94 research outputs found

    Object-based Urban Building Footprint Extraction and 3D Building Reconstruction from Airborne LiDAR Data

    Get PDF
    Buildings play an essential role in urban intra-construction, urban planning, climate studies and disaster management. The precise knowledge of buildings not only serves as a primary source for interpreting complex urban characteristics, but also provides decision makers with more realistic and multidimensional scenarios for urban management. In this thesis, the 2D extraction and 3D reconstruction methods are proposed to map and visualize urban buildings. Chapter 2 presents an object-based method for extraction of building footprints using LiDAR derived NDTI (Normalized Difference Tree Index) and intensity data. The overall accuracy of 94.0% and commission error of 6.3% in building extraction is achieved with the Kappa of 0.84. Chapter 3 presents a GIS-based 3D building reconstruction method. The results indicate that the method is effective for generating 3D building models. The 91.4% completeness of roof plane identification is achieved, and the overall accuracy of the flat and pitched roof plane classification is 88.81%, with the user’s accuracy of the flat roof plane 97.75% and pitched roof plane 100%

    2D and 3D surface image processing algorithms and their applications

    Get PDF
    This doctoral dissertation work aims to develop algorithms for 2D image segmentation application of solar filament disappearance detection, 3D mesh simplification, and 3D image warping in pre-surgery simulation. Filament area detection in solar images is an image segmentation problem. A thresholding and region growing combined method is proposed and applied in this application. Based on the filament area detection results, filament disappearances are reported in real time. The solar images in 1999 are processed with this proposed system and three statistical results of filaments are presented. 3D images can be obtained by passive and active range sensing. An image registration process finds the transformation between each pair of range views. To model an object, a common reference frame in which all views can be transformed must be defined. After the registration, the range views should be integrated into a non-redundant model. Optimization is necessary to obtain a complete 3D model. One single surface representation can better fit to the data. It may be further simplified for rendering, storing and transmitting efficiently, or the representation can be converted to some other formats. This work proposes an efficient algorithm for solving the mesh simplification problem, approximating an arbitrary mesh by a simplified mesh. The algorithm uses Root Mean Square distance error metric to decide the facet curvature. Two vertices of one edge and the surrounding vertices decide the average plane. The simplification results are excellent and the computation speed is fast. The algorithm is compared with six other major simplification algorithms. Image morphing is used for all methods that gradually and continuously deform a source image into a target image, while producing the in-between models. Image warping is a continuous deformation of a: graphical object. A morphing process is usually composed of warping and interpolation. This work develops a direct-manipulation-of-free-form-deformation-based method and application for pre-surgical planning. The developed user interface provides a friendly interactive tool in the plastic surgery. Nose augmentation surgery is presented as an example. Displacement vector and lattices resulting in different resolution are used to obtain various deformation results. During the deformation, the volume change of the model is also considered based on a simplified skin-muscle model

    Correspondence of three-dimensional objects

    Get PDF
    First many thanks go to Prof. Hans du Buf, for his supervision based on his experience, for providing a stimulating and cheerful research environment in his laboratory, for letting me participate in the projects that produced results for papers, thus made me more aware of the state of the art in Computer Vision, especially in the area of 3D recognition. Also for his encouraging support and his way to always nd time for discussions, and last but not the least for the cooking recipes... Many thanks go also to my laboratory fellows, to Jo~ao Rodrigues, who invited me to participate in FCT and QREN projects, Jaime Carvalho Martins and Miguel Farrajota, for discussing scienti c and technical problems, but also almost all problems in the world. To all persons, that worked in, or visited the Vision Laboratory, especially those with whom I have worked with, almost on a daily basis. A special thanks to the Instituto Superior de Engenharia at UAlg and my colleagues at the Department of Electrical Engineering, for allowing me to suspend lectures in order to be present at conferences. To my family, my wife and my kids

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF

    Integrating Shape-from-Shading & Stereopsis

    Get PDF

    From small to large baseline multiview stereo : dealing with blur, clutter and occlusions

    Get PDF
    This thesis addresses the problem of reconstructing the three-dimensional (3D) digital model of a scene from a collection of two-dimensional (2D) images taken from it. To address this fundamental computer vision problem, we propose three algorithms. They are the main contributions of this thesis. First, we solve multiview stereo with the o -axis aperture camera. This system has a very small baseline as images are captured from viewpoints close to each other. The key idea is to change the size or the 3D location of the aperture of the camera so as to extract selected portions of the scene. Our imaging model takes both defocus and stereo information into account and allows to solve shape reconstruction and image restoration in one go. The o -axis aperture camera can be used in a small-scale space where the camera motion is constrained by the surrounding environment, such as in 3D endoscopy. Second, to solve multiview stereo with large baseline, we present a framework that poses the problem of recovering a 3D surface in the scene as a regularized minimal partition problem of a visibility function. The formulation is convex and hence guarantees that the solution converges to the global minimum. Our formulation is robust to view-varying extensive occlusions, clutter and image noise. At any stage during the estimation process the method does not rely on the visual hull, 2D silhouettes, approximate depth maps, or knowing which views are dependent(i.e., overlapping) and which are independent( i.e., non overlapping). Furthermore, the degenerate solution, the null surface, is not included as a global solution in this formulation. One limitation of this algorithm is that its computation complexity grows with the number of views that we combine simultaneously. To address this limitation, we propose a third formulation. In this formulation, the visibility functions are integrated within a narrow band around the estimated surface by setting weights to each point along optical rays. This thesis presents technical descriptions for each algorithm and detailed analyses to show how these algorithms improve existing reconstruction techniques

    Modelling appearance and geometry from images

    Get PDF
    Acquisition of realistic and relightable 3D models of large outdoor structures, such as buildings, requires the modelling of detailed geometry and visual appearance. Recovering these material characteristics can be very time consuming and needs specially dedicated equipment. Alternatively, surface detail can be conveyed by textures recovered from images, whose appearance is only valid under the originally photographed viewing and lighting conditions. Methods to easily capture locally detailed geometry, such as cracks in stone walls, and visual appearance require control of lighting conditions, which are usually restricted to small portions of surfaces captured at close range.This thesis investigates the acquisition of high-quality models from images, using simple photographic equipment and modest user intervention. The main focus of this investigation is on approximating detailed local depth information and visual appearance, obtained using a new image-based approach, and combining this with gross-scale 3D geometry. This is achieved by capturing these surface characteristics in small accessible regions and transferring them to the complete façade. This approach yields high-quality models, imparting the illusion of measured reflectance. In this thesis, we first present two novel algorithms for surface detail and visual appearance transfer, where these material properties are captured for small exemplars, using an image-based technique. Second, we develop an interactive solution to solve the problems of performing the transfer over both a large change in scale and to the different materials contained in a complete façade. Aiming to completely automate this process, a novel algorithm to differentiate between materials in the façade and associate them with the correct exemplars is introduced with promising results. Third, we present a new method for texture reconstruction from multiple images that optimises texture quality, by choosing the best view for every point and minimising seams. Material properties are transferred from the exemplars to the texture map, approximating reflectance and meso-structure. The combination of these techniques results in a complete working system capable of producing realistic relightable models of full building façades, containing high-resolution geometry and plausible visual appearance.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore