝(𝑦′|𝑥) ,

as 𝑦 and 𝜑𝑥(𝑠) do not always lie in the same symmetric part (see Fig-
ure 4.7a), and 𝑝(𝑠|𝑥) is not necessarily symmetric. In consequence, the
original SDM is generally not symmetric, not even for symmetric shapes.
However, we can derive a symmetric version of the SDM by aggregating
symmetric measurement sources.

Aggregation For this purpose, let 𝑠′ ∈ 𝑆′ denote measurement sources
𝜑𝑥(𝑠′) in the non-redundant part. In addition, let 𝑠 ∈ [𝑠′] refer to their
symmetric equivalents through

[𝑠′] := {𝑠 ∈ 𝑆 | 𝑇 (𝜑𝑥(𝑠)) = 𝜑𝑥(𝑠′)} . (4.9)

In a next step, we derive the marginalized probability distribution 𝑝(𝑠′|𝑥)
for the representatives according to

𝑝(𝑠′|𝑥) =
∑︁

𝑠∈[𝑠′]

𝑝(𝑠|𝑥) . (4.10)

For the example in Figure 4.7b, 𝑝(𝑠1|𝑥) and 𝑝(𝑠2|𝑥) would be summed up
by (4.10). The intuitive interpretation of this aggregation is as follows:
Where 𝑝(𝑠|𝑥) formerly specified how likely each individual source 𝜑𝑥(𝑠)
on the object boundary is measured, 𝑝(𝑠′|𝑥) specifies how likely any (no
matter which) of the symmetric equivalents of 𝜑𝑥(𝑠′) is measured.
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(a) original SDM. (b) Aggregation. (c) SDM with symmetry.

Figure 4.7.: Process of deriving a symmetric version of an SDM.

Simplification This ignorance, in turn, lets us define and evaluate an
SDM exclusively in the non-redundant part, according to

𝑝(𝑦|𝑥) =
∫︁
𝑆′

𝒩 (𝑇 (𝑦); 𝜑′
𝑥(𝑠′), C𝑣) · 𝑝(𝑠′|𝑥) d𝑠′ . (4.11)

where we again substituted the boundary function 𝜑𝑥( · ) by a simpler
one 𝜑′

𝑥( · ). A visualization is given in Figure 4.7c. However, note that
(4.11) is only an approximation of the original SDM as we waived the
capability of defining individual probabilities for sources in the different
symmetric parts. The corresponding measurement equation is given by

0 = ℎ(𝑥, 𝑦, 𝑠′, 𝑣)
= 𝑇 (𝑦)− 𝜑′

𝑥(𝑠′)− 𝑣 .

4.3.4 Symmetric Partial Information Model

Once more, we consider an object whose boundary is specified by 𝜑𝑥(𝑠)
with 𝑠 ∈ 𝑆. The PIM 𝑝(𝑙𝑦|𝑥, 𝑠𝑦) according to (2.31) is an approximation
for the original likelihood 𝑝(𝑦|𝑥), where 𝑙𝑦 = 𝑔𝑥(𝑦) is the Euclidean
distance to the closest source 𝜑𝑥(0, 𝑠𝑦) on the boundary, which is referred
to by 𝑠𝑦 = 𝜋𝑥(𝑦). For this purpose, we extended the boundary function by
the second parameter 𝑙𝑦. Evaluating 𝑝(𝑙𝑦|𝑥, 𝑠𝑦) then requires integrating
the Gaussian distribution of the sensor noise along the 𝑙𝑦-level, as visually
explained in Figure 4.8a.
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(a) PIM without symmetry. (b) PIM with symmetry.

Figure 4.8.: Evaluating the PIM requires integrating along the entire 𝑙𝑦-level.

Let the object again be symmetric with respect to 𝑇 ( · ) and let 𝑦′ = 𝑇 (𝑦)
be the symmetric representative of the measurement 𝑦. From Property 2,
it follows that all symmetric equivalents of a measurement 𝑦 have the
same Euclidean distance 𝑙𝑦 = 𝑙′

𝑦 to the boundary and it holds that

𝑇 (𝜑𝑥(𝑙𝑦, 𝑠𝑦)) = 𝜑𝑥(𝑙𝑦, 𝑠′
𝑦) . (4.12)

As this aggregation does not affects 𝑙𝑦 at all, evaluating (2.31) produces
identical values for all symmetric equivalents 𝑝(𝑙𝑦|𝑥, 𝑠𝑦) = 𝑝(𝑙𝑦|𝑥, 𝑠′

𝑦).
This identity is visually explained in Figure 4.8, where the same 𝑙𝑦-level is
to be integrated. However, as this integration runs through all symmetric
parts, it is not possible to evaluate it in the non-redundant part without
applying non-trivial folding operations to the Gaussian.

Approximation Even though the original PIM requires modeling the
object in the full domain, we found that its Gaussian approximation
(2.35) is symmetric

𝑝(𝑙𝑦|𝑥, 𝑠𝑦) = 𝒩 (𝑙𝑦; E{𝑙𝑣} , Var{𝑙𝑣})
= 𝑝(𝑙𝑦|𝑥, 𝑠′

𝑦)
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(a) Without symmetry.

(b) With symmetry.

Figure 4.9.: Sampling-based approximation of the PIM with and without symmetry.

as well, and can be exclusively evaluated in the non-redundant part. As
a brief reminder, the approximated PIM is based on moment matching of
the partial noise 𝑙𝑣 = 𝑔𝑥(𝜑𝑥(0, 𝑠𝑦)+𝑣), which encodes the expected distri-
bution of Euclidean distances when measuring 𝜑𝑥(0, 𝑠𝑦). The Euclidean
distance, in turn, can be calculated exclusively in the non-redundant part,
according to Property 2. In the following, we detail the sampling-based
approach (2.36).

In particular, we show that the calculations for a measurement 𝑦 and its
symmetric representative 𝑦′ result in identical distributions for 𝑙𝑣. Fig-
ure 4.9 provides a direct visual comparison. As can be seen in Figure 4.9b,
all steps are equivalent, except for the aggregation 𝑇 (𝜑𝑥(0, 𝑠𝑦) + 𝑣) in
the third step for the symmetric approach. This folding operation is
required, as the simulated sensor noise may produce simulated measure-
ments outside of the non-redundant part. However, we are only interested
in the 𝑙𝑦-values of these measurements, which are not affected by folding
according to (4.12). In consequence, it holds that

E{𝑙𝑣} = E{𝑔𝑥(𝜑𝑥(0, 𝑠𝑦) + 𝑣)} (4.13)
= E

{︀
𝑔𝑥(𝑇 (𝜑𝑥(0, 𝑠′

𝑦) + 𝑣))
}︀

,

which, analogously, holds for the variance Var{𝑙𝑣}.
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Figure 4.10.: Property 1: Equivalence of the Gaussian distribution with its
reflected counterpart.

Simplification In consequence, we can substitute the boundary function
𝜑𝑥( · ) in (4.13) by a simpler one 𝜑′

𝑥( · ) that only needs to be specified in
the non-redundant part and use

E{𝑙𝑣} = E
{︀

𝑔𝑥(𝑇 (𝜑′
𝑥(0, 𝑠′

𝑦) + 𝑣))
}︀

= E
{︀

𝑔𝑥(𝑇 (𝜑′
𝑥(0, 𝜋𝑥(𝑇 (𝑦))) + 𝑣))

}︀
.

Finally, the corresponding measurement equation is given by

0 = ℎ(𝑥, 𝑣, 𝑦)
= 𝑔𝑥(𝑇 (𝑦))− 𝑔𝑥(𝑇 (𝜑′

𝑥(𝜋𝑥(𝑇 (𝑦))) + 𝑣)) .

4.3.5 Discussion

In addition to the technical descriptions and derivations from the previous
section, there are some interesting facts about our approach that should
be noted.

Implementation As all symmetric considerations are encapsulated in
the likelihood (or measurement equation), the proposed simplifications
do not require any adaptations to the estimator being used. Specifically,
the Bayes update can still be derived by using Algorithm A.2 (or Algo-
rithm A.1) by means of simply switching to the symmetric version of the
likelihood (or measurement equation).
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(a) Isotropic sensor noise. (b) Anisotropic sensor noise.

Figure 4.11.: Symmetry of ellipse for isotropic and anisotropic sensor noise.

Anisotropic Noise When approaching to apply symmetric simplification
in the presence of anisotropic noise, the properties, which have been
discussed in Section 4.3.1 do not longer hold in their original form. In
particular,

∙ Property 1 still holds for anisotropic Gaussian distributions, but the
covariance matrix C is to be rotoreflected as well (see Figure 4.10),
and

∙ Property 2 does not hold for the Mahalanobis distance, due to its
anisotropy.

Both changes have consequences in the probabilistic models. For example,
as Property 2 is not fulfilled, there is no guarantee that the closest
measurement source of a measurement lies in the same symmetric part.
Figure 4.11 visually explains what that means for an elliptical boundary.
For isotropic noise, the 𝑠-levels in Figure 4.11a (which relate points to
their closest measurement source), do not leave their symmetric parts.
In contrast, for anisotropic noise, some 𝑠-levels run through multiple
symmetric parts, as can be seen in Figure 4.11b. Moreover, the 𝑙- and
𝑠-levels are not even symmetric with respect to the object geometry,
which makes the situation even more complicated.
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However, symmetric simplification can be still applied by, e.g., approxi-
mating its distribution with an isotropic one. Unfortunately, this rather
pragmatic approach would introduce another additional approximation.
A more sophisticated idea would be adapting the aggregation function
𝑇 ( · ) so that it folds points to their symmetric representatives according
to their respective 𝑙𝑠-values, instead of their Cartesian coordinates.

Higher Dimensions It is also possible to apply symmetric simplification
to measurements of higher dimensionality. For example when considering
shape estimation and tracking in 3D, the derivations are analog to those
in 2D. Note that symmetric simplification could even be applied to
measurements with higher dimensionality. That is, when the shape color
is considered as a measurement as well and is symmetric with respect to
the object geometry, we can easily add a color vector 𝑐 to the original
measurement vector 𝑦. Then, aggregation can be applied in the form of
𝑇 ([𝑦T, 𝑐T]T), where the spatial component is mapped to its representative
in the non-redundant part and the color remains untouched. This type of
generalization also applies related features such as normals or curvature,
as long as they are symmetric with respect to the object geometry.

Generalization The proposed approach is a general solution to exploit
symmetries in probabilistic models and is not restricted to shape estima-
tion and tracking. Whenever a likelihood function fulfills the symmetric
relationship 𝑝(𝑦|𝑥) = 𝑝(𝑦′|𝑥) for a measurement 𝑦 and some kind of
symmetric representative 𝑦′ = 𝑇 (𝑦), we can potentially find simpler
expressions for the probabilistic model. However, note that incorporating
symmetry will always yield an implicit measurement equation in the form
of

0 = ℎ(𝑥, 𝑦, 𝑣) ,

as the original measurement 𝑦 is internally treated as its symmetric
representative 𝑇 (𝑦), whose calculation requires knowledge of the state
parameters 𝑥.
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4.4 Simplified 3D Random
Hypersurface Model

In this section, we develop a symmetric version of the 3DRHM from
Chapter 3. As a brief reminder, we consider objects whose surface can
be constructed by transformed plane curves according to the function
Φ𝑥,𝑢(𝑠). This function has been defined in (3.1) and takes two parameters,
where 𝑢 ∈ 𝑈 controls the transformation of the curve, and 𝑠 ∈ 𝑆 iterates
through the curves.

The 3DRHM is a probabilistic model that describes, how a given sensor
will measure points from the surface of an object. For this purpose, the
probability distribution of 𝑢 is explicitly modeled in the fashion of SDMs
(slice selection), and the distribution of 𝑠 is ignored, just as in GAMs or
PIMs (slice likelihood). For the symmetric considerations in this section,
we focus on the 3DRHM-GAM from (3.16), which is given as

𝑝(𝑦|𝑥) =
∫︁
𝑈

𝒩 (𝑦; Φ𝑥,𝑢(𝜋𝑥,𝑢(𝑦)), C𝑣)⏟  ⏞  
slice likelihood

· 𝑝(𝑢|𝑥)⏟  ⏞  
slice selection

d𝑢 , (4.14)

with Φ𝑥,𝑢(𝜋𝑥,𝑢(𝑦)) being the greedy approximation of the true measure-
ment source for each transformed curve.

Due to the inherent separation of the 3DRHM-GAM into SDM (slice
selection) and GAM (slice likelihood), we can consider their symmetric
simplification individually. Figure 4.12 exemplary illustrates the meaning
for both types of symmetry. That is, the extruded star-convex curve
object is symmetric with respect to its length axis (see Figure 4.12a),
which allows for exploiting symmetry in the slice selection. In addition,
the 2-axial symmetry of each transformed curve, which is illustrated in
Figure 4.12b, can be exploited in the slice likelihood. In the remainder of
this section, we first consider symmetry in the slice selection and then in
the slice likelihood. Note that, even though both types of symmetry will
be discussed separately, they are not mutually exclusive, which means
that the estimator can take advantage of both types simultaneously, as
initially motivated in Figure 4.1.
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(a) Symmetric slice selection. (b) Symmetric slice likelihood.

Figure 4.12.: The 3DRHM can be subject to two types of symmetry: for the slice
selcetion, and for the slice likelihood.

4.4.1 Symmetric Slice Selection

Symmetry in the slice selection technically means that the object shape
is composed of slices with identical curves. For example when folding the
extruded star-convex curve object in Figure 4.12a with respect to the
𝑦1𝑦2-plane, each curve 𝑢 is reflected exactly onto another identical curve
𝑢′. Assuming this folding operation to be encoded in the aggregation
function 𝑇 ( · ), symmetry in the slice selection can be expressed as

𝑇 (Φ𝑥,𝑢(𝑠)) = Φ𝑥,𝑢′(𝑠) .

That is, the aggregation function 𝑇 ( · ) maps a point Φ𝑥,𝑢(𝑠) on the curve
in a slice 𝑢 to its symmetric representative Φ𝑥,𝑢′(𝑠) on the curve in the
slice 𝑢′ that lies in the non-redundant part. Note that the parameter 𝑠 is
not affected by this aggregation.

For the 3DRHM, we assume the parameter 𝑢 to be modeled according
to an SDM with known probability distribution of 𝑝(𝑢|𝑥). In order to
simplify (4.14), we can derive a symmetric SDM according to Section 4.3.3,
which is an approximation of the original SDM. For this purpose, we
have (i) identify the indices 𝑢 ∈ [𝑢′] of all symmetric equivalents of a
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symmetric representative Φ𝑥,𝑢′(𝑠) according to (4.9), and (ii) aggregate
the values of their probability distribution according to (4.10)

𝑝(𝑢′|𝑥) =
∑︁

𝑢∈[𝑢′]

𝑝(𝑢|𝑥) .

Simplification The simplified model according to (4.11) is given by

𝑝(𝑦|𝑥) =
∫︁
𝑈 ′

𝒩 (𝑇 (𝑦); Φ′
𝑥,𝑢′(𝜋𝑥,𝑢′(𝑇 (𝑦))), C𝑣) · 𝑝(𝑢′|𝑥) d𝑢′ , (4.15)

where Φ could be replaced by Φ′, which only needs to be modeled in
the non-redundant part. The simplified measurement equation that
corresponds to (4.15) is given by

0 = ℎ(𝑥, 𝑦, 𝑢′, 𝑣)
= 𝑇 (𝑦)− Φ′

𝑥,𝑢′(𝜋𝑥,𝑢′(𝑇 (𝑦))− 𝑣 .

In the following, we simplify the SDM of a line segment, which is the
most simple example for a shape that takes advantage of symmetric slice
selection.

Example 4.1 (Symmetric Line Segment). As previously discussed in
Section 3.3, a line segment SDM can be seen as a 3DRHM for a cylinder
with radius 0. Within this interpretation, the curve in each slice 𝑢 is a
point Φ𝑥,𝑢. For a line segment with length 𝑑, which is centered on the
origin, the boundary function is given by

Φ𝑥,𝑢 =

⎡⎣ 0
0

𝑢 · 𝑑
2

⎤⎦ , (4.16)

where 𝑢 ∈ 𝑈 = [−1, 1] iterates the point along the segment. We inten-
tionally set the center to the origin, for a convenient incorporation of
symmetry. For 𝑝(𝑢|𝑥), we assume a uniform distribution with value 1

2 for
all 𝑢 ∈ 𝑈 . As the line segment is symmetric with respect to the 𝑦1𝑦2-plane,
we can use the aggregation function 𝑦′ = 𝑇 (𝑦) = [𝑦1, 𝑦2, |𝑦3|]T from (4.5),
in order to map points to the non-redundant part.
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For simplification, we have to identify all symmetric equivalents according
to (4.9). This identification yields [𝑢′] = {𝑢,−𝑢} with 𝑢′ ∈ 𝑈 ′ = [0, 1].
Then, the original probabilities 𝑝(𝑢|𝑥) of the symmetric equivalents are
aggregated to 𝑝(𝑢′|𝑥) by summing them up according to (4.10). As all 𝑢′ re-
fer to two elements −𝑢 and 𝑢, the aggregation yields 𝑝(𝑢′|𝑥) = 1

2 + 1
2 = 1.

Finally, the simplified model can be obtained by plugging (4.16) and 𝑝(𝑢′|𝑥)
into (4.15) according to

𝑝(𝑦|𝑥) =
1∫︁

0

𝒩 ([𝑦1, 𝑦2, |𝑦3|]T; [0, 0, 𝑢 · 𝑑
2 ]T, C𝑣) d𝑢′ , (4.17)

with C𝑣 being the covariance matrix of the isotropic sensor noise. Please
note that we have not replaced the boundary function Φ, as there does
not exist a simpler one. Nevertheless, in Section 4.5, we will show that
(4.17) outperforms its non-symmetric version from (3.10).

4.4.2 Symmetric Slice Likelihood

Symmetry in the slice likelihood means that the curve within each slice
is symmetric. For example the star-convex curve object in Figure 4.12b
has a 2-axial symmetry. Assuming the symmetry to be encoded in 𝑇 ( · ),
symmetry in a slice can be expressed as

𝑇 (Φ𝑥,𝑢(𝑠)) = Φ𝑥,𝑢(𝑠′) .

That is, the aggregation function 𝑇 ( · ) maps a point Φ𝑥,𝑢(𝑠) on the
curve in a given slice to its symmetric representative Φ𝑥,𝑢(𝑠′) in the
non-redundant part in the same slice. In doing so, the parameter 𝑢 is
not affected by this aggregation.

For the 3DRHM-GAM, we assume the parameter 𝑠 to be modeled ac-
cording to a GAM, which means that it is approximated by its most
likely estimate 𝑠 ≈ 𝜋𝑥,𝑢(𝑦). In order to simplify (4.14), we can derive a
symmetric GAM according to Section 4.3.2. For this purpose, we just
have to substitute the measurement 𝑦 by its symmetric representative
𝑦′ = 𝑇 (𝑦).
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Simplification The simplified model according to (4.8) is given by

𝑝(𝑦|𝑥) =
∫︁
𝑈

𝒩 (𝑇 (𝑦); Φ′
𝑥,𝑢(𝜋𝑥,𝑢(𝑇 (𝑦))), C𝑣) · 𝑝(𝑢|𝑥) d𝑢 ,

where we can again substitute the boundary function Φ by a simpler one
Φ′. The corresponding measurement equation is given by

0 = ℎ(𝑥, 𝑦, 𝑢, 𝑣)
= 𝑇 (𝑦)− Φ′

𝑥,𝑢(𝜋𝑥,𝑢(𝑇 (𝑦)))− 𝑣 .

In the following, we simplify the GAM-component of a 3DRHM for an
extruded star-convex curve.

Example 4.2 (Symmetric Star-convex Curve). We consider the extruded
star-convex curve from Section 3.2.4, which is specified by

Φ𝑥,𝑢(𝑠) =

⎡⎣𝑟(𝑠) · cos(𝑠)
𝑟(𝑠) · sin(𝑠)

𝑢 · 𝑑
2

⎤⎦ ,

and where 𝑟(𝑠) is a polar function (3.5) that determines the radius for
each angle 𝑠 ∈ [0, 2𝜋), and 𝑢 ∈ [−1, 1] shifts the curve between bottom
and top. In this representation, the object is centered on the origin, and
has a length of 𝑑. Now, instead of exploiting symmetry of the parameter
𝑢, we are interested in exploiting symmetry of 𝑠. For this example, we
assume that prior knowledge is available that the star-convex curve has
a 2-axial symmetry (4.4) according to 𝑦′ = 𝑇 (𝑦) = [|𝑦1|, |𝑦2|, 𝑦3]T. The
corresponding non-redundant part is the first quadrant with angles (for
the polar representation) between 0 and 𝜋

2 , as illustrated in Figure 4.13.
We can use (4.2) for transforming arbitrary points with angle 𝑠 to the
non-redundant according to 𝑠′ = 𝜃(𝜑𝑥(𝑠), 𝑛), where 𝑛 = 2 is the number
of symmetry axes.
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(a) Object contour.
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Figure 4.13.: Star-convex object with 2-axial symmetry, represented by a polar
function. The non-redundant part of the boundary is colored yellow.

Then, we can simplify the GAM by substituting the original boundary
function Φ𝑥,𝑢(𝑠) by another one Φ′

𝑥,𝑢(𝑠′) that is exclusively defined and
evaluated in the non-redundant part. Specifically, we can employ an
alternative radius function 𝑟′(𝑠′) in

Φ′
𝑥,𝑢(𝑠′) =

⎡⎣𝑟′(𝑠′) · cos(𝑠′)
𝑟′(𝑠′) · sin(𝑠′)

𝑢 · 𝑑
2

⎤⎦ , (4.18)

where 𝑠′ must only be considered in [0, 𝜋
2 ]. For this purpose, we can

modify the period of the Fourier series from (3.5) according to the number
of symmetry axes

𝑟′(𝑠′) = 𝑎0

2 +
𝑀∑︁

𝑚=1
𝑎𝑚 cos(𝑚 ·𝑛 · 𝑠′) + 𝑏𝑚 sin(𝑚 ·𝑛 · 𝑠′) ,

as discussed in [158]. Finally, the simplified model can be obtained by
plugging (4.18) and 𝑝(𝑢′|𝑥) into (4.15) according to

𝑝(𝑦′|𝑥) =
1∫︁

−1

𝒩

⎛⎝⎡⎣|𝑦1|
|𝑦2|
𝑦3

⎤⎦ ;

⎡⎣𝑟′(𝜋𝑥,𝑢(𝑦′)) · cos(𝜋𝑥,𝑢(𝑦′))
𝑟′(𝜋𝑥,𝑢(𝑦′)) · sin(𝜋𝑥,𝑢(𝑦′))

𝑢 · 𝑑
2

⎤⎦ , C𝑣

⎞⎠ · 𝑝(𝑢|𝑥) d𝑢 .

(4.19)
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Figure 4.14.: Line segment tracking experiment. The line segment moves with con-
stant speed along the S-shaped track while performing a rotation.

4.5 Evaluation

In this section, we evaluate the symmetric probabilistic models in two
estimation scenarios with synthetic data. First, we consider the task
of tracking a moving line segment and compare the traditional non-
symmetric model to the symmetric one. In a second scenario, we look
again at the task of tracking the moving box from Section 3.7.2 and
show how symmetry in this scenario can help to compensate for missing
measurements (Challenge 3).

4.5.1 Tracking a Moving Line Segment

Let us first look at the task of tracking a moving line segment.

Experiment Figure 4.14 shows the track, together with the ground
truth line segment with a length of 6, drawn at selected locations. While
the object moves, a simulated sensor performs 250 point cloud measure-
ments, where each cloud consists of 10 points. For the selected locations,
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exemplary measurements are drawn as black dots. The measurement
sources were uniformly drawn from the segment and then distorted by
additive Gaussian sensor noise with C𝑣 = 5 · 10−1 · I. For the evaluation,
we consider four tracking algorithms.

∙ SDM PGF: The state-of-the-art approach to line segment tracking
[64, 149] is using a Spatial Distribution Model (3.10) together with
a particle filter. We set up a comparable approach based on a PGF
[97]. In doing so, we approximate the uniform distribution over
𝑝(𝑢|𝑥) by a Dirac-Mixture with 51 equidistant samples.

∙ SDM EKF: In order to demonstrate that the SDM for a line
segment cannot adequately be used together with a linear filter,
we additionally set up a tracking algorithm based on an extended
Kalman filter [46].

∙ SYM-SDM PGF: For this approach, we just replace the SDM in
“SDM PGF” with its symmetric version from (4.17).

∙ SYM-SDM EKF: For this approach, we also just replace the
SDM in “SDM EKF” with its symmetric version from (4.17).

The state to be estimated consists of length, pose, and velocity. For
initialization, all parameters are set to Gaussian random values, drawn
from the ground truth using variances of 5 · 10−2. The length parameter
was additionally distorted by a value of 4, to simulate a bad initialization
procedure. For predicting the object location, we incorporate a 3D
constant velocity model [46] into the prediction step, with a process noise
covariance matrix in the magnitude of 10−5 · I. The following results are
obtained from 100 Monte-Carlo runs.

Results The average estimates over all runs are drawn in Figure 4.16
and Figure 4.17 and allow for visual comparison of the approaches. A
numerical comparison is given in Figure 4.15, where the RMSE for
position, orientation and segment length are depicted. As can be seen,
all approaches show an almost identical performance in estimating the
position and orientation. However, there is a significant difference when
comparing the RMSE of the estimated length parameter in Figure 4.15c.
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Figure 4.15.: Numerical result of the line segment evaluation.

Specifically, all approaches are capable of estimating the length of the
line segment except from “SDM EKF”. We found in [149] that this issue
is due to the fact that the linearization in the EKF drops any correlation
between position and length parameter. Thus, the length parameter is
not affected by the estimator at all. In contrast, its symmetric version
“SYM-SDM EKF” is capable of estimating the length, and yields almost
comparable accuracy to the PGF approaches. This is a remarkable
result, as the complexity of the EKF is far lower than the complexity
of a PGF. As an interesting observation, note that the symmetric and
non-symmetric PGF approach both yield almost identical accuracy in all
estimated parameters.

This evaluation shows that position, orientation and length of a moving
line segment can be indeed estimated by a simple EKF when incorporating
its reflectional symmetry. To our knowledge, this is the first EKF-based
approach, which achieves this result.
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Intermediate results Final result

Figure 4.16.: Average estimates of the line segment evaluation.
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Intermediate results Final result

Figure 4.17.: Average estimates of the line segment evaluation (continued).
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Figure 4.18.: Occluded box tracking experiment. The box moves with constant
speed along the S-shaped track while performing a rotation.

4.5.2 Tracking a Moving Box-Object with Occlusion

In this section, we illustrate the performance of the symmetric version of
3DRHMs by means of a tracking example with a permanent occlusion.
In particular, we want to demonstrate how symmetry can compensate
for missing measurements (Challenge 3).

Experiment We consider the task of tracking the moving box from
Section 3.7.2. Again, the estimator should track the object in the form
of an extruded star-convex curve. In contrast to the previous tracking
experiment, we modify two aspects:

1. an occlusion causes that measurements originate only from three
sides of the box, and

2. we compare three estimators, which differ in the number of symme-
try axes, they impose.
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Figure 4.18 shows the track, together with the ground truth box with
an edge length of 6× 4× 8, drawn at selected locations. While the box
moves, a simulated sensor performs 250 point cloud measurements, where
each of contains 25 noisy points. For the selected locations, exemplary
measurements are drawn as black dots in Figure 3.16. The measurement
sources are uniformly drawn from only three sides of the box and then
distorted by adding Gaussian sensor noise with C𝑣 = 5 · 10−2 · I.

For estimation, we use a symmetric 3DRHM-GAM together with a PGF
according to (4.19). The state to be estimated consists of the Fourier-
coefficients for the star-convex curve, the height, the pose, as well as the
object’s velocity. Then, for the evaluation, we consider three different
numbers of Fourier coefficients 5, 9, and 13, as well as three different types
of symmetry, ranging from no symmetry, over 1-axial symmetry, up to
2-axial symmetry. In consequence, we consider 3 · 3 = 9 configurations for
the comparison. As the box is composed of shifted rectangles, which are
symmetric with respect to 2 axes, we expect the configurations with “2-
axial” symmetry to yield the best estimation performance. In addition, as
representing corners of a rectangle require higher order Fourier coefficients
[158], the configurations with “13 Coeffs” will probably yield the best
results.

Initialization procedure and dynamic model are identical to those in
the previous box experiment in Section 3.7.2. The following results are
obtained from 100 Monte-Carlo runs.

Results The average intermediate and final results for the nine model
configurations are shown in Figure 4.19-4.21. As can be seen from the
figures, position, orientation, and length estimates yield comparable
results throughout all configurations. However, when comparing the
shapes, there are significant differences. These differences can be seen in
(i) the way the estimator compensates for the unobserved side, and (ii)
the detail of the estimated shape.
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Let us first focus the discussion on the first aspect. As expected, the
configurations with “2-axial” symmetry compensate best for the unob-
served (left) side, as they assume it to be an exact copy of the right side.
However, surprisingly, the configurations with “1-axial” symmetry yield
the poorest reconstruction of the unobserved side. This is due to the
fact that the estimator (randomly) assumes the symmetry axis to lie
parallel to the longer edges of the rectangle. From this behavior, we can
conclude that we should always choose the highest possible number of
symmetry axes in order to achieve the best compensation for missing
measurements.

As can be visually confirmed, incorporating “more symmetry” also im-
proves the shape detail for the same number of Fourier coefficients. In
particular, each figure includes three configurations with identical num-
bers of coefficients but different types of symmetry. Then, from the first
to the third rows, the number of symmetry axes increases, as well as
the quality of the estimated shape for the observed sides. In addition,
the computational complexity in each figure can be regarded as equal —
except from applying the aggregation function, which for this example
simply consist of taking the absolute value of each measurement (in object
coordinates). In sum, the results confirm our initial expectation that a
higher number of symmetry axes yields both a better reconstruction of
the unobserved side and more shape detail.

4.6 Conclusions from Chapter 4

In this chapter, we have developed extensions to the previously discussed
probabilistic models in order to make the estimator more robust against
occlusions and missing measurements (Challenge 3). We saw that, under
specific conditions, folding measurements into a small fraction of the
original domain according to the object symmetry does not change
the values of the likelihood. This observation allowed us to model the
shape exclusively in this non-redundant part of the domain and evaluate
symmetric representatives of the measurements in this reduced domain.
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Intermediate results Final result

Figure 4.19.: Average results of the occluded box tracking example for 5 Fourier
coefficients and different symmetries.
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Intermediate results Final result

Figure 4.20.: Average results of the occluded box tracking example for 9 Fourier
coefficients and different symmetries.
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Intermediate results Final result

Figure 4.21.: Average results of the occluded box tracking example for 13 Fourier
coefficients and different symmetries.
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As a desired effect, each measurement forced the estimator to adjust the
shape in the entire domain instead of only adjusting it locally. Depending
on the specific probabilistic model, object shape, and the parametrization,
our approach allows for

∙ introducing symmetry constraints upon the estimated shape,

∙ modeling a more detailed shape while keeping or even reducing the
number of shape parameters,

∙ reducing the model complexity by reducing the domain of the
integration variables, and

∙ increasing robustness against partial occlusion.

Our experiments demonstrated that, when correctly applied, we can
improve the estimator even for simple objects such as a line segment. As
a remarkable result, incorporating the reflectional symmetry of the line
segment allowed us to simultaneously estimate its position, orientation,
and length with a standard extended Kalman filter.
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In this chapter, we evaluate the practical use of the proposed algorithms
in tracking experiments with real data. For this purpose, we use a sensor
network based on four Microsoft Kinect cameras of the 2nd generation.
The network is part of the telepresence system from Chapter 1.

Contribution There are two major contributions in this chapter. First,
we derive a probabilistic sensor model that allows for assessing the quality
of each measurement in a 2nd gen Kinect point cloud. This model relies
on the accuracy analysis from [16] and is derived by propagating the
uncertainty of the depth images to 3D Cartesian space with respect to the
intrinsic camera parameters. Second, we transfer the synthetic tracking
experiments from the previous chapters to real life in order to validate
the theoretical results.

Remark 5.1. This chapter builds on work on the 1st gen Kinect [154].
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(a) Kinect 1 color. (b) Kinect 2 color.

(c) Kinect 3 color. (d) Kinect 4 color.

Figure 5.1.: Raw color data. The object to be tracked is marked by a yellow arrow.

(a) Kinect 1 depth. (b) Kinect 2 depth.

(c) Kinect 3 depth. (d) Kinect 4 depth.

Figure 5.2.: Raw depth data. The object to be tracked is marked by a yellow arrow.
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Figure 5.3.: 3D point cloud, combined from the data of the four Kinects in
Figure 5.1 and Figure 5.2.

5.1 Experimental Setup

A multi-Kinect network is a specific instance of an RGBD-camera network,
where RGBD means that each sensor observes a color (RGB) and a depth
(D) image from the scene. Each Kinect produces RGB and D images at
a speed of 30 frames per second in a resolution of 1920× 1080 pixels and
512× 424 pixels, respectively. Figure 5.1 and Figure 5.2 show example
frames of a box tracking scene, as seen by the Kinect network.

While the RGB-images provide an intuitive understanding of the situation,
depth images require explanation. Essentially, a depth image is an
intensity image, where the intensity of each pixel encodes the range
from the image plane of the camera to the observed point in space. In
particular, for the example data, darker intensities indicate closer ranges,
except from black pixels, which mark invalid range measurements. By
unprojecting pixels from the image plane into space according to their
range, we can recover the 3D position of the surface points in the observed
scene. Together with the RGB-image, the corresponding color can be
assigned to each 3D point in order to create a colored point cloud. In
Figure 5.3, the 3D point cloud for the data in Figure 5.1 and Figure 5.2
is visualized.
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In order to enable the tracking algorithm to fuse data from multiple
Kinects, it is important to adequately assess the quality of the points.
For this purpose, we take a closer look at the measurement principle of
the Kinect.

5.2 Sensor Model

In this section, we derive a probabilistic sensor model to assess the quality
for Kinect point clouds. We will end up with an algorithm that assigns a
Gaussian random variable

𝑣𝑖 ∼ 𝒩 (0, C𝑣𝑖
)

to each measured 3D point 𝑦
𝑖
. It is assumed that 𝑦

𝑖
was produced from a

point 𝑧𝑖 on the surface of the object distorted by 𝑣𝑖 according to (2.4). In
order to derive the characteristics of C𝑣𝑖 , we rely on the accuracy analysis
of the depth images from [16], in order to propagate the given uncertainty
of the depth image to the 3D points. It is assumed that no unexpected
sources of noise, e.g., interference by Kinects with overlapping fields of
view, are present.

5.2.1 Deterministic Pinhole Model

Let each depth image be indexed by image coordinates (𝑢, 𝑣) ∈ {1, . . . , 512}
× {1, . . . , 424} and let the depth value in meters be denoted by 𝛾. In the
following, we derive a deterministic model to transform a 2D pixel in
the depth image [𝑢, 𝑣, 𝛾]T to its corresponding 3D point 𝑦 = [𝑦1, 𝑦2, 𝑦3]T
using the pinhole model [125]. For a given calibration matrix (camera
intrinsics)

K =

⎡⎣𝑓𝑢 0 𝑐𝑢

0 𝑓𝑣 𝑐𝑣

0 0 1

⎤⎦ ,
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with focal length 𝑓𝑢, 𝑓𝑣, and principal point [𝑐𝑢, 𝑐𝑣]T, it holds that
𝛾 · [𝑢, 𝑣, 1]T = K · 𝑧. From this equation, 𝑦 can be recovered by multiply-
ing K−1 from the left according to⎡⎣𝑦1

𝑦2
𝑦3

⎤⎦ =

⎡⎣𝑢−𝑐𝑢

𝑓𝑢
𝑣−𝑐𝑣

𝑓𝑣

1

⎤⎦ · 𝛾 . (5.1)

5.2.2 Probabilistic Pinhole Model

Using (5.1), we can now propagate a given uncertainty for [𝑢, 𝑣, 𝛾]T to
its corresponding uncertainty for 𝑦.

Initial Assumptions A major factor that contributes to the depth image
distortion is the Johnson–Nyquist noise [126], which is a form of additive
Gaussian-distributed noise and affects the brightness of each pixel in
the IR-image of the Kinect, which is internally used to calculate the
depth via time-of-flight. This noise directly affects the depth values
𝛾. There are additional sources of noise depending on several values,
such as incidence angle, material, distance, sensor artifacts, interference
with other sensors or illumination sources, among others. Due to these
unpredictable factors, the uncertainty 𝑝(𝛾) for each depth value cannot be
modeled exactly. However, given the range to the sensor 𝛾, and 𝜃 being
the angle between line of sight and normal to the intersecting surface,
[16] found an approximate formula for the depth variance

𝜎2
𝛾 =

(︂
1500− 500𝛾 + 300𝛾2 + 100𝛾

3
2

𝜃2

( 𝜋
2 − 𝜃)2

)︂2

.

As we do not exactly know the incidence angle, we approximate it con-
servatively with 𝜃 ≈ 𝜋

3 . In a similar way to the depth, we conservatively
approximate the distributions 𝑝(𝑢) and 𝑝(𝑣) according to [154]. Assum-
ing pixel positions generally to be very accurate and the noise to be
uncorrelated, we model uniform distributions between adjacent pixels
with means �̂�, 𝑣, and variances 𝜎2

𝑢 = 𝜎2
𝑣 = 1

3 .
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Propagating the Uncertainty Let the means for depth and pixel posi-
tions be directly taken from the values [�̂�, 𝑣, 𝛾]T provided by the sensor.
The propagation then requires two steps. First, 𝜎2

𝛾 together with the
uncertainties 𝜎2

𝑢, 𝜎2
𝑣 are propagated through the deterministic model

(5.1) to calculate a covariance matrix for [𝑦1, 𝑦2, 𝑦3]T. In particular, we
are looking for the individual components of the covariance matrix

C𝑣 =

⎡⎣Var{𝑦1} Cov{𝑦1, 𝑦2} Cov{𝑦1, 𝑦3}
Cov{𝑦1, 𝑦2} Var{𝑦2} Cov{𝑦2, 𝑦3}
Cov{𝑦1, 𝑦3} Cov{𝑦2, 𝑦3} Var{𝑦3}

⎤⎦ . (5.2)

Second, by means of moment matching, we obtain the desired Gaussian
distribution 𝑝(𝑣).

Let us start with the propagation. Please note that we assume 𝑢, 𝑣, and
𝛾 to be mutually independent, i.e., their covariances are 0. According to
the deterministic pinhole model (5.1) the variances of 𝑦1 and 𝑦2 are

Var{𝑦1} = Var
{︂

𝑢− 𝑐𝑢

𝑓𝑢
· 𝛾
}︂

=
(�̂�− 𝑐𝑢)2𝜎2

𝛾 + 𝛾2𝜎2
𝑢 + 𝜎2

𝛾𝜎2
𝑢

𝑓2
𝑢

,

Var{𝑦2} =
(𝑣 − 𝑐𝑣)2𝜎2

𝛾 + 𝛾2𝜎2
𝑣 + 𝜎2

𝛾𝜎2
𝑣

𝑓2
𝑣

,

respectively, where we exploit the fact that Var{𝐴 ·𝐵} can be written as
E{𝐴}2 ·Var{𝐵}+ E{𝐵}2 ·Var{𝐴}+ Var{𝐴} ·Var{𝐵}. The variance of
𝑦3 simply is given by Var{𝑦3} = 𝜎2

𝛾 . For the covariance between 𝑦1 and
𝑦2, we obtain

Cov{𝑦1, 𝑦2} = Cov
{︂

𝑢− 𝑐𝑢

𝑓𝑢
· 𝛾,

𝑣 − 𝑐𝑣

𝑓𝑣
· 𝛾
}︂

= �̂�− 𝑐𝑢

𝑓𝑢
· 𝑣 − 𝑐𝑣

𝑓𝑣
𝜎2

𝛾 ,
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where we use the relationship Cov{𝐴 ·𝐵, 𝐶 ·𝐵} = E{𝐴} ·E{𝐶} ·Var{𝐵}
for 𝐴, 𝐵, 𝐶 being mutually independent. The remaining covariances can
be calculated according to

Cov{𝑦1, 𝑦3} = Cov
{︂

𝑢− 𝑐𝑢

𝑓𝑢
· 𝛾, 𝛾

}︂
= �̂�− 𝑐𝑢

𝑓𝑢
𝜎2

𝛾 ,

Cov{𝑦2, 𝑦3} = 𝑣 − 𝑐𝑣

𝑓𝑣
𝜎2

𝛾 ,

exploiting that Cov{𝐴 ·𝐵, 𝐵} = E{𝐴} ·Var{𝐵} for 𝐴, 𝐵 being mutually
independent. These terms specify the covariance matrix (5.2) for the
point 𝑦. By interpreting C𝑣𝑖 as the covariance matrices of the Gaussian
random variables 𝑣𝑖 ∼ 𝒩 (0, C𝑣𝑖

) for each individual point of the cloud,
we finally arrive at the desired sensor model. Typically, the individual
variances lie in the magnitude of 10−4 m. Using this sensor model, we
can proceed with evaluating the tracking algorithms.

5.3 Practical Evaluation

In this section, we first consider tracking a lightsaber, which is used by
a person, and, subsequently, we look at tracking the pose and shape
of a box while it is thrown. By means of these examples, we discuss
the properties of the proposed tracking approach and compare it to
the traditional tracking approach based on the iterative closest point
algorithm [17] which is included in the Point Cloud Library [30].

155



Chapter 5. Evaluation in a Multi-Kinect Network

Figure 5.4.: Lightsaber scene.

5.3.1 Tracking a Lightsaber

In the first experiment, we consider the task of tracking a moving
lightsaber. In Figure 5.4, selected frames of the captured 2.5 s sequence
are overlaid, in order to illustrate the motion. For the tracking experi-
ment, we assume the lightsaber to be an instance of a line segment whose
pose and length we are interested in.

Preprocessing For extracting point clouds of the lightsaber from the
depth images, we create a binary mask for each depth image based on
clipping planes. In this mask, “1”-values mark all pixels that originate
from points inside the tracking volume while “0”-values mark irrelevant
pixels. The segmentation procedure then finds connected 1-clusters in
the mask, where each cluster is a candidate to either originate from (i)
the target object, (ii) the person, or (iii) clutter. In order to identify
the desired clusters, we can exploit that the position variance of the
lightsaber clusters should be very high in one dimension (along its axis)
and very low in the remaining two dimensions. Thus, we apply a principal
component analysis (PCA) on each cluster and only keep clusters whose
maximum variance value is 50 times higher than the second highest
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Figure 5.5.: Selected point cloud measurements of the lightsaber. Colors indicate
the correspondence of measurements to the respective sensor.

value. From the extracted point clouds, up to 200 points (depending
on the total amount) are randomly selected and serve as input for the
tracking algorithms. Point cloud measurements for selected time steps
are visualized in Figure 5.5. It can be seen that the sensor network is
necessary in this tracking experiment as none of the sensors can observe
the object throughout the entire sequence.

Tracking Algorithms For evaluation, we consider two tracking algo-
rithms.

∙ Proposed Approach: Following the studies in Section 4.5.1, we
would propose to design a tracking algorithm based on a symmetric
SDM together with an EKF, in order to allow for length estimation.
However, as it often happens that measurements only originate
from a small and unpredictable fraction of the object, exclusively
using an SDM would fail [156]. To alleviate this issue, we switch
to a GAM after the first 10 measurement updates. In both cases,
the state vector consists of the saber pose and length, as well as
parameters for the first order derivatives (velocity) of the pose
parameters. Between the measurement update steps we apply
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prediction steps according to a constant velocity model and the
elapsed real time. The covariance matrix for the process noise is set
to a diagonal matrix with 10−8 · I for position, 10−9 · I for rotation,
10−4 for length, and 10−6 · I (and 10−7 · I) for the derivatives of the
position (and rotation). For the measurement noise, we incorporate
the probabilistic sensor model from Section 5.2.

∙ Iterative Closest Point: The traditional tracking approach for
the considered scenario is applying ICP, which estimates pose trans-
formations between one point cloud to another one. In particular,
we use a publicly available MATLAB implementation [127], which
is similar to the one used in the Point Cloud Library [30]. In order
to set up ICP together with the point clouds from different sensors,
we apply the following modification. First, for each sensor, the
most recently measured point cloud is stored. Then, when a new
point cloud is measured, ICP is performed with the point cloud of
the corresponding sensor. Finally, (i) the previously stored point
cloud from the “active” sensor is replaced by the new one, and (ii),
the estimated pose transformation is applied to all point clouds
in the “inactive” sensors. It is important to note that ICP does
not support length estimation out of the box, and applying it to
each measured point cloud individually would fail, as the point
clouds often originate only from a fraction of the lightsaber. In
consequence, we only consider pose estimates for this approach.

Initialization For the proposed approach, the initial state is set to a
line segment according to the following procedure. The center is set to
the mean of the first measured point cloud. The axis is derived as the
direction of the highest variance of the initial measurements using a PCA.
Finally the length of the segment is set to the maximum distance of the
points along the axis. The initial state covariance is set to a diagonal
matrix of 10−8 · I. For the ICP algorithm, the initial pose is set in the
same way, except for the length parameter (length is not estimated by the
ICP approach) and the state covariance matrix, which are not required.
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(a) Estimated trajectory. (b) Estimated line segments from the
proposed approach.

Figure 5.6.: Estimation result in a 3D visualization.

Results The estimation result is illustrated in Figure 5.6 for both ap-
proaches. When comparing the estimated trajectories in Figure 5.6a, it
can be seen that the one obtained by the proposed approach is much
smoother. This is due to the fact that the ICP-based tracking algorithm
tries to find transformations between succeeding point cloud measure-
ments. However, it sometimes occurs that these point clouds originate
from different parts of the object, even for a single sensor. In these
situations, the ICP approach incorrectly assumes a heavy motion of the
object which results in a spike in the trajectory. Instead, the proposed
approach relies on a geometric model of the object, which can compensate
for the missing measurements. Figure 5.6b visualizes the estimated object
pose together with its geometry for selected time steps. It is interesting
to compare these estimates with the measurements in Figure 5.5. In
particular, at the end of the maneuver, when there is a period of time
without any measurements, the proposed approach is still capable of
extrapolating the trajectory using the estimated motion parameters.

Finally, in Figure 5.7, the estimated lightsaber is superimposed on the
frames of one Kinect. In particular, we consider the blue colored sensor
from Figure 5.5. By means of the image sequence, it can be verified that
the proposed tracking approach produces very accurate estimates. This
result is extraordinary as it is obtained by using a simple EKF.
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(a) 0 s (b) 0.33 s (c) 0.67 s (d) 1 s

(e) 1.33 s (f) 1.67 s (g) 2 s (h) 2.33 s

Figure 5.7.: Estimates projected on the frames of one Kinect for selected time steps.
Black holes indicate parts of the scene which cannot be observed by
the depth camera.

5.3.2 Tracking a Thrown Box

In the second experiment, we consider the task of tracking a box while
it is thrown in the air. In Figure 5.8, frames of the captured 0.75 s
sequence are overlaid for selected time steps, in order to illustrate the
trajectory. As can be seen from the figure, the box rotates while it follows
the parabolic path. For the tracking experiment, we intentionally do not
want to incorporate any prior information about the object pose and
shape (except from its symmetry).

Preprocessing For extracting the box point clouds from each Kinect, we
again create a binary mask for each depth image based on clipping planes.
In this mask “1”-values mark all pixels that originate from inside the
tracking volume and “0”-values to the rest. The segmentation procedure
is easier than for the lightsaber, as there is no person in the tracking
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Figure 5.8.: “Thrown box” scene.

volume. Thus, it is sufficient to identify the biggest connected 1-cluster in
the mask and assume it to correspond to the object. From the extracted
point clouds, up to 200 points (depending on the total amount) are
randomly selected and serve as input for the tracking algorithms. Point
cloud measurements for selected time steps are visualized in Figure 5.9.

Tracking Algorithms We again consider two tracking algorithms.

∙ Proposed Approach: According to Section 4.5.2 we model the
object using a symmetric 3DRHM-GAM for a star-convex extruded
curve. For estimation, we use a PGF. The state to be estimated
consists of the object pose, height, 5 Fourier-coefficients for the star-
convex curve, as well as parameters for the first order derivatives
(velocity) of the pose parameters. For the curve, we incorporate
knowledge about its 2-axial symmetry. Between the measurement
update steps, we again apply prediction steps according to a con-
stant velocity model.
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Figure 5.9.: Selected point cloud measurements of the moving box. Colors indicate
the correspondence of measurements to the respective sensor.

The covariance matrix of the process noise is set to a diagonal
matrix with a variance of 10−7 · I for position, 10−8 · I for rotation,
10−11 for height, 10−14 · I for the Fourier coefficients, and 10−4 · I
(and 10−5 · I) for the derivatives of the position (and rotation).
For the measurement noise, we again incorporate the probabilistic
sensor model from Section 5.2.

∙ Iterative Closest Point: For the traditional tracking approach we
again use the ICP-based pose tracking approach from the lightsaber
experiment.

Initialization For the proposed approach, the initial state is set to a
cylinder according to the same procedure as used for the line segment. The
center is set to the mean of the initial measurements. The axis is derived
as the direction of the highest variance of the initial measurements using
a PCA. Radius and height are set according to the maximum distance
of points orthogonal and along the cylinder axis. The initial covariance
is set to the diagonal matrix 10−8 · I. The initial pose for ICP is set in
the same way, except for radius and length which are not estimated, and
state covariance matrix, which is again not required.
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Figure 5.10.: Estimated trajectory for both approaches.

Results The estimated trajectories are drawn in Figure 5.10 for both
approaches. At a first glance, the results look quite similar. However, in
the more detailed view in Figure 5.11, it can be seen that the pose esti-
mates of the proposed 3DRHM approach are slightly smoother compared
to the ICP approach. This is due to the fact that the proposed approach
explicitly takes into account the uncertainty of its estimated parameters
which incorporates

∙ a sensor model that assesses the quality of the observed point
clouds,

∙ a motion model that predicts the trajectory, and

∙ a shape model that adapts to the object geometry.

The additional shape estimate is probably the major advantage of the
proposed approach over ICP. The process of estimating the shape can
be seen in Figure 5.12. At the beginning of the toss, the estimated
shape is cylindrical, according to its initialization. Then, as increasingly
more data becomes available, the shape adapts to the cuboid. In total,
our algorithm manages to find the correct shape in less than a second.
The intermediate object estimates are projected on the frames for all
Kinects in Figure 5.13. By comparing these estimates to Figure 5.8, the
correctness of the tracking result can be visually verified.
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(a) 3DRHM position. (b) ICP position.

(c) 3DRHM rotation. (d) ICP rotation.

Figure 5.11.: Position and rotation estimates for both approaches.

(a) 0 ms (b) 173 ms (c) 347 ms (d) 520 ms (e) 707 ms

Figure 5.12.: Respective shape estimates for the time steps shown in Figure 5.13.
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(a) Kinect 1. (b) Kinect 2.

(c) Kinect 3. (d) Kinect 4.

Figure 5.13.: Shape estimates for selected time steps, projected on the colored
depth image of each Kinect. Black holes again indicate parts of the
scene, which cannot be observed by the depth camera.
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In summary, the presented results validate our previous observations
from the box tracking experiment in Section 4.5.2, i.e., that the proposed
approach can adapt to an a priori unknown shape, while symmetry
compensates for missing measurements.

5.4 Conclusions from Chapter 5

In this chapter, we evaluated the proposed tracking algorithm in real-data
tracking experiments. For this purpose, we set up a multi-Kinect network
and derived a probabilistic sensor model to assess the quality of the point
cloud measurements from each sensor. This sensor model describes the
quality of each point measurement by means of its expected value and
covariance matrix expressed as a Gaussian distribution. The experiments
showed the performance of the proposed algorithm. In particular, we
demonstrated that our approach outperforms the traditional ICP-based
approach in terms of accuracy and robustness when tracking a lightsaber
and a box in free fall. For the latter, our approach managed to find
the correct shape in less than a second, despite of its fast motion and
rotation, which is a remarkable result.
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Extended object tracking blurs the boundary between the fields of tra-
ditional shape reconstruction and pose tracking research. In this thesis,
we studied an instance of extended object tracking, where objects with
a priori unknown shape were to be tracked by a network of consumer
3D cameras such as Microsoft Kinect. As a motivation, consider a telep-
resence system where a user needs to naturally interact with the virtual
environment by using arbitrary physical objects from her or his local
environment. Most state-of-the-art tracking approaches for this situation
would either require a polygonal model to be specified in advance, or
apply a version of ICP to the foreground point cloud which, however,
only works with dense measurements and low noise. Instead, we proposed
to simultaneously estimate the shape, pose, and motion parameters of an
object using a flexible geometric model together with a recursive Bayesian
estimator, which allowed us to explicitly incorporate all involved sources
of uncertainty.
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6.1 Summary

We started with a thorough derivation of a likelihood prototype for
extended objects. Evaluating this likelihood was challenging, as the
sensor noise prevents an exact association of the measured points to
their originating sources on the object (Challenge 1). We discussed the
traditional approaches to this association problem, such as modeling
a probability distribution over all potential sources (SDM), or greedily
associating each point to its “closest” point on the boundary (GAM).
However, these approaches were generally biased in situations where
either the assumed source distribution was incorrect, or the noise level
was high.

In order to overcome these drawbacks, we developed a new probabilistic
model called the Partial Information Model (PIM), where the key
idea essentially was to remove the problematic association heuristics.
Specifically, we expressed the measurements in a transformed coordinate
system, which allowed us to specify a probabilistic model for “how well”
the measurements fit to the boundary without explicitly associating them
to measurement sources. An estimator based on the PIM

∙ needs no explicit probability distribution for measurement sources,

∙ is unbiased according to [73],

∙ can deal with anisotropic sensor noise, and

∙ can be used together with a nonlinear Kalman filter.

Using a PIM instead of an SDM or a GAM can reduce the RMSE for
curvature parameters up to a full order of magnitude.

In order to model arbitrary 3D objects flexibly (Challenge 2), we proposed
to construct the surface of an object by translating, rotating and scaling
plane curves, such as a cylinder by translating a circle. When developing
an estimator for line segments being a special case of this construction
method, we encountered that, while the computationally demanding
SDM was capable of finding accurate values for the length, the GAM or
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PIM would fail to do so. We studied the origin of this issue and found
that, in order to estimate parameters which do not have an effect on the
measurement association, we inherently require assumptions about the
probability distribution of measurement sources.

Based on this analysis, we proposed a hybrid probabilistic model for
3D shapes, called the 3D Random Hypersurface Model (3DRHM),
which combines an SDM with PIM or GAM and is closely related to the
homonymous model for 2D region tracking [98]. Specifically, we assumed a
probability for each transformed curve, and ignored (or approximated) the
unknown information of “where” on the curve a measurement corresponds
to. The resulting estimator

∙ is capable of estimating all parameters, including the object length,

∙ has a lower computational complexity than the SDM,

∙ inherits the unbiasedness from the PIM, and

∙ can still be used together with a nonlinear Kalman filter.

We confirmed these properties in the evaluation for a cylinder, torus,
cone, and an extruded star-convex curve. In particular, compared to
a state-of-the-art fitting approach, we could reduce the RMSE in the
curvature parameters by 44%-77% in the presence of high noise.

As an important property, the proposed tracking approach should be
robust against occlusions and missing measurements (Challenge 3), as
these issues are inherent when acquiring point clouds with depth sensors.
In order to deal with this challenge, we proposed to exploit geometric
symmetries of the object to be tracked. As the key observation, we
saw that, under specific conditions, folding measurements into a small
fraction of the original domain according to the object symmetry did not
change the values of the likelihood. Thus, we proposed to specify the
shape exclusively in this non-redundant part of the domain and evaluate
the folded measurements by also using only a small fraction of the shape.
Depending on the specific probabilistic model, object shape, and the
parametrization, our approach allows for

∙ introducing symmetry constraints upon the estimated shape,
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∙ modeling more detailed shapes with fewer parameters,

∙ reducing the overall complexity of the tracking task, and

∙ increasing robustness against occlusion.

Our approach even improves the tracking algorithm for a simple line
segment, making it possible to use a standard extended Kalman filter for
simultaneously estimating its length and pose.

In order to evaluate our tracking approach in real situations, we set up a
sensor network, and conducted several experiments. We considered the
task of tracking a lightsaber used by a person and the task of tracking a
box while it was in free fall. As a remarkable result, our approach managed
to find the box shape in less than a second, despite of its fast motion and
rotation. In summary, the experiments confirmed our theoretic results
and, moreover, showed the practical value of this thesis.

6.2 Outlook

In this thesis, we have addressed fundamental aspects and challenges of
extended object tracking in 3D. Our results form a solid theoretical and
practical platform for further research and developments. These include,
but are not limited to

∙ using higher level sensor information, such as silhouettes, normals
or curvature. As these features must be extracted from neighboring
points, including them is an instance of modeling dependencies
between measurements,

∙ alternatively, explicitly incorporating dependencies between indi-
vidual points on a more general level by using, e.g., random finite
sets [128, 129],

∙ incorporating color or intensity measurements, which may also be
observed by the sensor,

∙ deriving closed-form solutions for the measurement update through
approximation techniques,
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∙ modeling more complex transformations for the 3D shapes. For
instance, the curves could be translated along more general splines,
or could change even their shape,

∙ investigating other approaches for boundary parametrization, which
are known in shape analysis [5]. Using spherical harmonics for
modeling complex shape geometry in 3D [105] would be a promising
approach,

∙ exploring more general types of symmetry, such as repetitions and
patterns,

∙ detecting the number of symmetry axes automatically, for exam-
ple by using an Interacting Multiple Model (IMM) approach [48],
where each model has a different number of symmetry axes and
a probability of being the correct one. An IMM would also be
reasonable for automatically detecting model complexity in the
form of adding and removing shape parameters,

∙ applying the PIM to multi-target tracking tasks by assuming each
target to be a potential measurement source.

Finally, I want to reiterate my thanks to all the people who contributed
to this thesis.
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APPENDIX
A

Approximation of the
Bayes’ Update

A.1 Nonlinear Kalman Filter Update

When the prior knowledge about the state parameters is given as a
Gaussian distribution

𝑝(𝑥) = 𝒩 (𝑥; 𝜇𝑝
𝑥
, C𝑝

𝑥) , (A.1)

and the measurement function (2.3) is nonlinear, the key idea is to
approximate the likelihood by the Gaussian

𝑝(𝑦|𝑥) ≈ 𝒩 (𝑦; 𝜇
𝑦|𝑥, C𝑦|𝑥) , (A.2)

where 𝜇
𝑦|𝑥 and C𝑦|𝑥 are mean and covariance matrix of the measurement

function 𝑦 = ℎ(𝑥, 𝑣) for a given state 𝑥 with respect to 𝑣. Note that for
𝑛 measurements 𝑦1, . . . , 𝑦

𝑛
, we obtain

𝑝(𝑦1, . . . , 𝑦
𝑛
|𝑥) =

𝑛∏︁
𝑖=1

𝑝(𝑦
𝑖
|𝑥) (A.3)

≈ 𝒩 (𝑌 ; 𝜇
𝑌 |𝑥, C𝑌 |𝑥)
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with 𝑌 = [𝑦T
1 , . . . , 𝑦T

𝑛
]T being the measurements stacked as a vector.

Note that (A.2) and (A.3) are also functions of the parameters 𝑥.

Then, given a set of measurements, a nonlinear Kalman filter update
can be calculated according to the following procedure. We assume that
the joint distribution 𝑝(𝑥, 𝑌 ) = 𝑝(𝑦1, . . . , 𝑦

𝑛
|𝑥) · 𝑝(𝑥) is Gaussian, which

lets us obtain the Gaussian posterior distribution 𝑝(𝑥|𝑌 ) = 𝒩 (𝑥; 𝜇
𝑥
, C𝑥).

The moments of this posterior distribution can be calculated according
to the Kalman filter formulas

𝜇
𝑥

= 𝜇𝑝
𝑥

+ K(𝑌 − 𝜇
𝑌

) , (A.4)

C𝑥 = C𝑝
𝑥 −KC𝑌 KT ,

with K = C𝑥𝑌 C−1
𝑌 being denoted as the Kalman gain. The basic

algorithm for the nonlinear Kalman filter update is summarized in Al-
gorithm A.1. There are several techniques to calculate the terms in

Algorithm A.1 Bayes’ update using a nonlinear Kalman filter.
Input: prior distribution of state 𝑝(𝑥) according to (A.1) and measure-

ments 𝑦1, . . . , 𝑦
𝑛

Output: posterior distribution of state 𝑝(𝑥|𝑦1, . . . , 𝑦
𝑛
)

1: calculate mean 𝜇
𝑌

, covariance matrix C𝑌 and cross-covariance
matrix C𝑥𝑌 ;

2: calculate posterior mean 𝜇
𝑥

and covariance C𝑥 according to (A.4)
3: return 𝑝(𝑥|𝑦1, . . . , 𝑦

𝑛
) = 𝒩 (𝑥; 𝜇

𝑥
, C𝑥)

Line 1, ranging from analytic propagation of the state and measurement
uncertainty through ℎ(𝑥, 𝑣) [130], over explicit linearization [131], up to
implicit sampling-based linearization techniques [92, 93].
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A.2 Particle Filter Update

If the prior distribution 𝑝(𝑥) over the state parameters is not necessarily
Gaussian, a particle filter update [132] for 𝑦1, . . . , 𝑦

𝑛
can be calculated

according to the following procedure. The key idea is to approximate
𝑝(𝑥) as a set of particles 𝑥1, . . . , 𝑥𝑀 in the form of

𝑝(𝑥) ≈
𝑀∑︁

𝑚=1
𝛽𝑚 · 𝛿(𝑥− 𝑥𝑚) , (A.5)

where each particle is weighted by a scalar 𝛽𝑚 ∈ [0, 1]. Then, the
posterior distribution 𝑝(𝑥|𝑦1, . . . , 𝑦

𝑛
) can be calculated according to the

Bayes’ update from (2.1)

𝑝(𝑥|𝑦1, . . . , 𝑦
𝑛
) ≈

𝑀∑︁
𝑚=1

𝛽𝑚 · 𝑝(𝑦1, . . . , 𝑦
𝑛
|𝑥𝑚) · 𝛿(𝑥− 𝑥𝑚) . (A.6)

The very basic algorithm for the particle filter update is summarized in
Algorithm A.2. Note that there are approaches that incorporate more

Algorithm A.2 Bayes’ update using a particle filter.
Input: prior distribution of state 𝑝(𝑥) and measurements 𝑦1, . . . , 𝑦

𝑛
Output: posterior distribution of state 𝑝(𝑥|𝑦1, . . . , 𝑦

𝑛
)

1: represent prior distribution 𝑝(𝑥) by particles in the form of (A.5);
2: calculate posterior distribution 𝑝(𝑥|𝑦1, . . . , 𝑦

𝑛
) according to (A.6);

3: return 𝑝(𝑥|𝑦1, . . . , 𝑦
𝑛
);

sophisticated techniques such as advanced resampling techniques [133],
or progressive updates [97, 134, 135], to name only a few. Nevertheless,
particle filters typically require an exponentially increasing number of
particles with respect to the state dimension 𝐷. A thorough overview
and discussion on particle filter techniques is given in [136, 137].
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