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Abstract 

Buildings play an essential role in urban intra-construction, urban planning, climate studies 

and disaster management. The precise knowledge of buildings not only serves as a primary 

source for interpreting complex urban characteristics, but also provides decision makers with 

more realistic and multidimensional scenarios for urban management. In this thesis, the 2D 

extraction and 3D reconstruction methods are proposed to map and visualize urban buildings. 

Chapter 2 presents an object-based method for extraction of building footprints using LiDAR 

derived NDTI (Normalized Difference Tree Index) and intensity data. The overall accuracy 

of 94.0% and commission error of 6.3% in building extraction is achieved with the Kappa of 

0.84. Chapter 3 presents a GIS-based 3D building reconstruction method. The results indicate 

that the method is effective for generating 3D building models. The 91.4% completeness of 

roof plane identification is achieved, and the overall accuracy of the flat and pitched roof 

plane classification is 88.8%, with the user’s accuracy of the flat roof plane 97.8% and 

pitched roof plane 100%. 
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Chapter 1  

1 Introduction 

1.1 Research Context 

Building footprints and three-dimensional (3D) building models have become one of the 

essential components in various scientific and engineering applications, such as urban 

development, urban planning and urban climate (Meng et al., 2009).Though part of the 

following paragraphs is repeated in Chapters 2 and 3, the importance of mapping and 

visualizing buildings in urban environments should not be overlooked.  

Building footprints serve as one of the fundamental Geographic information System (GIS) 

data that can be used to estimate energy demand, quality of life, urban population, 

property taxes (Jensen, 2000) and generate 3D building models for visualization (Zhang 

et al., 2006). The 3D building models can be applied to digital city visualization, 

landscape modeling, virtual tourism information systems and wireless telecommunication 

(Zhang et al., 2009; Elberink and Vosselman, 2011; Kabolizade et al., 2012). 

Environmental protection and planning, microclimate study such as urban heat island 

effect and rain-runoff modeling (Davis, 2005; Miliaresis and Kokkas, 2007) or 

emergency response such as earthquake damage assessment (Kim and Shan, 2011) all 

require high accuracy 3D building models, considering the raising standards and the 

improvement of complex prediction systems. The precise knowledge of building 

footprint and 3D building models can be applied as primary sources for interpreting 

complex urban characteristics, and  provide regional planners with more realistic and 

multidimensional scenarios for urban management (Zhou et al., 2009). 

High resolution optical images (e.g. aerial photos, QuickBird, IKONOS, WorldView) 

have been and still are one of the preferred data sources to obtain 2D and 3D building 

information(Zhou and Troy, 2008). High quality images with resolution finer than 5 

meters offer good opportunities for building information extraction (Shufelt and 

Mckeown, 1993; Strassopolou et al., 2000; Lee et al., 2003; Aldred and Wang, 2011). 

However, the success of building footprint extraction methods can be largely limited due 



 

2 

 

to inadequate image understanding, sun shadows, relief displacement and occlusion effect 

presented in optical images which are without height information (Zhou and Troy, 2008; 

Meng et al., 2009, Wang et al., 2011). 

Recently-developed airborne Light Detection And Ranging (LiDAR) technology 

provides a very promising alternative for building footprint measurement and 3D 

building modeling. LiDAR directly collects an accurately georeferenced set of dense 

point clouds by recording reflected laser beams emitted by the sensor. Elevation and the 

amplitude of the reflected energy are both stored to represent three-dimensional objects 

on the Earth surface (Shan and Toth, 2009). Compared with other data sources, LiDAR 

measurements are not only free from sun shadows, relief displacement and occlusion 

effect, but also offer several advantages such as fast data acquisition, high point density, 

strong capability of measuring both height and planimetric location and canopy 

penetration (Zhang et al., 2006; Beraldin et al., 2010). Though the cost of acquiring 

LiDAR data was quite high in the past, prices have dropped and image acquisition for 

research purposes has become affordable in recent years. 

Two types of approaches are utilized to identify building footprints from LiDAR data in 

previous studies. One is to separate the buildings, trees, roads, grass and other land-use 

types from LiDAR data simultaneously. Pixel-based classifications (e.g. Maximum 

likelihood) are mostly seen in this category (Song et al., 2002; Arefi and Hahn, 2005; El-

Ashmawy et al., 2011). Nevertheless, these pixel-based methods are not efficient for high 

resolution images, in which objects are represented by many pixels instead of mixed ones 

(Blaschke, 2010). The more commonly used way is to separate the ground from non-

ground LiDAR measurements first and then identify buildings from non-ground 

measurements. The initial separation of the ground and non-ground measurements can be 

achieved by classifying ground points using morphological filters (Weidner, 1997; 

Morgan and Tempfli, 2000) and surface-based filters (also known as robust interpolation) 

(Rottensteiner, 2002). The critical step is to classify building and tree objects that 

dominate non-ground measurements (Zhang et al., 2006). Thresholding (Brunn and 

Weidner, 1997), morphological filters (Morgan and Tempfli, 2000; Goodwin et al., 2009), 

texture analysis (Rottensteiner, 2003; Ma, 2005) and the plane-fitting method (Zhang et 
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al., 2006) have been mostly applied in previous studies. However, not all trees are 

detected since some dense tree canopies can be as smooth as topographic surfaces or roof 

patches, which lack textural patterns. Though object-based algorithm has been applied in 

several studies (Brennan and Webster, 2006; Huang et al., 2008), the efficiency of object-

based classification in the differentiation between buildings and trees as well as building 

extraction in more complex urban environments should be examined. 

The building footprints can be later used as the input data for constructing 3D building 

models. Traditionally, 3D building models can be directly built by manual interpretation 

and hand-drawing using high resolution imagery and auxiliary information such as 

building heights. Though the accuracy of the derived building models can be very high, it 

is excessively time-consuming and costly. Currently most reported LiDAR-based 3D 

building reconstruction approaches use an automatic or semi-automatic strategy of 

detecting planar facets for the determination of building primitives. The core step is to 

segment LiDAR data or building reference data into segments representing single planar 

facets. Various methods have been applied, including region growing (Rottensteiner, 

2003), gradient orientation (Forlani et al., 2006), Hough transform (Vosselman and 

Dijkman, 2001) and RANSAC (RANdomSAmple Consensus) (Tarsha-Kurdi et al., 2007). 

However, there are some aspects to be improved such as efficiently detecting the 

disconnection of segmented roofs and locating jump edges of rooftops (Kim and Shan, 

2011). Additionally, these approaches always need the assistance of a building’s 

dominant orientation to determine roof primitives and edge directions. Though the 

aforementioned difficulties can be avoided by directly extracting the building edges 

within building footprints without segmenting roof planar facets, few studies can identify 

roof edges from LiDAR data without the assistance of other data sources such as 2D 

maps and aerial images. 

1.2 Research Objectives 

The main objectives of this research are to present effective methods for building 

footprint extraction and 3D building reconstruction, to describe the new techniques and to 

evaluate their effectiveness for improving building extraction and reconstruction. Specific 

questions regarding the research are presented as follows: 
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1. How accurately can building footprints be classified using an object-based 

method from LiDAR data in the complex urban environment? 

2. What object-based parameters are effective for building footprint extraction 

based on LiDAR data? 

3. Can 3D building models be identified and reconstructed from LiDAR data using 

GIS techniques? 

4. What performance can GIS-based rooftop faces identification achieve? 

The main objectives of this study are as follows: 

1. To develop an object-based classification method based on the LiDAR elevation 

and intensity data to extract locations and boundaries of building footprints in a 

complex urban environment; to find effective parameters for building 

classification and examine their roles in the object-based method; to examine a 

best combination of rules for object-based classification that can be effectively 

used in building footprint extraction, and to evaluate the accuracy of the 

proposed method. 

2. To develop a reconstruction method of 3D building models from LiDAR data 

using GIS techniques, to find a strategy of detecting and processing the edges 

within building boundaries and classifying the roof shape types, and to assess the 

performance of the edge detection and roof shape classification. 

1.3 Study Area 

The study area for Chapter 2 and Chapter 3 is the campus of the University of Western 

Ontario (Figure 1.1, in red), which is located in London, Ontario, Canada (Figure 1.1, in 

black). The LiDAR data used for the two chapters are provided by the University of 

Western Ontario and the Applied Geomatics Research Group, Center of Geographic 

Sciences, Nova Scotia Community College (NSCC). The LiDAR data cover the Medway 

Creek region of North London (Figure 1.1, in green). More detailed information about the 
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study area can be found in the “Data Acquisition and Study area” sections of Chapter 2 

and Chapter 3. 

 

Figure 1.1 Study area 

1.4 Background 

1.4.1 LiDAR 

LiDAR (Light Detection and Ranging) is an active remote sensing technique that has 

gained popularity since the 1990s. Unlike the commonly-used multispectral optical 

sensors, which take a snap-shot from a certain angle, LiDAR measurements are free from 

sun shadows, relief displacement and occlusion effect (Zhang et al. 2006). The general 

principle of LiDAR is summarized in Figure 1.2. A LiDAR sensor emits a laser beam to 

the target, the remaining energy of the laser, after interactions with the Earth surface, 

reflects back to the sensor. The time traveled during the process is recorded. The 

elevation of target objects can be calculated if the speed of laser and the aircraft altitude 

are both known. Simultaneously the amplitude of reflected energy is recorded as intensity 

data. Therefore, elevation and reflected intensity information are both stored in LiDAR to 
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Figure 1.2 The principle of LiDAR 

Another promising characteristic of LiDAR is the ability of recording multiple returns 
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with at least 1 point / m
2
, 

even capable of recording more than 40 points within 1 m
2
. 

 

ability of recording multiple returns 

ground and objects above the 



 

7 

 

ground at the same location. In a tall vegetation area, the gaps between tree canopies 

allow the laser to penetrate trees to some extent and record additional returns at lower 

elevations (e.g. second return, third return) (Goodwin, et al., 2009). In the ideal situation, 

the laser can reach the ground and record the last return at surface elevation. Usually 

there are up to 5 returns in LiDAR data. This multiple-return mechanism is suitable for 

generating a terrain model and distinguishing buildings from trees.  

The LiDAR point clouds can be interpolated as raster data for further processing. In most 

cases, the DSM (Digital Surface Model) represents the elevation of the earth's surface 

and includes all objects on it. In contrast to DSM, DTM (Digital Terrain Model) 

represents the elevation of bare ground surface with all objects like tall vegetation and 

buildings removed. The difference model of a DSM and a DTM is called nDSM 

(Normalized Digital Surface Model), which is a representation of the heights of objects 

on a plane surface (Shan and Toth, 2009). The raw LiDAR point clouds can be separated 

into “ground” and “non-ground” targets and the ground points are used to construct DTM. 

The DSM is usually interpolated from first return point clouds, and the nDSM is 

generated by subtracting DTM from DSM (Figure 1.3). By generating nDSM, the terrain 

effect is eliminated so that the elevation in the nDSM can represent the heights of objects 

on the plane surface. 

 

Figure 1.3 Concepts of DSM, DTM and nDSM 
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Specifically, the LiDAR data used in this research was acquired by the Optech ALTM 

3100 sensor. The airborne LiDAR data were collected over the Medway Creek of London 

region on May 20th of 2006. The survey was operated at 1000 m above ground level with 

a mirror scanning rate of 39 Hz and a laser frequency of 70 kHz. This sensor is capable of 

recording the first, second, third and last returns and intensity data. There are in total 15 

stripes with 710-750 meters in width consisting of the entire scene. The overlap 

percentage of those stripes is around 50%. The point density of LiDAR is 1 point / m
2
. 

The aircraft was equipped with an inertial measurement unit (IMU) and high-precision 

global positioning system (GPS) used to locate and orient the laser returns in three-

dimensional space (Shan and Toth, 2009). All LiDAR point coordinates and elevations 

are in the UTM Zone 17 coordinate system relative to the NAD83 datum. 

1.4.2 Object-based classification 

A detailed introduction of object-based classification is merited here since Chapter 2 uses 

object-based classification for building footprint extraction. The proposed method is 

performed in the Definiens’s proprietary eCognition 8.0™ software. The general steps of 

object-based classification include image segmentation and classification. There are 

mainly two approaches in the classification stage, one is nearest neighbor classification, 

and the other is rule-based classification, which is used in this study and introduced in the 

following sections. 

1.4.2.1 Image segmentation 

Rather than classifying individual pixels into discrete cover types, Object-based 

classification first segments imagery into small meaningful objects, which are the basic 

units in the classification (Figure 1.4). An effective segmentation is one in which image 

objects are large enough to have meaningful geometric or spectral values, but small 

enough to represent only one class (Lillesand et al., 2008). 
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Figure 1.4 Image before and after segmentation. Left: image before segmentation; 

Right: image after segmentation 

Image objects start as single pixels, and neighboring pixels are merged together when the 

increases in heterogeneity of objects are less than a user-defined threshold of 

heterogeneity usually referred to as a scale parameter (Frauman and Wolff, 2005). 

Generally, the scale parameter is used to determine the maximum allowed heterogeneity 

for the resulting image objects. For heterogeneous areas, the resulting objects for a given 

scale parameter will be smaller than that in more homogeneous areas. By modifying the 

value of the scale parameter, the size of image objects can be varied as well (Definiens, 

2010). An illustration of how scale parameters affect the size of segmented objects is 

shown in Figure 1.5. 

 

Figure 1.5 Illustration of the relationship between the scale parameter and the size 

of segmented objects. Left: scale parameter = 5; Right: scale parameter = 20 
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Segmentation is complete when the increase in heterogeneity created by any remaining 

merger exceeds the threshold. This heterogeneity threshold (H) is calculated using a 

weighted combination of both spectral (color) and spatial (compactness and border 

smoothness) characteristics. The following equations are proposed in Baatz and Schape, 

2000 and Baatz et al., 2001, the combination of the criteria is shown as follows: 

H = w����� ∙ h����� + �1 −w������ ∙ h�����                             (1) 

where w�����  is user-defined weight for color parameter; h�����  is the spectral 

heterogeneity of an image object, which is computed as the sum of the standard 

deviations of spectral values of each layer (σ�) multiplied by the weight for each layer 

(w�): 

h����� = ∑ w� ∙ σ�
�
���                                              (2) 

h����� represents the spatial heterogeneity of an image object, which is calculated using 

compactness and smoothness: 

h����� = w��� ∙ h��� + �1 − w���� ∙ h������                           (3) 

Among which w���  is the user-defined weight for compactness parameter; h���  is 

described by the ratio of the pixel perimeter length l and square root of the number of 

pixels n forming an image object: 

h��� = l/√n                                                        (4) 

h������ is the ratio of the pixel perimeter length l and the shortest possible border length 

b of a box bounding the image object parallel to the raster: 

h������ = l/b                                                      (5) 

These three criteria for heterogeneity can be applied in various combinations. For most 

cases, the color information is the most important for creating meaningful objects. 

However, a certain degree of shape homogeneity can improve the performance of image 

segmentation. This is probably due to the fact that the compactness of image objects is 
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related to the shapes of features presented in the image. Thus the shape criteria 

(compactness and smoothness) are also helpful in avoiding highly fractured image 

objects resulting in strongly textured data (e.g. radar data) (Definiens, 2010). 

1.4.2.2 Rule-based classification of building footprints 

After segmentation, the unclassified image objects can then serve as building candidates 

for subsequent classification of larger building entities. Object characteristics such as 

color, shape, texture, as well as contextual information (e.g. connectivity, contiguity, 

distances and direction) can be used in the rule-set for classification (Zhou and Troy, 

2008). In this way, objects with heterogeneous height values in LiDAR elevation data, 

such as building and trees, can still be separated despite their similarity (Figure 1.6). A 

rule set is a sequence of processes which are the elementary tools providing a solution to 

a specific image analysis problem (e.g. assign the image objects with areas less than 100 

m
2
 to building class) (Definiens, 2010). Those processes are executed in a user-defined 

order. A detailed combination of processes for object-based classification can be found in 

Chapter 2. Here some commonly used categories of tools for the rule-based classification 

are introduced as follows: 

 

Figure 1.6 Image before and after classification. Left: image before classification; 

Right: image after classification 
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(1) Layer values 

Layer values represent the first and second statistical moment (mean and standard 

deviation) of an image object’s pixel values and the object’s relations to other image 

objects’ pixel values (Definiens, 2010). Layer values are the basic tools in the object-

based classification since they calculate the spectral information of images. Mean and 

standard deviation values are commonly used in the rule-based classification. Mean 

values refer to the average of the layer values of all pixels within an image object. 

Standard deviation values represent the variation or dispersion from mean values. The 

layers are the input data from users, which can be different bands of images or their 

derived calculation images such as Normalized Difference Vegetation Index (NDVI). For 

example, Lehrbass and Wang, (2010) use NDVI as one of the input data for object-based 

classification of trees. 

(2) Shape 

Shape tools evaluate the shapes of image objects in a variety of respects. The basic shape 

values are calculated based on the object’s pixels, such as area and border length. The 

area of an image object is the true area of one pixel multiplied by the number of pixels 

within the image object; the border length of an image object is defined as the sum of 

edges of the image object that are shared with other image objects or are situated on the 

edge of the entire scene (Definiens, 2010). This category of tools can compensate for the 

spatial information omitted by layer values. For example in Huang et al., 2008, both 

spatial and spectral information are needed for the extraction of building footprint since 

buildings present not only special spectral information due to different surface materials, 

but also unique spatial characteristics such as square or round shapes. 

(3) GLCM Texture 

The most commonly used texture tools are GLCM textures. Texture information 

examines the pattern presented in an image object. GLCM (Grey Level Co-occurrence 

Matrix) is a tabulation of how often different combinations of pixel brightness values 

(grey levels) occur in an image, which is regarded as a statistical method of examining 
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texture that considers the spatial relationship of pixels (Haralick et al., 1973). The GLCM 

functions characterize the texture of an image by calculating how often pairs of pixels 

with specific values or a specified spatial relationship occur in an image (Haralick, 1979). 

There are many kinds of GLCM texture measurements used in previous studies (El-

Ashmawy et al., 2011), such as Homogeneity, Contrast and Entropy. 

1.5 Thesis Format and Outlines 

The thesis is in integrated-article format. The goal of the thesis presented here is to use 

airborne LiDAR data to extract building footprints, based on which 3D building models 

are reconstructed. Chapter 1 introduces the research contexts, background and objectives 

of the studies. 

Chapter 2 and Chapter 3 are two individual studies aimed for publication in academic 

journals. Chapter 2 aims at object-based extraction of building footprints from airborne 

LiDAR data. A simplified version of Chapter 2 was presented at the 33
rd
 Canadian 

Symposium on Remote Sensing (CSRS) in Ottawa, Ontario in June, 2012.  

Chapter 3 benefits from the availability of building footprints extracted in Chapter 2. The 

focus of Chapter 3 is to reconstruct 3D building models using GIS techniques from 

LiDAR data. 

Finally, general discussions and conclusions, contributions of the studies and possible 

improvement in future work are presented in Chapter 4. 
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Chapter 2  

2 Use of LiDAR Derived NDTI and Intensity for Rule-based 
Object-oriented Extraction of Building Footprints 

2.1 Introduction 

2.1.1 Background 

As the dominant objects in urban areas, buildings play an essential role in urban 

development, urban planning and urban climate (Meng et al., 2009). Building footprints 

are one of the fundamental geographic information system (GIS) data that can be used to 

estimate energy demand, quality of life, urban population, property taxes (Jensen, 2000) 

and three-dimensional (3D) building models for visualization (Zhang et al., 2006). 

Accurate building footprint data are also essential for the construction of urban landscape 

models, estimation of natural disaster risk, the study of urban heat island effects and 

earthquake damage assessment (Davis, 2005; Miliaresis and Kokkas, 2007). The precise 

knowledge of building footprint can serves as a primary source for interpreting complex 

urban characteristics (Zhou et al., 2009).  

2.1.2 Previous Studies 

Various optical remote-sensing data sources with different spatial resolutions have been 

applied for urban building extraction and mapping for decades (Blaschke, 2010). Since 

the urban environment is extremely complex and heterogeneous, with multiple sizes of 

objects (e.g. buildings, roads, vegetation) combined with respective complicated spatial 

patterns, coarse spatial resolution imagery (e.g. Landsat, MODIS, AVHRR) is 

insufficient for mapping detailed urban land cover (Zhou and Troy, 2008). The recent 

availability of high resolution satellite images with resolution finer than 5 meters (e.g. 

IKONOS, QuickBird), representing a building as an object instead of mixed pixels, offers 

opportunities for building footprint extraction (Shufelt and Mckeown, 1993; Strassopolou 

et al., 2000; Lee et al., 2003; Aldred and Wang, 2011). However, the success of the 

derived methods on multispectral images is largely limited due to the influence of sun 
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shadow, relief displacement and occlusion effect of tall objects (Zhou and Troy, 2008; 

Meng et al., 2009, Wang et al., 2011). 

Recently-developed airborne Light Detection and Ranging (LiDAR) technology provides 

a very promising alternative for building footprint measurement. LiDAR directly collects 

an accurately georeferenced set of dense point clouds by recording reflected laser beams 

emitted by the sensor. Elevation and intensity are both stored to represent three-

dimensional objects on the Earth surface (Shan and Toth, 2009). Compared to high 

resolution multispectral images, which take a snap-shot from a certain angle, LiDAR 

measurements are free from sun shadows, relief displacement and occlusion effect 

(Zhang et al., 2006). The most attractive characteristic of LiDAR is its very high vertical 

accuracy which is suitable for Digital Elevation Model (DEM) generation and building 

detection (Ma, 2005). Additionally, obvious elevation differences between the first and 

last returns of LiDAR data in tall vegetation areas are very helpful in distinguishing trees 

from buildings among non-ground objects (Meng et al., 2009).  Some studies also 

combine LiDAR with high resolution optical imagery for developing building extraction 

models (Sohn and Dowman, 2007; Lee et al., 2008; Vu et al., 2009; Wang et al., 2012). 

However, the integrated processes may cause errors introduced by resolution and time 

difference, shadows and building relief displacement problems (Sohn and Dowman, 2007; 

Lehrbass and Wang, 2012). Therefore, developing competitive techniques to extract 

buildings from LiDAR data alone is worthwhile. 

Previous studies on identifying building footprints from LiDAR data can be divided into 

two broad categories; a detailed summary is shown in Table 2.1. One category is to use a 

non-hierarchical method to separate all land-use types (e.g. buildings, trees, roads, grass) 

simultaneously; the majority of studies use raster data derived from LiDAR point clouds, 

and pixel-based classifications are mostly seen in this category (Song et al., 2002; Arefi 

and Hahn, 2005; El-Ashmawy et al., 2011). Nevertheless, the pixel-based methods are 

not efficient for high resolution images, since objects on the Earth surface are represented 

by many pixels instead of single mixed pixels in the imagery (Blaschke, 2010). Although 

some studies add LiDAR intensity in the pixel-based classifications, the intensity of 
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objects with low heights such as roads and parking lots is very similar with that of 

buildings, which can lower the efficiency of separating all land-use types simultaneously. 

The other category is to separate the non-ground objects (e.g. buildings, trees) from the 

ground and then identify buildings from the non-ground measurements. Both LiDAR 

point clouds and the derived raster data have been separately used in those studies. For 

the initial separation of the ground and non-ground measurements, morphological filters 

(Weidner, 1997; Brunn and Weidner, 1997; Morgan and Tempfli, 2000) and surface-

based filters (also known as robust interpolation) (Rottensteiner and Briese, 2002; 

Rottensteiner, 2003) are mainly applied to classify ground points, based on which Digital 

Terrain Model (DTM) can be generated to stand for the ground elevation. The non-

ground objects can be presented using the derived Normalized Digital Surface Model 

(nDSM), which is a representation of non-ground objects’ elevation on the plane surface. 

After the non-ground objects are identified, the critical step is to classify building and 

tree objects that dominate non-ground measurements (Zhang et al., 2006). The most 

traditional way to classify building footprint is to use thresholds on the Digital Surface 

Model (DSM) or nDSM derived from LiDAR data (Weidner, 1996; Brunn and Weidner, 

1997). Though both global thresholds and locally adjusted thresholds are used in the 

method, trees and buildings are still poorly separated since they have similar heights and 

can be very close to each other. Several (Morgan and Tempfli, 2000; Rottensteiner and 

Briese, 2002; Rottensteiner, 2003; Ma, 2005; Goodwin et al., 2009) improved the initial 

results from thresholding by using morphological filters or texture analysis to filter out 

trees, thus a better result of building footprint can be acquired. However, not all trees are 

detected since some dense tree canopies do not possess characteristics of typical trees, 

and can be as smooth as topographic surfaces or roof patches, which lack textural 

patterns. Instead of using raster data, some studies directly classify building points from 

LiDAR point clouds by mathematical algorithms such as plane-fitting method (Zhang et 

al., 2006). Nevertheless, the problem of separating trees that have smooth surface from 

buildings still exists. 
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Table 2.1 Review of the previous studies on LiDAR-based building extraction 

Category  Methods for 

building 

extraction 

References Drawbacks 

Non-

hierarchical 

classification 

(e.g. MLC) 

 Song et al., 2002 The non-hierarchical classifications 

are largely limited by similarities of 

different land-use types, and are not 

efficient for high resolution images  

 Arefi and Hahn, 2005 

 El-Ashmawyet al., 2011 

Hierarchical 

classification 

Thresholding Weidner, 1996 Trees and buildings are poorly 

separated 

 Brunn and Weidner, 1997 

Morphological 

filter or 

texture 

analysis 

Morgan and Tempfli, 2000 Not all trees are detected since some 

dense tree canopies with smooth 

surfaces lack evident texture patterns 
Rottensteiner and Briese, 2002 

Rottensteiner, 2002 

 Ma, 2005 

 Goodwin et al., 2009  

Plane-fitting Zhang et al., 2006 Similar problem as mentioned above  

 Lin et al., 2011 

Object-based Brennan and Webster, 2006 Object-based methods hierarchically 

integrate both spatial and spectral 

information of LiDAR, can possibly 

improve building extraction results 

Antonarakis et al., 2008 

Huang, et al., 2008 

The hierarchical object-based classification that combines both spatial and spectral 

information of LiDAR provides a possible route for improvement of building extraction. 

Though object-based algorithm has been applied in several studies, only a few have 

studied urban areas (Huang et al., 2008; Lin, 2011) while the others (Brennan and 

Webster, 2006; Antonarakis et al., 2008) focused more on vegetation classification. 
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Moreover, many of the aforementioned studies (Ma, 2005; Zhang et al., 2006; El-

Ashmawy et al., 2011; Lin et al., 2011) used simple study areas with most buildings and 

trees spatially separated to achieve high accuracy. The overall accuracies of building 

extraction can depend on the complexity of study areas. The efficiency of object-based 

classification of building extraction in more complex urban environments should be 

examined. 

2.1.3 Objectives 

Based on previous studies, the objective of this research is to develop an object-based 

classification method based on LiDAR elevation and intensity data to extract locations 

and boundaries of building footprints in a complex urban environment. An index named 

Normalized Difference Tree Index (NDTI) is used. The roles of the LiDAR intensity data 

and the NDTI in the object-based classification are evaluated; an integrated segmentation 

approach and a hierarchical rule-based classification strategy are proposed. Finally the 

performance of the proposed object-based method is examined by comparing to the 

reference data.  

2.2 Methods 

2.2.1 Data Acquisition and Study Area 

The LiDAR data are acquired by Applied Geomatics Research Group with an Optech 

ALTM 3100 sensor. The airborne LiDAR data are collected in North of London, Ontario 

on May 20th of 2006, allowing for maximum penetration to the ground. This sensor is 

capable of recording the first, second, third and last returns and intensity data. The 

aircraft is equipped with an inertial measurement unit (IMU) and high-precision global 

positioning system (GPS) used to locate and orient the laser returns in three-dimensional 

space (Brennan and Webster, 2006). All LiDAR point coordinates and elevations are 

recorded using the UTM zone17 coordinate system relative to the NAD83 datum. A 

subset of LiDAR point clouds is shown in 3D (Figure 2.1). 
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Figure 2.1 LiDAR point clouds in 3D view 

The vector layer of building footprints in the study area is acquired from the City of 

London Digital Mapping distribution datasets in 2006, the same year as that of the 

LiDAR data, avoiding disparity of building boundaries due to time difference. The vector 

data were delineated using air photo interpretation, and are used as reference data for 

evaluating the performance of the extracted building footprints. 

The experimental site is chosen at the University of Western Ontario, which is located in 

the north part of London, Ontario. There are many land use and land cover types in the 

study area such as grass, water, asphalt, trees, buildings, bare ground and agriculture land. 

A variety of building types exist within the study, such as small buildings with 

complicated rooftops, tall buildings surrounded by trees, etc. The purpose of choosing the 

study area with various kinds of buildings is to develop a classification strategy for 

building footprints in complex urban environments, thus the method has some 

applicability and can be further applied in other areas as well. 
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2.2.2 Overview 

The proposed object-based classification of building footprints is described in the 

following sections, with pre-processing and rule-based classification illustrated in Figure 

2.2 and Figure 2.5 respectively. The method includes pre-processing to interpolate 

LiDAR point clouds to raster images and generate LiDAR nDSM, intensity and NDTI 

data, two-stage segmentation, rule-based classification of building footprints, post-

processing and accuracy assessment (Figure 2.2). 

 

Figure 2.2 Main steps of the proposed method 

2.2.3 Pre-processing 

The DSM represents the elevation of the earth's surface and includes all objects on it. In 

contrast to DSM, DTM represents the elevation of bare ground surface with all objects 

like trees and buildings removed. The difference model of a DSM and a DTM is called 

nDSM, which is a representation of the height of objects on a plane surface (Shan and 

Toth, 2009). The LiDAR points are used to construct a 0.6 m DTM grid that represents 

the bare earth (Figure 2.3). The DSMs of the first and last returns are interpolated into 0.6 

m raster data from the first-return and the last-return point (Figure 2.4). The nDSM of the 

first and last returns are generated by subtracting DTM from the respective DSMs.  
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Figure 2.3 Flowchart of the pre-processing 

 

Figure 2.4 Input data for object-based extraction of building footprints. (a) nDSM 

of the first return; (b) nDSM of the last return 
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The intensity raster layer is computed by interpolating all LiDAR returns based on the 

intensity attribute of LiDAR points (Brennan and Webster, 2006). LiDAR intensity is 

usually influenced by surface reflectance, atmospheric transmission, local incidence 

angle and sensor-to-object distance (Wang and Glenn, 2009). Previous research suggests 

that local incidence angle has little impact on LiDAR intensity (Kaasalainen et al., 2005), 

and atmospheric absorption plays a minor role in near-infrared LiDAR intensity due to 

the wavelength (λ=1064nm) (Mazzarini et al., 2007). Therefore, intensity can be 

calibrated with respect to the sensor-to-object distance (intensity level changes with the 

inverse square of the distance) (Mazzarini et al., 2007). However, no intensity calibration 

is applied in this study since the main objective is to separate buildings and trees with 

similar heights (therefore similar sensor-to-object distance). The non-calibrated intensity 

can still be used to distinguish different objects from the surface reflectance. 

An index called Normalized Difference Tree index (NDTI) is also used as input data 

(Figure 2.5). NDTI is modified from the Normalized Difference (ND) used in Arefi et al., 

2003 and Huang et al., 2008. The ND can be calculated using the DSM of the first return 

(DSM#$) and the last return (DSM%$): 
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Since the DSM is the sum of the DTM and the nDSM, the above equation can be also 

calculated as follows: 
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In contrast, NDTI is calculated using the nDSM of the first return (nDSM#$) and the last 

return (nDSM%$) to enlarge height difference between the two returns: 
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Although ND can represent the elevation difference between the two returns, the DSMs 

used in the equation contain the terrain elevation, thus the ND is affected by terrain effect. 

The value of ND in those areas with higher terrain elevation is smaller than that in areas 

with lower terrain elevation. Therefore, the thresholds of ND for two areas with different 

DTM elevations would be different and need to be modified. Compared with ND, NDTI 

is free from the influence of terrain elevation. Thus the threshold used in one area can be 

applied to another area as well. The height contrasts presented in NDTI data better 

represent the actual circumstances. Generally, height difference between the first return 

and last return is mostly caused by the LiDAR penetration through trees (Meng et al., 

2009, Brennan and Webster, 2006). Therefore, NDTI can be used to separate trees from 

buildings among the non-ground objects. Since building edges can also result in height 

difference between multiple returns, a median filter with a window size of 5 by 5 is 

applied to the NDTI layer to reduce the influence of building edges. The LiDAR nDSM 

of the first and last returns, the intensity data, along with NDTI data are used as input 

data (spatial resolution is 0.6 meters) for object-based building footprint extraction. 

 

Figure 2.5 Input data for object-based extraction of building footprints. (a) LiDAR 

intensity and (b) NDTI data 
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2.2.4 Image Segmentation 

Rather than classifying individual pixels into discrete classes, the object-oriented 

classification first segments imagery into small meaningful objects, which are the basic 

units in the classification. An effective segmentation is the result of image objects that are 

large enough to have meaningful geometric or spectral values, but small enough that they 

do not represent more than one feature class (Lillesand et al., 2008).  

Two image segmentation approaches are integrated in this study, Multiresolution 

Segmentation and Spectral Difference Segmentation. Multiresolution Segmentation 

follows a region-growing algorithm given in Baatz and Schape (2000). This method 

merges single pixels with their neighboring pixels when increases in spatial and spectral 

heterogeneity of objects are less than a user-defined threshold of heterogeneity called the 

scale parameter (Frauman and Wolff, 2005). The segmentation is complete when the 

increase in heterogeneity created by any remaining merger exceeds the threshold. After 

attempts with different combinations of layer weights and segmentation scale, the nDSM 

of the first and last returns and the NDTI are imported as inputs. The image layer weights 

(equal weights) and segmentation scale (10) are chosen empirically and carefully. The 

segmentation scale is critical for further classification especially for those buildings that 

are surrounded by trees. Comparisons among segmentation results using different scale 

parameters are shown in Figure 2.6. If the scale parameter is set too large, the image 

objects would be very big thus contain more than one land use types (in this case, 

buildings and trees). The larger the scale parameter, the bigger chance the segmented 

objects include mixed classes ((a) and (b) in Figure 2.6). If the scale parameter is set too 

small, the image objects would be too small to represent a relatively integrated land use 

type and the number of objects would grow, which can increase the difficulty and the 

spent time for classification ((d) in Figure 2.6). In this study, the segmentation scale is set 

to 10, considering the objective is to ensure each segmented object represents one single 

class and to minimize mixture of pixels of different land use types. However, after 

Multiresolution Segmentation, the segmented objects are still a little small to represent 

meaningful characteristics for each class.  
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(a)                                                                   (b) 

 

(c)                                                                   (d)  

Figure 2.6 Comparisons of segmentation results with different scale parameters. (a) 

the scale parameter is 20; (b) the scale parameter is 15; (c) the scale parameter is 10; 

(d) the scale parameter is 5. 

To compensate for this deficiency, Spectral Difference Segmentation is used to merge 

neighboring objects according to their mean layer values. Neighboring image objects 

should be merged if the difference between their layer mean values is below the value 

given by the maximum layer mean difference (Definiens, 2010). This algorithm is 

designed to refine existing segmentation results by integrating image objects with similar 

values produced by previous segmentations. In this step, the nDSM of the first and last 

returns, the NDTI and the intensity data with weight ratio of 1:1:2:1 are used to merge 

image objects. The higher weight for NDTI is intended to separate buildings from trees 
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that are highly adjacent to buildings. A loop is set to iterate the process. The 

segmentation is completed when the spectral difference among all the neighboring 

objects are greater than the maximum spectral difference.  

The intensity data play a unique role in Spectral Difference Segmentation. The column (b) 

and (c) in Figure 2.7 are samples of segmentation results with and without intensity data. 

Without the intensity data, a segmented object may include more than one land use type 

on the ground, and the shape of the object can be irregular. Compared to the case without 

use of intensity data, the segmentation results are much better and desirable with the help 

of the intensity data.  

 

Figure 2.7 Illustration of the role of LiDAR intensity in the image segmentation. 

Column (a) are nDSM of the last return as visual reference; Column (b) and (c) are 

segmentation results with the help of intensity and without using it respectively. The 

bold objects are examples of the segmented objects in each case. 
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2.2.5 Rule-based Classification 

Building candidates and unclassified are considered in this object-based classification. 

Three hierarchical procedures are performed to extract building footprints (The pseudo 

code is available in Appendix 1). The idea of the rule-set is to identify building objects in 

multiple hierarchies (Figure 2.8 and Figure 2.9), not to classify all the building footprints 

simultaneously, which cannot produce accurate results due to the complex characteristics 

of buildings and their surrounding environments. There are three main steps in the rule-

based classification, which are elaborated as follows: 

(1) Step one: assign basic building objects 

The first step is to classify basic building objects, which assigns typical building objects 

that have regular shapes and small height difference between the first and last returns as 

building candidates. Image objects with the NDTI value no less than 0.001 and the nDSM 

of last return greater than or equal to 2.5 meters are classified as building candidates. The 

threshold of 0.001 for NDTI is regarded to be generally applicable considering the variety 

and amount of trees in the study area. The threshold of 2.5 for the nDSM of last return is 

also suitable for buildings in other areas. Since trees taller than 30 meters are not seen in 

the study area, tall objects with mean heights more than 30 meters are also classified as 

potential buildings. The height threshold for trees can be modified according to different 

situations of study areas. During the process, however, some trees qualify the criteria as 

well due to eligible height and the NDTI threshold. Thresholds of the Roundness and 

Area of objects are used to exclude tree objects, since tree canopies usually present 

relatively rounder shapes and small areas for urban trees that are somewhat isolated. The 

Roundness refers to the difference of enclosing / enclosed ellipse as the radius of the 

largest enclosed ellipse is subtracted from the radius of the smallest enclosing ellipse 

(Definiens, 2010). The smaller the value of Roundness is, the rounder the image object is. 

Thus Roundness is used to distinguish tree objects. Objects that fail to meet the condition 

are assigned as unclassified and sent to the next step. 

(2) Step two: assign adjacent building objects 
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The second step is to classify objects that are adjacent to building objects. Since most 

parts of buildings have been properly classified, this step aims at categorizing building 

objects which have similar NDTI values with that of trees, and yet have higher ratio of 

the shared border length (Relative border to) with building candidates. The Relative 

border to describes the ratio of the shared border length of an image object with the 

neighboring image objects assigned to a defined class to the perimeter of the image object 

(Definiens, 2010). For instance, if the relative border of an image object to image objects 

of a certain class is 1, it means that the image object is totally embedded in these image 

objects. If the relative border is 0.5, then the image object is surrounded by half of its 

border (Definiens, 2010). Since some image objects within building footprints (jump 

edges between roof planes) are relatively difficult to distinguish by elevation and NDTI 

thresholds, this parameter can be very helpful in categorizing these image objects by 

examining the ratio of the shared border length with neighboring image objects that have 

already been classified as buildings. Again, the thresholds of Roundness and the nDSM 

of last return are used to avoid classification mixture of trees.  

(3) Step three: assign building edge objects 

The rest of the unclassified objects are sent to the last step, which is to identify building 

edge objects. The NDTI values of building edge objects can be very high due to partial 

penetration of laser beams along building edges. If the heights of trees are similar with 

that of buildings, and the textures of tree tops are very smooth, it is difficult to 

differentiate the two classes. Some building edge objects may not have high ratio of the 

shared border length with building candidates, but have high Roundness values due to the 

slender shapes resulted from segmentation. Therefore, those objects with Roundness no 

less than 2.8 or the nDSM of last return greater than or equal to 6 meters, and with the 

Relative border to building candidates no less than 0.4, are classified as building 

candidates. The thresholds for the Roundness and the nDSM of last return are chosen 

based on the knowledge of study area, since the heights and shapes of building edges can 

vary for different types of buildings. Up to this step, not all building edges are extracted 

due to the noise within building edge objects caused by the partial penetration of laser 

beam emitted by LiDAR sensor. Thus the height values in those building edge objects are 
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lower than that in others. The remaining building edge objects can be identified by 

limiting value range of the nDSM of last return, which is set between 3.5 and 5.3 meters 

from empirical observation, and the Relative border to building candidates greater than or 

equal to 0.5. The remaining objects in this step are finally assigned to the unclassified 

class (Figure 2.8). 

 

Figure 2.8 Flowchart of the proposed object-based classification of building 

footprints 
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Figure 2.9 Illustration of the extracted building objects step by step. (a) Identified 

building objects after step one; (b) Identified building objects after step two; (c) 

Identified building objects after step three. 
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2.2.6 Post-processing 

After the rule-based classification, post-processing is necessary to remove small trees that 

are mistakenly classified as building candidates. Since some building objects have similar 

sizes with that of tree objects, geometric difference between the two classes are applied. 

Small tree objects appear to be round while building objects with similar sizes have 

rectangular shape. Firstly, based upon the empirical knowledge of the study area, 

building objects with area smaller than a user-defined threshold are reclassified as 

unclassified. Secondly, the parameter “Rectangular Fit” is used to partition building and 

tree objects with areas larger than the user-defined threshold. Finally the building 

footprints are squared up and exported as the final result. 

2.2.7 Accuracy Assessment 

In this study, the polygon layer of building footprints from City of London in 2006 is 

used as reference data to assess the performance of the proposed object-based extraction 

of building footprints. The Union overlay between the reference building layer and 

extracted building layer is performed to generate the required inputs for the accuracy. An 

illustration of the Union overlay is shown in Figure 2.10.  

 

Figure 2.10 Illustration of the Union overlay. (1) Extracted building; (2) reference 

building; (3) overlay of the extracted and reference buildings. 

Consider Polygon A is the extracted building footprint, and Polygon B is the reference 

building footprint, the grey areas in (1) and (2) are non-building areas. The result of 
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Union overlay is shown in (3). Polygon D is the overlaid region between A and B, 

indicating this part of the extracted building footprint is classified correctly. Likewise, 

Polygon F represents the non-building region where both A and B lies outside, implying 

this part of the non-building area is classified correctly as well. Polygon C is actually 

non-building region but mistakenly classified as buildings; similarly, Polygon E actually 

represents real building footprint yet is classified as non-building region. The areas of 

polygons in (3) can be calculated as (c), (d), (e) and (f), which are the necessary variables 

for the confusion matrix calculations. A confusion matrix for two classes, Building and 

Non-building can be computed as follows:  

Table 2.2 The confusion matrix for two classes, Building and Non-building 

 Reference data 
Row total 

User’s 

accuracy Classified data Building Non-building 

Building (d) (c) (c+d) (d)/(c+d) 

Non-building (e) (f) (e+f) (e)/(e+f) 

Column total (d+e) (c+f) (c+d+e+f)  

Producer’s 

accuracy 
(d)/(d+e) (c)/(c+f)   

Overall accuracy = (d+f)/(c+d+e+f) 

Kappa = (d+c)*(d+ f)–((d+c)*(d+e)+(e+f)*(c+f))/((c+d+e+f)^2–(d+c)*(d+e)*(e+f)*(c+f)) 

Omission error = 1 – Producer’s accuracy 

Commission error = 1 – User’s accuracy 

(Lillesand et al., 2008) 

The producer’s accuracy indicates the probability of the reference objects being correctly 

classified, while the omission error corresponds to those objects belonging to the class of 

interest that the classification has failed to recognize. The user’s accuracy indicates the 

possibility that the classified objects actually represents that category on the ground, yet 

the commission error represents those objects from other classes that the classification 

has assigned to the class of interest. Since the overall accuracy only incorporates the 

major diagonal information and excludes the omission and commission errors for each 

class, Kappa is used to integrate off-diagonal elements for the comprehensive statistical 

calculations.  Kappa analysis yields a Khat statistic (an estimate of Kappa) that is a 

measure of agreement or accuracy (Rosenfield and Fitzpatrick-Lins, 1986; Congalton, 
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1991). The higher the overall accuracy and the Kappa, as well the lower commission 

error the results are, the better the classification performs. 

2.3 Results 

To quantitatively compare the performance of the proposed object-based technique in this 

study, several attempts with different combinations of parameters for the object-based 

building footprint extraction are made, and three contrastive object-based classifications 

are performed: (1) use LiDAR nDSM data only (M1); (2) use LiDAR nDSM and 

intensity data (M2); (3) use LiDAR nDSM and NDTI data (M3). For the three methods, 

the same segmentation scale, hierarchical procedures and post-processing afterwards are 

applied as the proposed object-based classification (M4). In addition, the building 

extraction algorithm from the commercial software LiDAR Analyst™ (M5) is applied in 

the same study area. LiDAR Analyst™ has an interface which allows users to set up 

parameters for building extraction (e.g. height, area, roof gradient). The accuracy of the 

three object-based classification strategies and LiDAR Analyst™ are all compared with 

that of the proposed object-based classification. 

Both M1 and M2 have over 1% higher overall accuracies than the proposed method, but 

the respective commission error of 37.1% and 36.7% and a low Kappa of 0.42 and 0.43 

indicate buildings and trees are very poorly distinguished; many trees are mistakenly 

classified as building objects. With the assistance of NDTI, M3 evidently reduces the 

commission error to only 8.1% and increases the Kappa to 0.79. The proposed method 

M4 performs the best among the five methods, with the Kappa of 0.84, overall accuracy 

of 94.0% and 6.3% commission error. The performance of M5 is worse than M4, with 5.7% 

and 0.17 decrease in overall accuracy and Kappa, and 7.1% increase in commission error 

(Table 2.4). 

The detailed comparison of the extracted results from the five methods is shown in Figure 

2.11. M1 performs the worst among the five methods with the low Kappa of 0.42. This 

method excessively overestimates the size of building footprints, categorizing too many 

trees into the building class (column b in Figure 2.11). In the circumstance of sample (5b) 

in Figure 2.11, small buildings are covered by trees above them, making it difficult to 
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extract complete building footprints from LiDAR. Although those building are extracted, 

M1 fails to separate buildings from trees. The final extraction result of M1 is shown in 

Figure 2.12. Not only trees that are adjacent to buildings are classified as buildings, those 

trees with large areas and smooth surface (east of the study area in Figure 2.12) are 

incorrectly classified. After adding the intensity data to the object-based classification, 

the result is slightly improved (column c in Figure 2.11). M2 improves both the accuracy 

and decreases the commission error by 0.4%, with only 0.01 improvements in Kappa. 

The final extraction result of M2 is shown in Figure 2.13. Not much improvement is 

made by adding only intensity to the LiDAR nDSM data. There are still many trees (east 

of the study area in Figure 2.13) mistakenly classified as buildings. 

Table 2.3 Comparison of the five methods of building footprint extraction 

Method Technique 
Overall 

accuracy 

Commissio

n error 
Kappa 

M1 Object-based classification with only 

LiDAR nDSM data 

95.0% 37.1% 0.42 

M2 Object-based classification with LiDAR 

nDSM and intensity data 

95.4% 36.7% 0.43 

M3 Object-based classification with LiDAR 

nDSM and NDTI data 

92.5% 8.1% 0.79 

M4 Proposed object-based classification with 

LiDAR nDSM, NDTI and intensity data 

94.0% 6.3% 0.84 

M5 LiDAR Analyst™ 88.3% 13.4% 0.67 

By contrast, the NDTI proved to be very effective for building extraction. M3 evidently 

reduces the commission error from 37.1% to only 8.1%, meanwhile the accuracy drops 

slightly and the Kappa evidently increases from 0.42 to 0.79 as a result. However, 

buildings and trees are still confused by this method. Trees that are adjacent to buildings 

are segmented together (column c in Figure 2.7), resulting in less satisfactory separation 

of the two classes ((1d) in Figure 2.11). In addition, due to the absence of the intensity 

data in the segmentation, objects mixing both buildings and trees can be classified as 
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unclassified, which reduces the overall accuracy ((2c), (3c) in Figure 2.7). The final 

extraction result using M3 is shown in Figure 2.14. Compared with M1 and M2, the 

result of M3 evidently improves the classification accuracy with most of the trees 

classified correctly. 

Based on NDTI, in comparison, the proposed method M4 is superior to the previous 

methods with the help of intensity data, both in extracting more complete building 

footprints and avoiding mistakenly categorizing other features to building class (Table 

2.4 and column e in Figure 2.11). The final classification result of M4 overlaid with the 

reference data is shown in Figure 2.15. Most of building footprints are detected and 

extracted completely and the trees are successfully separated from buildings as well, 

except for some omissions of building class. Compared with M4, many building objects 

are missed in the classification result of M5 (4f, 5f in Figure 2.11). The final extraction 

result using M5 is shown in Figure 2.16. Though the “Square Up” function of M5 can 

smooth building boundaries, some buildings are not adequately regularized, which can 

lower the overall accuracy due to the inflexible direction of straightening boundaries and 

the removal of details of building structures (2f, 4f in Figure 2.11). However, this method 

does not make too much confusion between buildings and trees, with a commission error 

of 13.4%.  

Overall, the separation of buildings and trees is successful using the proposed 

hierarchical strategies with some useful parameters contributing to the process. A 

common fault, nevertheless, that presents in all the methods is the deficiency in 

extracting small buildings. Buildings within Region A and B are not completely detected 

by the proposed methods. The aerial photo for Region A in figure 2.15 is shown in figure 

2.17. The aerial photo was taken on May 1st, 2006. The small buildings in this region are 

partially covered by trees above. The percentage of the overlap would likely increase by 

the time of LiDAR data acquisition (May 20th, 2006), considering the growth of leaves. 

The trees overlap with buildings can influence the overall accuracy of building footprint 

extraction.  The omission error of buildings can be also caused by the special surface 

material of buildings. The field picture for Region B in figure 2.15 is shown in figure 

2.18. The blue lines within Region B indicate the viewing direction of the field picture. 
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The building with three-part structure is greenhouse made of glass. The glass buildings 

are not detected due to lasers’ partial penetration of glass. Though the proposed technique 

is able to detect some small buildings, the rest are left out due to not only their spatial and 

spectral disparity from the larger buildings, but the problem of tree overlap with these 

buildings. 

 

Figure 2.11 Comparison of the reference buildings and results from the five 

methods. Five sets of examples for different areas (1), (2), (3), (4) and (5) are 

illustrated. Column (a) are from the reference building footprints; column (b) are 

samples of results from the object-based method with LiDAR nDSM data only; 

column (c) are samples of results from the object-based method with LiDAR nDSM 

and intensity data; column (d) are from the results of the object-based method with 

LiDAR nDSM  and NDTI data; column (e) are from the results of the object-based 
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method with LiDAR nDSM, intensity and NDTI data; and column (f) are samples of 

results from the LiDAR Analyst™ algorithm. 

 

Figure 2.12 Extraction result of building footprints using the object-based method 

with LiDAR nDSM data only (M1). The background is the image of nDSM of the 

last return data. 
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Figure 2.13 Extraction result of building footprints using the object-based method 

with LiDAR nDSM and intensity data (M2). The background is the image of nDSM 

of the last return data. 
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Figure 2.14 Extraction result of building footprints using the object-based method 

with LiDAR nDSM and NDTI data (M3). The background is the image of nDSM of 

the last return data. 
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Figure 2.15 Extraction result of building footprints using the proposed method (M4). 

The background is the image of nDSM of the last return data. 
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Figure 2.16 Extraction result of building footprints using LiDAR Analyst™ (M5). 

The background is the image of nDSM of the last return data. 
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Figure 2.17 Aerial photo of Region A in figure 2.15

Figure 2.18 Field picture of Region B in figure 2.15.

 

 

Aerial photo of Region A in figure 2.15. 

 

Region B in figure 2.15. 
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2.4 Conclusions and Discussions 

Several new techniques are evaluated in this chapter for object-based classification in 

building footprint extraction using airborne LiDAR data. Though traditional optical 

imagery are mostly used in building footprint extraction in the past decades, performance 

of the derived methods are largely limited by sun shadows, relief displacement and 

occlusion effects presented in the images. LiDAR data are more efficient for building 

extraction compared with optical imagery, providing highly accurate vertical information 

with multiple returns and intensity information. In this study, detailed procedures are 

presented for the pre-processing, the integrated segmentation, the object-based 

classification strategies and accuracy assessment. 

The object-based classification presented here is proved to be a very effective semi-

automated method of extracting building footprints from LiDAR imagery in urban 

environments. The result of the proposed object-based classification outperforms the 

other methods with the Kappa of 0.84, the overall accuracy of 94.0% and commission 

error of 6.3%. Compared with LiDAR Analyst™ algorithm, the proposed method has 

0.17 higher Kappa, 5.7% higher overall accuracy and 7.1% lower commission error, 

which means it extracts building more accurately and also performs better to avoid 

categorizing other land use types to buildings.  

The NDTI is used for the object-based building extraction. The results of the three 

contrastive methods indicate that NDTI plays a very important role in the object-based 

building extraction. The object-based method with only LiDAR nDSM data has the 

highest commission error, while adding NDTI successfully reduces the error by 29.0%.  

The LiDAR intensity, when combined with NDTI in the object-based method, produces 

the best result. Though the object-based classification with LiDAR nDSM and intensity 

data slightly improves the extraction result from the initial one, the intensity data 

contribute to the final result by improving 1.5% for accuracy and decreasing 1.8% for 

commission error making the joint effort with NDTI in the proposed method. Though the 

separation of buildings and trees remains a problem in previous studies, the proposed 

method in this paper successfully distinguishes trees from buildings.  
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Chapter 3  

3 GIS –based Reconstruction of 3D Building Models from 
Airborne LiDAR Data 

3.1 Introduction 

3.1.1 Background 

The three dimensional (3D) building model has become one of the essential components 

in various scientific and engineering applications, such as urban planning, digital city 

visualization, virtual tourism information systems (Zhang et al., 2009; Elberink and 

Vosselman, 2011), and wireless telecommunication which need stereo building models as 

input in spatial databases, virtual reality tools or wave propagation simulators, etc. 

(Kabolizade et al., 2012). Other applications such as environment protection and planning, 

microclimate study (e.g. urban heat island effect and rain-runoff modeling), or emergency 

response (Kim and Shan, 2011) also require high accuracy 3D building models driven by 

the more strict standards and the improvement of complex prediction systems. Moreover, 

the accurate reconstruction of building models from remotely sensed images is likely to 

open up a range of potential GIS applications.  

3.1.2 Previous Studies 

In the past decades, traditional high resolution optical images (e.g. QuickBird, GeoEye 

and WorldView) have been and still are widely used to construct Digital Surface Models 

(DSMs), a representation of elevations of objects on the Earth surface, which 3D building 

models can be derived from (Shan and Toth, 2009). DSMs are usually obtained by 

automatic image matching algorithms applied on stereo pair of aerial or high-resolution 

satellite images (Noronha and Nevatia, 2001; Gong et al., 2002). The results of these 

algorithms are satisfactory for smooth terrain at small to medium scale. However, the 

automatic performances decrease for complex scenes in dense urban areas at large-scale, 

which can be mainly caused by inadequate image understanding, sun shadows, relief 

displacement, occlusions, poor or repeated textures, poor image quality or lack of man-

made objects modeling (Lehrbass and Wang, 2012; Zhou et al., 2004; Zhou et al., 1999). 
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Even semi-automatic techniques require at least the support of the recognition of very 

complex buildings by a human operator (Brenner 2005). 

As an alternative data source for DSM generation, Light Detection And Ranging (LiDAR) 

techniques have gained increasing popularity in the recent practices and studies (Satari et 

al., 2012; Verma et al., 2006; Wang and Chu, 2009). Compared with the other methods of 

DSM generation, LiDAR measurements are not only free from sun shadows, relief 

displacement and occlusion effect, but also offer several advantages such as fast data 

acquisition, high point density, strong capability of measuring both height and 

planimetric location and canopy penetration (Beraldin et al., 2010). Therefore, detailed 

roof structures can be determined from LiDAR data, based on which 3D building models 

can be reconstructed. 

Most reported LiDAR-based building reconstruction approaches follow three common 

processing steps (Figure 3.1). First, the non-ground objects are separated from the ground 

objects, using LiDAR point clouds or interpolated grid data. Morphological filters 

(Elaksher and Bethel, 2002; Arefi and Hahn, 2005; Zhang et al., 2009) are commonly 

applied in this step. Detailed comparisons are presented in Sithole and Vosselman (2004). 

Building footprints are then detected from the non-ground objects. The next step is to 

segment LiDAR data or building reference data into segments representing single roof 

planes. The main objective of this step is to determine roof primitives (e.g. outline, 

intersected lines and intersected nodes). Various methods have been studied, including 

region growing (Rottensteiner, 2003), gradient orientation (Forlani et al., 2006), Hough 

transform (Vosselman and Dijkman, 2001) and RANSAC (RANdom SAmple Consensus) 

(Tarsha-Kurdi et al., 2007). However, these approaches always need the assistance of 

dominant building orientation to determine roof primitives such as edge direction. 

Though some studies segment building reference data instead of LiDAR data 

(Rottensteiner, 2003), the reference data are not always available and can be outdated.  

In the final step, building models are reconstructed, for which two general approaches are 

applied: the data-driven and the model-driven. For the data-driven method, building 

models are reconstructed by comparing and assembling the roof segments. However, 
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topological relations among segments are difficult to determine (Elberink and Vosselman, 

2009, Sampath and Shan, 2010). For instance, topological relation can refer to “there 

should be no gaps or overlaps between two adjacent roof planes”. The model-driven 

method defines a database of roof forms or a basic formulation representing many 

primitives to fit for the detected roof planes. This approach can always reconstruct a 

topologically consistent model (Kim and Shan, 2011), but the reconstruction process may 

be less satisfactory if other primitives or complicated models are not considered. 

 

Figure 3.1 Summary of LiDAR-based building reconstruction methods and steps 

Although many strategies of detecting roof planes for the determination of building 

primitives are used in the previous research, there are still some unsolved problems such 

as the disconnection of roof planes and the difficulty locating height discontinuities of 

roof planes (Kim and Shan, 2011). An alternative solution that can avoid the 
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aforementioned limitations is to extract the intra building edges directly without 

segmentation. However, few studies can identify edges from LiDAR data without the 

assistance of other data sources such as incorporating a 2D map (Alexander et al., 2009) 

or fusing with aerial images (Zhou et al., 2004; Yong, 2011). Therefore, developing 

techniques of the detection and processing of building edges from LiDAR data directly is 

worthwhile. 

3.1.3 Objectives 

Based on previous literature, the objective of this study is to develop a reconstruction 

strategy of 3D building models from LiDAR data in a GIS environment. In the proposed 

method, the intra building edges are directly detected and processed from the LiDAR first 

return data, types of roof shapes (flat and pitched) are classified using the slope of the 

nDSM data. Different strategies are applied for the visualization of flat roof planes and 

pitched roof planes, based on which 3D building models are finally reconstructed. 

3.2 Methods 

3.2.1 Data Acquisition and Study Area 

The LiDAR data are acquired by Applied Geomatics Research Group (AGRG) with the 

Optech ALTM 3100 sensor. The data are collected in the north part of London, Ontario 

on May 20th of 2006 (Figure 3.2). The aircraft is equipped with an inertial measurement 

unit (IMU) and high-precision global positioning system (GPS) used to locate and orient 

the laser returns in three-dimensional space (Brennan and Webster, 2006). The 

coordinates and elevations of all LiDAR points are recorded using the UTM zone17 

coordinate system relative to the NAD83 datum. The experimental site is chosen over the 

campus of University of Western Ontario, where various kinds of building roof shapes 

(flat, pitched and complicated) are included to develop 3D reconstruction strategy for 

building models in a complex urban environment. 

The 2D building footprints are extracted using a rule-based object-oriented classification 

of LiDAR data from Chapter 2, and are used as input data in this study. Thus building 
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footprints extracted directly from LiDAR data can increase the applicability of the 

proposed method without depending on more data sources. 

 

Figure 3.2 Data and study area 

3.2.2 Overview 

The proposed 3D building reconstruction method is illustrated in Figure 3.3, which 

includes the following steps: pre-processing to interpolate LiDAR point clouds to raster 

images, edge detection and processing, boundary processing incorporated with closed 

polygons acquired from the previous step and the 2D building footprints, classification of 

roof shape types, and 3D building models reconstruction. A detailed description of the 

reconstruction strategy is shown in Appendix 3. 
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Figure 3.3 Flowchart of methodology 
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3.2.3 Pre-processing 

Firstly the raw LiDAR point clouds are interpolated to generate Digital Terrain Model 

(DTM) data that represent the elevation of the bare earth surface. The DSM of the first 

return data are interpolated from the first-return point clouds. The normalized DSM 

(nDSM) of the first return, which is the subtraction between the DSM and DTM, are 

calculated and used to identify the height of buildings with terrain effect eliminated. The 

nDSM of building areas are cropped from the extracted 2D building footprints to exclude 

the influence of trees. The slope and aspect of the cropped nDSM are also generated to 

classify roof shape types and detect ridgelines respectively in the following steps. Data 

including the cropped nDSM, the derived slope and aspect data, and the extracted 2D 

building footprints are used as input for 3D building reconstruction. 

3.2.4 Edge Detection 

The Canny edge-detection algorithm is selected to extract edge information within 

buildings. For comparisons of the performance of different edge detection operators, see 

Appendix 2.The Canny detector was first developed by Canny, (1986) using a multi-stage 

algorithm to identify a wide range of edges in images.  

According to Canny, (1986), three performance criteria should be followed for edge 

detection: (1) Good detection. The detection should mark as many real edge points as 

possible and have low probability of falsely identifying non-edge points; (2) Good 

localization. The distance between the points marked as edge points by the operator and 

the center of the true edge should be minimized; (3) Multiple response criteria. There 

should be only one edge point considered true when there are multiple responses of 

points to the same edge.  

Based on the criteria mentioned above, five main steps are included in the Canny edge 

detection. The first step is to smooth the image with a Gaussian filter to decrease noise in 

the image. The second step computes the gradient orientation and magnitude in x and y 

direction respectively using a pair of 3 by 3 convolution masks. In the third step, the 

directions of the edges are calculated and a set of values (0, 1, 2, or 3) are used to assign 

to the directions according to the sectors they belong. The next step is to use a non-
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maximum suppression to form ridges with one-pixel width at the edge points whose 

gradient magnitudes are the local maximum in the direction of the gradient. The final step 

is to fill up the gaps along the ridges. Any pixel in the non-maximum suppression image 

that has a value greater than a user-defined high threshold is marked as an edge pixel 

immediately. Then any pixels that are connected to this edge pixel and that have a value 

greater than a user-defined low threshold are also selected as edge pixels. All edges are 

followed until the value drops below the low threshold (Canny, 1986). 

Three parameters need to be specified for the Canny edge detector: sigma, low threshold 

and high threshold. Sigma is the standard deviation of the Gaussian filter, of which 

typical values are from 0.6 to 2.5. Low threshold and high threshold are the hysteresis 

threshold values. The typical value range of low threshold is between 0.2 and 0.5 and that 

of high threshold is within 0.6 and 0.9. A three-level loop is set to iterate the Canny 

algorithm with different combination of the three parameters.  

Based on empirical observation, the performance of the edge detection is regarded the 

best when the sigma is set to 0.7, with the high threshold 0.6 and the low threshold 0.4 

among more than 300 edge detection images. Three examples are illustrated in Figure 3.4. 

From the visual interpretation of the hillshade of the nDSM data, A, B, C, D, E, F and G 

are individual roof segments. The parameter combination used in this study is able to 

detect the outlines of those segments which are important parts of the roof structures, yet 

the other parameter combinations fail to recognize. Moreover, B and C are pitched roof 

segments, the edges of which should be identified first and then used to detect ridgelines.  
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Figure 3.4 Canny edge detection results from the nDSM of first return data. Three 

sets of samples (a), (b) and (c) are illustrated with different parameter combinations. 

(1) The hillshade image of the nDSM data; (2) sigma 0.7, high threshold 0.6 and low 

threshold 0.4; (3) sigma 1.2, high threshold 0.6 and low threshold 0.4; (4) sigma 0.7, 

high threshold 0.7 and low threshold 0.3. 
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3.2.5 Edge and Boundary Processing 

After edge detection, the building edges need to be vectorized for further processing. This 

step is automatically performed on the binary image of the building edges using the 

“Vectorization” function from the ArcScan module of ArcGIS 10.  The clean-up is 

followed by removing polylines with length shorter than 5 meters.  

 

Figure 3.5 Illustration of edge processing. (a) and (d): before processing; (b) and (e): 

after extending iteration on the dangled endpoints; (c) and (f): after snapping. 

Since not all the edges are connected in the edge detection process, the endpoints of 

polylines that “dangle” (Figure 3.5 (a) and (d)) are detected by validating the topology 

rule “Must Not Have Dangles (Line)” implemented to the vectorized edges in ArcGIS 10. 

An iteration with different levels of cluster tolerance thresholds (2 meters, 4 meters, 6 

meters etc.) based on empirical observation is set for the “Extend” function to extend the 

dangled endpoints until most of them are joined to the polylines encountered on the way 
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in the extending direction (Figure 3.5 (b) and (e)). The “Snap” function is then used to 

attach the rest of dangled endpoints to the nearest polylines (Figure 3.5 (c) and (f)). After 

edge processing, the closed edge polylines are used to generate polygons that represent 

roof segments, among which small polygons with areas less than 20 m
2
 are merged with 

neighboring polygons by dropping the shared border. The neighboring polygons refer to 

the ones that have the longest shared border with those small polygons.  

In order to demonstrate the benefit of edge processing, roof segments without edge 

processing are generated to compare with those that have been processed. Since the 

outlines of some buildings cannot even be generated without the help of edge processing 

(gaps between detected edges are not eliminated), the later boundary processing is still 

used to form at least building boundaries. A comparison between the roof segments with 

and without edge processing is shown in Figure 3.6. The result shows that the roof 

structures without edge processing are simplified to a great extent. The proposed edge 

processing better restores the building roof structures. 

 

Figure 3.6 The generated roof segments with and without edge processing. (1) Roof 

segments without edge processing; (2) Roof segments with edge processing 

Boundary processing is then needed in the following step, considering that the building 

edges are detected within the extent of the building footprints, the outlines of the 
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polygons generated from the building edges (Figure 3.6 (a)) do not perfectly overlap with 

the extracted building footprints (Figure 3.7 (b)). The slivers (pink areas shown in Figure 

3.7(c)) are identified by overlapping the polygons and the extracted building boundaries. 

Only the slivers within the building footprints are merged to the neighboring polygons 

with the longest sharing border. The revised polygons are shown in Figure 3.7(d). 

 

Figure 3.7 Illustration of building boundary processing. (a) The original building 

edges; (b) the extracted building footprint; (c) after the union of (a) and (b); (d) the 

revised building edges 



 

3.2.6 Classification of 

After the roof segments are detected and process

classified to distinguish flat and pitched structures. 

are assigned to the corresponding 

slope of the nDSM data 

types of roof shape (flat and 

Figure 
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Classification of Roof Shape 

fter the roof segments are detected and processed, the roof shape types should be 

classified to distinguish flat and pitched structures. Firstly, the average height

the corresponding roof segments using Zonal Statistics in ArcGIS 10. 

slope of the nDSM data is used to classify the building roof segments

(flat and pitched) are considered.  

Figure 3.8 Mean slope values of the detected roof plane

 

, the roof shape types should be 

he average heights and slopes 

using Zonal Statistics in ArcGIS 10. The 

roof segments, for which two 

 

roof planes 
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Based on the author’s knowledge of the study area, there are many pipe structures on top 

of the building roofs, which increase the average slope values for the roof segments, thus 

the slope threshold applied here is a little larger than the usual cases. In this study, slopes 

of less than 20 degrees mostly indicate flat roof segments, and pitched roof segments are 

associated with slopes between 20 and 60 degrees. Very few roof segments have slopes 

of greater than 60 degrees, most of which are located in the areas with high image noises 

or that with sudden change of elevation such as building boundaries and jump edges. 

Those roof segments with slopes greater than 60 degrees are actually flat roof segments 

thus should be assigned as flat. Therefore, roof segments with average slopes less than 20 

degrees are classified as flat and those with average slopes in the range of 20 and 60 

degrees as pitched. Those roof segments with slopes of more than 60 degrees are 

considered as flat in this study (Figure 3.8). 

3.2.7 3D Building Reconstruction and Visualization 

Up to this step, both flat and pitched roof segments have been identified. For the flat, 

each roof segment already represents one roof plane. Thus the flat-roof buildings can be 

reconstructed easily by extruding each roof segment within the flat building to the 

respective average height. Compared with flat roof segments, roof segments with pitched 

surface are more difficult to reconstruct since they may contain multiple roof planes and 

cannot just be extruded to a universal height. The following steps describe the 

reconstruction techniques for the pitched roof segments. 

(1) Detect ridgelines within pitched roof segments 

Even though the pitched roof segments are detected from the classification of roof shape 

types, the intra-structures of which are not well identified using the Canny detector 

because there are no obvious elevation difference at ridgelines in the nDSM data. 

Considering that the aspect image of the nDSM data can clearly distinguish different roof 

planes of the pitched roof segments without the need for defining the dominant building 

orientation, the aspect is used to classify sub-segments within the pitched roof segments. 

The ridgelines are identified by applying the Canny edge detector to the aspect image 

within the boundaries of the pitched roof segments (Figure 3.9 (a)). Similar edge 
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processing is employed to create connected polylines (Figure 3.9 (b)). Up to this step, 

each region within the polylines represents a single pitched roof plane.  

 

Figure 3.9 Illustration of pitched roof segment reconstruction. (a) Aspect value 

within the pitched roof segment; (b) Detected edges within the pitched roof segment; 

(c) densified vertices along the edges of pitched roof segment. 

(2) Assign averaged height values to the densified vertices 

Those polylines are then densified in ArcGIS 10 by inserting vertices along polylines so 

that there are enough and evenly distributed vertices for creating 3D structures in the 

visualization (Figure 3.9 (c)). The densified vertices of these planes are assigned with the 

corresponding height values of the nDSM data, thus every vertex has an elevation value 

representing the building height in that location. However, the assigned heights of those 

vertices cannot be all the same due to many reasons (e.g. the positional accuracy of roof 

segment outlines and ridgelines, noise along building edges caused by interpolation), 

which can affect the visualization performance. To compensate for this problem, the 

vertices located at the same edges (outlines or ridgelines) are selected respectively, and 

the mean height values of the vertices are then calculated and re-assigned to each vertex. 

 



 

(3) Generate Triangulated Irregular Network (TIN)

In the following step, t

Triangulated Irregular Network (TIN) structures

segment can possibly form triangle nets with 

the pitched roof polygons

structures are completely within 

the TIN structures with and without the 

Figure 3.10. The TIN structures without height value averaging have many 

crests, some roof planes even have overlaps w

less accurate and appealing

points are much better visualized

Figure 3.10 Performance of the height value 
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Different visualization strategies 

flat, the roof planes within the same building

average height of each
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elevation in the DTM data. 
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Triangulated Irregular Network (TIN) structures 

step, the vertices with re-assigned height values are used to construct 

Triangulated Irregular Network (TIN) structures. Since the vertices

possibly form triangle nets with vertices from another 

roof polygons are used as masks on the vertices so that the

are completely within each pitched roof polygon. A visual comparison between 

the TIN structures with and without the aforementioned re-assignment step is shown in 

structures without height value averaging have many 

some roof planes even have overlaps with other planes, making the visualization 

appealing. In contrast, the TIN structures generated from 

points are much better visualized.  

Performance of the height value re-assignment. (a

derived from vertices without height value re-assignment; (b) TIN structure derived 

from vertices with height value re-assignment.

ifferent visualization strategies are applied to the flat and pitched 

within the same buildings are assigned to a same ID number

each roof segment is used to extrude the segment 

the average height to the base height of the buildings. In this study, 

elevation in the DTM data. For the pitched, the base frames and the rooftops 

average heights of the densified vertices located at the roof segment 

assigned to the corresponding roof segments, which 

(b) 
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TIN structures of the pitched

Figure 3.11 Visualization of the 

rooftop; (b) visualization 

3.3 Results 

The proposed approach 

view of the reconstructed 3D building models 

views are displayed in Figure 3.13 and Figure 3.14. Moreover, the buildings within the 

red circle in Figure 3.12 are 

The final visualization is able to 

(structures with colors from red to blue in Figure 3.12 to 3.14), but also that of the 

pitched roof segments (dark green structures in Figure 3.12 to 3.14) as well.

with the visualization of build

are more appealing and close to the real situation.
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assigned values to the base height to represent the base frames.

pitched roof segments are piled upon the base frames

Visualization of the pitched rooftop. (a) TIN structures of the 

visualization of the whole building after adding the base frame.

he proposed approach is applied to the LiDAR data in the study area. 

view of the reconstructed 3D building models is shown in Figure 3.

in Figure 3.13 and Figure 3.14. Moreover, the buildings within the 

.12 are visualized with texture information (Figure 

The final visualization is able to show not only the structures of the flat roof segments 

(structures with colors from red to blue in Figure 3.12 to 3.14), but also that of the 

pitched roof segments (dark green structures in Figure 3.12 to 3.14) as well.

with the visualization of buildings with single heights, multiple-roof visualized buildings 

are more appealing and close to the real situation. 

(b) 

 

to the base height to represent the base frames. Finally the 

piled upon the base frames (Figure 3.11). 

 

TIN structures of the pitched 

after adding the base frame. 

the study area. The panoramic 

3.12, and two enlarged 

in Figure 3.13 and Figure 3.14. Moreover, the buildings within the 

Figure 3.15).  

not only the structures of the flat roof segments 

(structures with colors from red to blue in Figure 3.12 to 3.14), but also that of the 

pitched roof segments (dark green structures in Figure 3.12 to 3.14) as well. Compared 

roof visualized buildings 
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Figure 3.12 Panoramic view of 3D building reconstruction 
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Figure 3.13 Partial view 1 of 3D building reconstruction 

 

Figure 3.14 Partial view 2 of 3D building reconstruction 



 

Figure 3.15 

3.3.1 Accuracy Evaluation

In this study 50 building heights 

accuracy of LiDAR elevation data. The hei
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 Visualization of 3D buildings with texture information

Evaluation of LiDAR Elevation Data

n this study 50 building heights are measured and used as reference to assess the 

accuracy of LiDAR elevation data. The heights are acquired using a

300). The TruPulse™ 300 equipment is capable of measuring 

horizontal distance, vertical distance, slope distance and inclination 

Since the x, y coordinates of building corners measured by 

can have considerable errors due to its ±3-5m accuracy 

ked by buildings, the validation points shown in Figure 

according to the photos took during height surveys. 

heights collected in the survey, but the time difference between LiDAR 

(year 2006) and the survey (year 2012) may cause some height 

e there may be building construction (e.g. tear down buildings, 

construct more levels) during this interval. After examination, 38 points 

assessing the accuracy of LiDAR elevation data. Those validation points 

red by TruPulse™ 300. The corresponding height values in the 

are extracted as well to compare with the reference heights
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a laser rangefinder 
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building corners measured by Garmin 

accuracy and the poor 

points shown in Figure 3.16 are 

according to the photos took during height surveys. Originally there 

collected in the survey, but the time difference between LiDAR 

(year 2006) and the survey (year 2012) may cause some height 

(e.g. tear down buildings, 

points are chosen for 

Those validation points are assigned 

he corresponding height values in the 

to compare with the reference heights. The 
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differences between reference heights and heights extracted from LiDAR for the 38 

points are calculated in Table 3.1. The average height difference is 0.25 meters, and the 

standard deviation is 0.29 meters. The scatter (xy) plot is drawn in Figure 3.17 based on 

the values in Table 3.1. The slope rate of the trendline is 1.004, which is very close to 1. 

Considering the accuracy of height measured by TruPulse™ 300 is averaged 0.3 - 0.5 

meters, the LiDAR derived nDSM data are regarded very accurate and suitable for 3D 

building modeling.  

 

Figure 3.16 Locations of the validation points 
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Figure 3.17 Scatter (xy) plot for height values of LiDAR data and TruPulse™ 300 

Table 3.1 Differences between reference heights and extracted heights from LiDAR 

Id 
TruPulse™ 

300 

LiDAR 

values 

Absolute 

Difference 
Id 

TruPulse™ 

300 

LiDAR 

values 

Absolute 

Difference 

1 17.30  17.52  0.22  20 8.20  8.37  0.17  

2 10.40  10.65  0.25  21 15.60  15.27  0.33  

3 12.00  11.95  0.05  22 23.80  23.65  0.15  

4 11.60  11.61  0.01  23 11.60  11.51  0.09  

5 6.50  6.10  0.40  24 19.60  19.20  0.40  

6 10.50  10.71  0.21  25 12.20  12.17  0.03  

7 22.10  22.26  0.16  26 13.30  12.95  0.35  

8 26.80  27.20  0.40  27 17.80  17.35  0.45  

9 7.80  7.53  0.27  28 17.90  17.35  0.55  

10 10.90  11.23  0.33  29 11.40  11.03  0.37  

11 7.80  7.58  0.22  30 26.10  26.47  0.37  

12 11.70  11.40  0.30  31 12.00  11.88  0.12  

13 13.20  13.10  0.10  32 14.90  14.76  0.14  

14 21.70  21.71  0.01  33 11.30  11.64  0.34  

15 11.80  11.93  0.13  34 18.50  18.41  0.09  

16 9.80  10.07  0.27  35 30.10  29.79  0.31  

17 16.50  16.69  0.19  36 10.30  10.45  0.15  

18 17.60  17.80  0.20  37 20.00  19.28  0.72  

19 17.90  17.63  0.27  38 45.20  45.52  0.32  

   
  Average 0.25 

   
 Standard Deviation 0.29 
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3.3.2 Evaluation of the detected roof planes 

Since several techniques are used to detect roof segments, which are further classified as 

flat and pitched roof planes, it is important to evaluate the performance of the two-stage 

strategies, considering the accuracy will determine the later reconstruction method. In 

this study, the number of the detected roof planes are calculated and compared with that 

of the reference roof planes. The confusion matrix of the classification of flat and pitched 

roof planes is calculated as well. Since it is difficult to obtain ready-made reference data 

of building roof planes, the reference roof planes are manually digitalized based on the 

hillshade image of the LiDAR nDSM data and used for the completeness evaluation. 

Those reference planes are further classified as the flat and pitched roof planes and used 

for the confusion matrix calculation. 

(1) Completeness of the detected roof planes 

A comparison between the reference roof planes and the planes derived from the LiDAR 

data is made to examine the completeness of detected results. The detailed comparisons 

of results are shown in Figure 3.18. The completeness percentage is calculated by 

dividing the number of extracted roof planes by the actual amount of roof planes 

identified from reference data. Very small roof parts (example 1 in Figure 3.18) are not 

regarded as planes in this study. All 50 buildings in the study area are used for evaluation 

of the completeness and the results are shown in Table 3.2.  

The overall completeness of the roof plane identification is very high (91.4%) 

considering the complex roof structures of buildings in the study area. The roof planes 

are completely identified in the 60% of buildings. About 26% of buildings are partially 

identified with completeness of larger than 80%. The rest of the buildings have a 

completeness of less than 80%. The completeness may be influenced by the number of 

roof planes each building has. Buildings that have fewer roof planes tend to obtain lower 

completeness if the same numbers of roof planes are unidentified (building #2 and #27). 
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Table 3.2 Completeness of detected roof planes 

*B# D# R# C% B# D# R# C% 

1 7 7 100 21 1 1 100 

2 1 2 50 22 3 3 100 

3 5 5 100 23 2 2 100 

4 2 2 100 24 1 1 100 

5 4 4 100 25 17 20 85.0 

6 5 5 100 26 3 4 75.0 

7 1 1 100 27 8 9 88.9 

8 19 21 90.5 28 5 6 83.3 

9 6 7 85.7 29 1 1 100 

10 6 6 100 30 14 18 77.8 

11 4 4 100 31 15 28 53.6 

12 22 24 91.7 32 4 6 83.3 

13 2 2 100 33 6 8 75.0 

14 32 35 91.4 34 11 11 100 

15 3 3 100 35 2 2 100 

16 1 1 100 36 22 23 95.7 

17 1 1 100 37 3 3 100 

18 12 12 100 38 25 28 89.3 

19 7 7 100 39 13 14 92.9 

20 1 1 100 40 8 8 100 

41 4 4 100 46 5 7 71.4 

42 6 7 85.7 47 5 5 100 

43 2 2 100 48 8 9 88.9 

44 5 10 50.0 49 15 15 100 

45 6 6 100 50 6 9 66.7 

Average completeness = 91.4% 

B#: Building number                                        R#: Number of the reference roof planes 

D#: Number of the detected roof planes          C%: Completeness percentage 

(2) Confusion matrix of the flat and pitched roof planes classification 

Although the completeness can indicate the efficiency of the roof plane identification, the 

classification accuracy of the flat and pitched roof planes is still unclear. Evaluation of 

the roof shape classification should be examined as well since the classification is the 

foundation based on which reconstruction strategies are applied differently for the flat 

and pitched roofs. Therefore, another evaluation method is conducted by comparing the 
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number of the flat, pitched and unidentified roof planes from the LiDAR nDSM data with 

the reference data, and creating the confusion matrix as shown in Table 3.3.  

Table 3.3 The confusion matrix for the classification of roof shape  

 

Reference data 

 

 

 

Extracted data Flat Pitched Unclassified User’s accuracy 

Flat 304 7 0 97.8% 

Pitched 0 57 0 100% 

Unclassified 40 12 0 0% 

Producer’s accuracy 88.4% 75.0% - Overall accuracy = 88.8% 

In the result, 368 (311 + 57) out of the 420 roof planes are extracted. The overall 

accuracy of the classification is found to be 88.8%. The user’s accuracy of the pitched 

roof planes is 100%, which means there is no commission error for the pitched plane 

extraction. The user’s accuracy of the flat roof planes is 97.8%, indicating 7 pitched roof 

planes in the reference data are mistakenly classified as the flat, which can be later 

improved by applying different cut-off thresholds on the slope of the nDSM data. For the 

producer’s accuracy, 88.4% of flat roof planes are detected among the total 344, while 25% 

of pitched roof planes in the reference data are classified as others (since those pitched 

roof planes are not detected in the first place), a large portion of which result from the 

incapability of the identification of the protruding windows upon the pitched roof planes. 

3.3.3 Visual Assessment of the 3D Reconstruction Results 

The visual assessment of the reconstructed 3D building models indicates that the method 

successfully reconstructs most of the 3D building models by extruding the flat roof 

planes and creating TIN structures for the pitched roof planes. Several reconstructed 3D 

building models are shown in Figure 3.18. Example 1, 2, 3 and 4 are buildings with flat 

roof planes, example 5 is the building with pitched roof planes, and example 6 is the 

building combined with both flat and pitched roof planes. Examples of reconstructed 3D 

buildings that contain errors in roof configuration are shown in Figure 3.19.  
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For the flat, most of the jump edges are successfully detected using the Canny algorithm, 

which is very effective in identifying edges with less height variations than the typical 

edges (example 3 and 4 in Figure 3.18). However, there are still some flat planes that fail 

to be identified (example 1 and 2 in Figure 3.19), since the height difference is too small 

to be detected. Due to the processing criteria, the detected edges shorter than 5 meters are 

removed. Besides eliminating noise edges, the criteria also unfavorably eliminate small 

roof segments. Considering that the point density of the LiDAR data in this study is only 

1 point / m2, which is not sufficient for the detection of detailed roof structures 

(Alexander et al., 2009), and the shapes of the extracted small roof segments are irregular, 

the small planes are considered as the same planes as their larger surrounding planes 

(example 1 in Figure 3.18 and example 3 in Figure 3.19). 

The method is very efficient in detecting buildings which have mixed roof shapes with a 

pitched roof segment piling upon a larger flat roof segment. Even though the ridgelines of 

the pitched roof segments are not identified at the first level of the edge detection due to 

the non-obvious height variations, the method is able to detect the intra-structures of the 

pitched roof segments in the later steps. Roof segments with slopes of less than 20 

degrees are classified to be flat using the classification threshold. Some pitched roof 

segments with slopes of less than 20 degrees thus are mistakenly categorized as flat ones. 

A major drawback of the performance is that chimneys and protruding roof structures on 

the pitched roof segments are not well visualized, the main reason for which, as 

mentioned above, is the low point density of the LiDAR data, making it difficult to trace 

corresponding edges and reconstruct properly. The detection and reconstruction 

performance would be better if LiDAR data with higher point densities are used.  

 



 

80 

 

 

Figure 3.18 Six samples of edge detection results and reconstruction models (from 

row (1) to row (6)). From left to right, column (a): aerial photos; column (b): hill-

shaded images generated from the nDSM data;  column (c) reference planar facets 

derived from the LiDAR nDSM data; column (d): planar facets detection results 

and; column (e): the final 3D models. 
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Figure 3.19 Missed or misinterpreted roof planes. (1) (2) and (3) are examples of the 

poor performances. (a) aerial photos; (b) hillshade images of the nDSM data; (c) 

extracted building roof structures 

3.4 Conclusions and Discussions  

A GIS-based technique is developed in this paper to reconstruct 3D building models from 

the airborne LiDAR data. Despite the aforementioned problems, the method presented in 

this study has successfully modeled 3D buildings using the LiDAR data and the 2D 

building footprints extracted in Chapter 2. Most previous studies use either LiDAR point 

clouds or interpolated grid data to segment roof planes and reconstruct building models. 

The major difficulties of the previous studies in reconstructing 3D building models 

include the identification of height variations (jump edges) between flat roof segments 

and the detection of ridgelines and planes in the pitched roof segments. Instead, the 

method presented in this study identifies roof planes by detecting edges within buildings, 
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based on which GIS techniques are used to process and reconstruct building models. The 

main differences between this study and the previous ones are: (1) the direct edge 

detection from the LiDAR nDSM data, compensating for the problem of the 

identification of jump edges and ridgelines; (2) classification of roof shape types, and (3) 

the separate modeling strategies for the flat and pitched roofs. The method has some 

applicability and reproducibility, the generated 3D building models can be further utilized 

as fundamental data for various applications such as urban design, urban heat island 

studies and flood risk analysis. The main software used in this study is ArcGIS, which is 

the industrial standard software for GIS and can be widely accessed in educational 

institutions, government organizations and private industries. 

The GIS-based reconstruction method presented here is proven to be effective for 

creating 3D building models from LiDAR data in urban environments. The proposed 

method in this study is able to detect most of the jump edges and identify 90% of the flat 

roof planes. The ridgelines in the pitched roof segments are extracted sufficiently by 

applying Canny edge-detection algorithm to the aspect image of the nDSM data. 91.4% 

overall completeness of the roof-plane identification is achieved, which is successful 

considering the complicated building structures in the study area. The roof planes in 60% 

of buildings are completely detected, while there are only less than 25% buildings, of 

which roof planes are partially identified with less than 80% completeness. The 

classification accuracy of the roof shape types (flat and pitched) are examined as well. 

The confusion matrix is calculated based on the flat, pitched and unidentified roof planes 

to evaluate the classification performance. The overall accuracy of the classification is 

88.8%, with the user’s accuracy of flat planes 97.8% and that of pitched planes 100%. In 

contrast, the producer’s accuracies for the two roof shape types are 88.4% and 75% 

respectively. The low producer’s accuracy of pitched planes indicates the incapability of 

identification of chimneys and protruding windows upon the pitched roofs. 

Despite the merits of the proposed method, some aspects still need to be improved in 

future work. For example, the point density of the LiDAR data used in this study is 1 

point / m2, which is insufficient in detecting small roof planes in the flat roof segments 

and the protruding structures in the pitched roofs as well. LiDAR data with higher point 
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densities should be used if detailed roof structures need to be identified. The cut-off angle 

threshold in the classification of pitched roof segments can be further modified by 

smoothing the slope image of the nDSM data, since there are some lines structures on top 

of the roof planes causing the high slope values. Generalization methods also can be used 

to regularize the detected building edges in the future work. 
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Chapter 4  

4 Conclusion 

4.1 Summary 

It is important to map building footprints and reconstruct 3D building models because the 

information can be used as fundamental GIS data, which can be applied in multiple 

scientific and engineering applications such as urban planning and design, urban climate 

and environmental studies, and emergency response applications. Remote sensing data 

have been regarded as valuable sources for the extraction of building information for 

decades. LiDAR technology has shown great potential in extracting building information. 

LiDAR data not only possess high resolution quality, but also can provide accurate 

vertical information along with multiple returns and intensity data. The research 

presented here includes a method for urban 2D building footprint extraction using the 

rule-based object-oriented classification approach and a method for 3D building model 

reconstruction in a GIS environment from airborne LiDAR data. 

Chapter 2 proposes a rule-based object-oriented approach, including some new 

techniques, to extract building footprints using the airborne LiDAR data. The semi-

automatic method is applied to the LiDAR data for campus of the University of Western 

Ontario, London, ON. Detailed procedures are presented for the pre-processing, 

segmentation and the rule-based classification of buildings. Finally the reference building 

footprints are used to examine the performance of proposed method. 

Chapter 3 develops a GIS-based reconstruction method for 3D building models from the 

airborne LiDAR data. The same study area is applied and the 2D building footprints 

derived from Chapter 2 are used in this research as well. The method presented here 

identifies roof planes by directly detecting edges on the LiDAR nDSM data within 

building footprints, based on which GIS techniques are used to reconstruct 3D building 

models. The digitized and classified roof planes from the hillshade of the nDSM data are 

used as reference data for the evaluation of the roof-plane identification and roof shape 

classification. The completeness of roof plane identification and the confusion matrix for 
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the roof shape classification are calculated respectively. Visual assessment of the 

reconstructed 3D building models is made as well. 

4.2 Conclusions 

The study has successfully answered the research questions from Chapter 1. The specific 

answers are presented as follows: 

1. The results of the proposed rule-based object-oriented extraction of building 

footprints prove to be satisfactory. The overall accuracy of 94.0% and 

commission error of 6.3% with overall Kappa of 0.84 achieved. 

2. The results of the three contrastive methods indicate that NDTI and intensity play 

very important roles in object-based building extraction. The object-based 

method with only LiDAR nDSM data has the highest commission error, while 

adding NDTI remarkably reduces the error by 29.0%.  The intensity data 

contribute to the final result by improving 1.5% of overall accuracy and 

decreasing 1.8% of commission error making the joint effort with NDTI in the 

proposed method. 

3. Roof structures can be identified and the 3D building models can be 

reconstructed using GIS-based strategies from the LiDAR data. The performance 

is satisfactory considering the complexity of the study area. 

4. The GIS-based reconstruction method is simple and effective for creating 3D 

building models from LiDAR data. 91.4% completeness of the roof plane 

identification is achieved, among which the roof planes of 60% of buildings are 

completely detected. The overall accuracy of roof shape classification is 88.8% 

with the user’s accuracy of flat planes 97.8% and that of pitched planes 100%. 

4.3 Contributions 

The main contribution of the study in Chapter 2 is to develop an effective object-based 

method for building footprint extraction. The method can successfully separate buildings 

from trees and generate accurate building footprints. The NDTI and intensity data are 
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used as the main parameters in rule-based object-oriented approach, and the roles of the 

two parameters played in the proposed method are examined, which indicate that both 

parameters should be used in the object-based classification to achieve the best extraction 

result. The conclusions can support the related research on LiDAR-based building 

footprint extraction in the future. 

Chapter 3 is one of the few studies that use GIS-based techniques to reconstruct 3D 

building models from the LiDAR data. The proposed reconstruction strategy is able to 

greatly reduce the problems from previous studies. The GIS-based approach presented 

here can be applied in the reconstruction of 3D building models from LiDAR data since 

the implementation is less complicated yet effective enough to achieve satisfactory 

results.  

The implementation of the two methods in other urban areas needs to be examined in the 

future, the application of this study in systematically generating 2D and 3D building 

information appears promising. 

4.4 Possible Future Research 

4.4.1 Object-based classification 

Future research can potentially improve the result of building footprints in several 

different aspects. For the proposed rule-based object-oriented method, building footprints 

would be extracted more accurately by adding other parameters for the rule-based 

classification. Many parameters describing the spatial and spectral information of the 

objects can be examined in the future. Additionally, since the rule-based classification is 

used in the object-based method, the “Fuzzy membership” can be used in the 

classification of building and non-building classes. The Fuzzy rule-base allows image 

objects to have membership in more than one class, and uses membership functions to 

represent the imprecise nature of the properties and relationships that can characterize 

building and non-building classes (Aldred and Wang, 2011). Although the proposed 

object-based technique is able to extract some small buildings, the rest are left out due to 

their spatial and spectral disparity from typical buildings. The fuzzy membership may 

improve the efficiency of detecting small building objects by comparing their fuzzy 
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values returned by the contributions of the object features (e.g. shape, texture), and the 

class membership of the objects are assigned as the possibility of the objects belonging to 

the class. The fuzzy functions would benefit classifying more small buildings. 

4.4.2 GIS-based Reconstruction method 

Despite the merits of the proposed method, some aspects still need to be improved for the 

reconstruction of 3D building models. For example, the point density of the LiDAR data 

used in this study is 1 point / m
2
, which is insufficient to detect very small roof planes in 

the flat roof segments and protruding structures in the pitched roof segments as well. 

LiDAR data with higher point densities should be used if detailed roof structures need to 

be identified. The cut-off angle threshold in the classification of the pitched roof 

segments can be modified and applied in multiple levels in order to increase the 

classification accuracy. Another aspect to be improved is the post-processing of the 

detected edges. No generalization method is used to regularize the detected building 

edges. Future work can include the improvement of smoothing and squaring the detected 

edges, thus better visualization of 3D building models can be achieved. 
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Appendix 1 

The pseudo-code for the rule-based classification 

# Initialize the classes, input layers and pre-defined parameters 

Initialize: 

Input[3]=[nDSM_FR, nDSM_LR, Intensity, NDTI]. 

Class[1] =[Building_Candidate, Unclassified] 

SpectralDifference = 1 

 

# PerformMultiresolution segmentation and generate the first level of image objects 

MultiresolutionSegmentation(Input, WnDSM_FR = 1, WnDSM_LR = 1, WNDTI = 1, 

ScaleParameter = 10) 

 return ImageObject1 

 

# Iterate Spectral Difference segmentation until the spectral difference is no larger than 

the user-defined threshold of 1, and generate the second level of image objects 

WhileSpectralDifference> 1 

SpectralDifferenceSegmentation(ImageObject1, WnDSM_FR = 1, WnDSM_LR = 1, 

WIntensity = 1, WNDTI = 2, SpectralDifference = 1) 

  return ImageObject2 
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# In the classification of buildings, the first step is to assign the basic qualified image 

objects to building candidates. 

Assign ImageObject2 to Unclassified 

If the mean value of NDTIUnclassified<= 0.001 AND the mean value of 

nDSM_LRUnclassified>= 2.5 OR the mean value of nDSM_FRUnclassified>= 30 

 Assign Unclassified to Building_Candidate 

If the value of RoundnessBuilding_Candidate<= 0.41 AND the value of AreaBuilding_Candidate<= 

190 

 Assign Building_Candidate to Unclassified 

 

# The second step is to assign adjacent building objects to building candidates. 

While (the value of RoundnessUnclassified>= 3 OR the mean value of nDSM_LRUnclassified>= 

2.5) AND the value of Rel. border toBuilding_Candidate>= 0.6 

Assign Unclassified to Building_Candidate 

Merge all the objects of Building_Candidate 

 

# The third step is to assign building edge objects to building candidates. 

If (the value of RoundnessUnclassified>= 2.8 OR the mean value of nDSM_LRUnclassified>= 6) 

AND the value of Rel. border toBuilding_Candidate>= 0.4 

Assign Unclassified to Building_Candidate 

Merge all the objects of Building_Candidate 
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While the mean value of nDSM_LRUnclassified>= 3.5 AND the mean value of 

nDSM_LRUnclassified<=5.3 AND the value of Rel. border toBuilding_Candidate>= 0.5 

Assign Unclassified to Building_Candidate 

Merge all the objects of Building_Candidate 

 

# After classification, the next step is to post-process the building candidates. 

If the value of AreaBuilding_Candidate<= 200 

Assign Building_Candidate to Unclassified  

If (the value of AreaBuilding_Candidate> 200 AND the value of AreaBuilding_Candidate< 1000) 

AND (the value of Rectangular FitBuilding_Candidate< 0.9 OR the value of Rectangular 

FitBuilding_Candidate>= 0.997) 

Assign Building_Candidate to Unclassified  

Merge all the objects of Building_Candidate 

Merge all the objects of Unclassified 

 

# Export the building candidates 

ExportVectorLayer (Building_Candidate, Polygon) 
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Appendix 2 

Comparisons of edge detection operators 

Edge detection is the process of identifying and locating sharp brightness changes or 

discontinuities presented in an image. Those brightness changes are typically organized 

into a set of boundaries of objects or line segments termed edges. Classical edge detectors 

usually convolve the image with an operator, which is constructed to detect the gradients 

while be insensitive to homogeneous areas (Jähne et al., 1999). There are many edge 

detection algorithms available, such as Sobel operator, Robert’s cross operator, Prewitt’s 

operator, Laplacia of Gaussian and Canny detector, each of which is designed to detect 

certain types of edges yet has its own limitations. All the aforementioned operators are 

available in ENVI software. 

A2.1 Sobel Operator 

Sobel operator has a pair of 3 by 3 convolution kernels as shown in Figure A2.1. dy is 

simply the dx rotated by 90 degrees. The kernels are constructed to detect edges running 

vertically and horizontally relative to the pixel grid, dx is to detect vertical edges and dy 

responds to horizontal edges. The two kernels can be used separately for the image to 

generate separate gradients, which can be then combined to calculate the absolute 

magnitude (g(i,j) in Figure A2.1) of the gradient at each pixel.  

 

Figure A2.1 Equations of Sobel operator 
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A2.2 Robert’s cross operator 

Robert’s cross operator has a pair of 2 by 2 convolution kernels as shown in Figure A2.2. 

D2 is simply D1 rotated by 90 degrees, which is very similar to the Sobel operator. The 

kernels are designed to detect edges running at 45 degrees to the pixel grid, and the 

detection directions of the two kernels are perpendicular with each other. Similar to the 

Sobel operator, the two kernels can be used separately for the image to produce separate 

gradient results, which are then combined to calculate the absolute magnitude of the 

gradient at each pixel. G(i,j) in Figure A2.2 is just another expression as the g(i,j) in 

Figure A2.1 

 

Figure A2.2 Equations of Robert’s cross operator 

A2.3 Prewitt’s Operator 

Prewitt’s operator is also very similar to the Sobel operator to detect vertical and 

horizontal edges in the image. The operator has a pair of 3 by 3 convolution kernels as 

shown in Figure A2.3. The only difference between the Prewitt’s operator and the Sobel 

operator is the numbers in the kernel.  

 

Figure A2.3 Equations of Prewitt’s operator 
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A2.4 Laplacian of Gaussian 

The Laplacian operator is an isotropic detector of the second spatial derivative of an 

image. Since the second derivative of an image refers to the change rate of brightness 

presented in the image (the change rate is the maximum when the second derivative of an 

image reaches zero), the Laplacian operator can be used for edge detection. Based on the 

definition of the Laplacian, some commonly used 3 by 3 kernels are shown in Figure 

A2.4. 

 

Figure A2.4 Equations of Laplacian operator 

A2.5 Comparisons of the operators 

Since the aforementioned operators are available in ENVI software, all the mentioned 

operators are applied to the nDSM of the last return image. The results are shown in 

Figure A2.5  

The results of Sobel’s operator, Robert’s cross operator and Prewitt’s operator are quite 

similar. The detected edges are thick and blur. There is also detection of false edges with 

low values in the image. As mentioned before, Sobel’s operator, Robert’s cross operator 

and Prewitt’s operator are more capable of detecting edges running certain directions, 

which, in this study, are not the best candidates for edge detection within buildings 

because of the random building orientations presented in the study area. 

As for Laplacian operator, two results are generated using different kernel sizes. However, 

there is no obvious difference in the two images. Besides the thick edge problem, the 

results generated by Laplacian operator are influenced by the noise. The kernels are 
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approximately second derivative measurements on the image, and both the noises and the 

edges contain high frequency content, thus Laplacian operator is very sensitive to the 

noise, which results in less accurate identification of the detected edges. 

Compared with other operators, Canny operator outperforms with its multi-stage 

algorithm. The algorithm is designed to iterate the detection process until there are as 

many real edges as possible detected. The Canny operator is also capable of thinning the 

detected edges down to generate a better result. By comparison, Canny operator is finally 

chosen for the edge detection of buildings in this study. 

 

(a)                                                               (b) 

 

(c)                                                               (d) 
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(e)                                                                 (f) 

Figure A2.5 Results of edge detection using different operators. (a) Sobel operator; 

(b) Robert’s cross operator; (c) Laplacian operator with 3 by 3 kernel; (d) 

Laplacian operator with 5 by 5 kernel; (e) Prewitt’s operator and (f) Canny 

operator 

A2.6 References 

Jähne, B.,Scharr,H., and Körkel,S. 1999. Principles of filter design. In Handbook of 

Computer Vision and Applications.Academic Press. 

  



 

99 

 

Appendix 3 

Implementation of GIS-based 3D building reconstruction 

In this appendix, a detailed description of the implementation of GIS-based 3D building 

reconstruction method is presented, which can be categorized as five main steps: edge 

detection, edge processing, boundary processing, classification of rooftops and building 

reconstruction. The main theories of the method have been elaborated in Chapter 4, thus 

only implementations are shown in the following sections. 

A3.1 Edge detection 

Canny operator is used for edge detection within building footprints. There are three 

parameters need to be specified for Canny operator: sigma, low threshold and high 

threshold. Sigma is the standard deviation of the Gaussian filter, of which typical values 

are from 0.6 to 2.5. Low threshold and high threshold are the hysteresis threshold values. 

The typical value range of low threshold is between 0.2 and 0.5 and that of high threshold 

is within 0.6 an 0.9. Thus a three-level loop is set to iterate the Canny algorithm with 

different combination of the three parameters. The code is written in IDL environment 

embedded in ENVI software. Details for the iteration can be seen as follows: 

;---------------------canny edge detection----------------------------- 
;---------------------Writen By Ting Zhao------------------------------ 
;--------------------Department of Geography--------------------------- 
;-----------------University of Western Ontario------------------------ 
 
;Syntax: canny(A,highthreshold,lowthreshold,sigma) 
; 
;A is a 2D image array of numbers, typically of bytes 
; 
;Sigma is the standard deviation of a guassian smoothing filter. 
;      Typical values are in the range 0.6 to 2.5. The choice  
;      depends on the noisiness of the image. 
;lowthreshold and highthreshold are the hysteresis threshold values. 
;      They must be in the range 0<lowthreshold<highthreshold<1. 
;      Typical value ranges are lowthreshold in 0.2-0.5 and 
highthreshold in 0.6-0.9. 
;-----------------University of Western Ontario------------------------ 
 
; theGetData program below mainly initialize the parameters and set 
; up the processing environment 
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ProGetData,ImgData = ImgData,ns = ns,nl = nl,nb = nb,Data_Type = 
Data_Type,$ 
FileName = FileName,Map_info = map_Info 
Envi_Open_File,FileName,R_Fid = R_Fid,/no_realize 
ENVI_FILE_QUERY,R_fid,ns = ns,nl = nl,nb = nb,Data_Type = Data_Type 
map_info = envi_get_map_info(fid=R_fid) 
dims = [-1,0,ns - 1 ,0,nl - 1] 
caseData_TypeOf 
1:ImgData = BytArr(ns,nl,nb)    ;  BYTE  Byte 
2:ImgData = IntArr(ns,nl,nb)    ;  INT  Integer 
3:ImgData = LonArr(ns,nl,nb)    ;  LONG  Longword integer 
4:ImgData = FltArr(ns,nl,nb)    ;  FLOAT  Floating point 
5:ImgData = DblArr(ns,nl,nb)    ;  DOUBLE  Double-precision floating 
EndCase 
Fori = 0,nb-1DoBegin 
Dt = Envi_Get_Data(Fid = R_Fid,dims = dims,pos=i) 
ImgData[*,*,i] = Dt[*,*] 
EndFor 
End 
 
;---------------------------------------------------------------------- 
 
procanny_test 
t0=systime(1) 
    
Filename='E:\Master_Research\LiDAR\BuildingReconstruction\LiDAR_UWO_cro
p_DEM_LR_NDSM_Extracted_0data.tif' 
GetData,ImgData = ImgData,ns = ns,nl = nl,nb = nb,Data_Type = 
Data_Type,FileName = FileName,Map_info = map_Info 
 
for a = 0, 3dobegin;from 0.6 to 0.9, with 0.1 interval 
for b = 0, 3dobegin;from 0.2 to 0.5, with 0.1 interval 
for c = 0, 19dobegin;from 0.6 to 2.5 
img_canny = canny(ImgData,HIGH=0.1*a+0.6,LOW=0.1*b+0.2, 
SIGMA=0.1*c+0.6) 
          x=0.1*a+0.6 
          y=0.1*b+0.2 
          z=0.1*c+0.6 
Envi_Write_Envi_File,img_canny,Out_Name = 
'E:\Master_Research\LiDAR\BuildingReconstruction\canny_test\LiDAR_NDSM_
canny_H'+strmid(strtrim(string(x),1),0,4)+'_L'+strmid(strtrim(string(y)
,1),0,4)+'_S'+strmid(strtrim(string(z),1),0,4)+'.tif',Map_info = 
map_Info 
endfor 
endfor 
endfor 
print, 'The spent time is', systime(1)-t0, 'seconds' 
 
end 
;---------------------------------------------------------------------- 
 

More than 300 results are generated by this code. Visual examination is conducted by 

starting with the default values for the three parameters. Based on empirical observation, 
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the performance of the edge detection is regarded as the best when the sigma was set to 

0.7, with the high threshold 0.6 and the low threshold 0.4 (Figure 3.4).  

A3.2 Edge processing 

After edge detection, the building edges need to be vectorized for further processing. This 

step is automatically performed on the binary image of building edges using the 

“Vectorization” function from the ArcScan module of ArcGIS 10. 

After clicking “Start editing” for the binary image of building edges, “Vectorization 

Setting” should be opened to set up the parameters for vectorization (Figure A3.1). 

Attempts of different combinations are conducted until the optimal vectorization is 

performed. The vectorized edges are stored as Polyline Shapefile in ArcGIS. The 

generated edges need initial processing, which is to delete polylines with length of less 

than 5 meters (Figure A3.2). 

 

Figure A3.1 Vectorization settings 



 

Figure A3.2 Vectorization result. Left: binary image of building edges; Right: 

vectorized and 

Since many polylines are

close up the polylines, which 

The topology rules of polylines are very important in this step. 

arrangement that defines how point, polyline and poly

geometry (ESRI, 2011)

should be no gaps between polygons, there should be 

Figure 

In this case, specifically, the endpoints of 

validating the topology rule 

Detailed steps are shown in Figure A
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Vectorization result. Left: binary image of building edges; Right: 

vectorized and initially processed building polylines

are not closed up in the vectorization process

close up the polylines, which is the precondition of transforming polylines 

he topology rules of polylines are very important in this step. In ArcGIS, topology is the 

arrangement that defines how point, polyline and polygon features share coincident 

(ESRI, 2011). Topology defines and enforces data integrity rules (e.g. there 

should be no gaps between polygons, there should be no intersection 

Figure A3.3 Topology rules for vector data in ArcGIS

n this case, specifically, the endpoints of polylines that dangle in the air 

validating the topology rule “Must Not Have Dangles (Line)” for the vectorized polylines. 

etailed steps are shown in Figure A3.4. 

 

 

Vectorization result. Left: binary image of building edges; Right: 

processed building polylines 

process, the next step is to 

polylines to polygons. 

n ArcGIS, topology is the 

gon features share coincident 

opology defines and enforces data integrity rules (e.g. there 

intersection between polylines). 

 

rules for vector data in ArcGIS 

dangle in the air are detected by 

for the vectorized polylines. 
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Figure A3.4 Steps for creating topology rules for vectorized edges 

After validating the pre-defined topology rule, the topology errors can be checked. The 

“Fix topology error tool” (arrow with a red cross in the Topology toolbar) is used to 

select those dangled points (black squared points after selecting, pink squared points 

before selecting) to see the detailed information (Figure A3.5 Left). The error points need 

to be fixed by right clicking the error list to pop up fixing tools such as snap, extend and 

trim (Figure A3.5 Right). Considering most of the polylines with dangling endpoints are 

nearly perpendicular to their encountering polylines, an iteration with different levels of 

cluster tolerance thresholds (2 meters, 4 meters, 6 meters etc.) based on empirical 

observation is set for the “Extend” function to extend the dangled endpoints until most of 

them are joined to the polylines encountered on the way of extending direction. 



 

Afterwards, the “Snap”

nearest polylines with attempted snap tolerance values

Figure A3.5 Edge processing according 

points; Right: edge processing for selected error points

After edge processing, the closed edge polylines

polygons that represent single roof planes

“Feature to Polygon” in ArcGIS

of Figure A3.6. Noticing that there 

their surrounding larger polygons, 

with neighboring polygons by dropping the shared border. 

selecting the polygons using 

join those small polygons

border (Figure A3.8). T

shared border with those small polygons.

FigureA3.6. 
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” function is then used to attach the rest of dangled endpoints to the 

with attempted snap tolerance values. 

Edge processing according to topology errors. Left: selection 

points; Right: edge processing for selected error points

fter edge processing, the closed edge polylines ((a) in Figure A3.6)

at represent single roof planes, which is implemented by using the tool 

in ArcGIS (Figure A3.7). The generated polygons is shown in (b) 

Noticing that there are many small polygons that can be merged with 

their surrounding larger polygons, small polygons with areas less than 20 

with neighboring polygons by dropping the shared border. This step 

selecting the polygons using “Select Layer by Attribute” and using 

polygons to their surrounding larger polygons via dropping the

The neighboring polygons refer to the ones that have the longest 

shared border with those small polygons. The revised polygons are shown in (c) of 

 

then used to attach the rest of dangled endpoints to the 

 

. Left: selection of error 

points; Right: edge processing for selected error points 

.6) are used to generate 

implemented by using the tool 

he generated polygons is shown in (b) 

many small polygons that can be merged with 

less than 20 m
2
 are merged 

This step is realized by 

and using “Eliminate” tool to 

to their surrounding larger polygons via dropping the shared 

he neighboring polygons refer to the ones that have the longest 

The revised polygons are shown in (c) of 



 

(a)                                                             

(c)                                                                  (d)

Figure A3.6 Results after different stages of edge processing. (a) 

polylines; (b) polygons

small polygons removed
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(a)                                                                  (b)

(c)                                                                  (d)

Results after different stages of edge processing. (a) 

polygons derived from closed edge polylines; (c) Revised polygons with 

small polygons removed; (d) polygons after boundary processing

 

 

(b) 

 
(c)                                                                  (d) 

Results after different stages of edge processing. (a) closed edge 

Revised polygons with 

polygons after boundary processing. 



 

106 

 

 

Figure A3.7 “Feature to polygon” tool in ArcGIS 

 

Figure A3.8 “Eliminate” tool in ArcGIS 
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A3.3 Boundary processing 

Since the building edges are detected within the extent of the cropped nDSM data, the 

outlines of the polygons derived from the building edges do not perfectly overlap with the 

extracted building boundary. The final processing step is to overlay the edge polygons 

and the extracted building footprints to regularize building edges. This part is elaborated 

in Chapter 3 and stressed again in this session. The differential areas (pink areas shown in 

Figure 3.7 (c)) are identified using “Union” tool to overlap the polygons and the extracted 

building boundaries (Figure A3.9). Only the differential areas within the extracted 

boundaries (red boundary) are merged to the neighboring polygons with the longest 

sharing border using “Eliminate” tool again. The revised polygons are shown in (d) of 

Figure A3.6. 

 

Figure A3.9 “Union” tool to join the two polygon features together 
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A3.4 Classification of roof shape 

The average heights and slopes of the roof segments are assigned those roof segments 

using Zonal Statistics in ArcGIS 10 (Figure A3.10). The slope parameter of the nDSM 

data is used to classify the types of roof segments within the same building, for which 

two types of roof segments (flat and pitched) are considered. Based on author’s 

knowledge of the study area, roof segments with average slopes less than 20 degrees are 

classified as flat roof segments and those with average slopes in the range of 20 and 60 

degrees as pitched roofs. Those roof segments with slopes of more than 60 degrees are 

assigned to flat roof segments as well. This step is easily realized by classifying the 

polygons into three classes according to slope values (Figure A3.11). Polygons 

representing flat roof segments and pitched roof segments are exported separately as 

polygon shapefiles in ArcGIS 

 

Figure A3.10 The “Zonal Statistics” tool in ArcGIS 
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Figure A3.11 Classify the slopes into three categories. 

A3.5 Building reconstruction 

For the polygons representing flat roof segments, visualization can be easily made 

through applying the mean height values to polygons in the “Extrusion” function (Figure 

A3.12) of ArcScene, which is a platform for 3D modeling and visualization. By choosing 

the height values and adding them to each polygon’s base height (in this study, the 

elevation in the DTM data), 3D models of flat roof segment are visualized in Figure 

A3.13. 
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Figure A3.12 “Extrusion” function in ArcScene 

 

Figure A3.13 3D visualization of flat rooftops 
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Compared with flat roofs, roof segments with pitched surface are more difficult to 

visualize since they cannot just be extruded to a single height. Even though the pitched 

roof segments are detected from the classification of roof shape, the intra-structures of 

which are not well identified using Canny detector because there are no obvious elevation 

difference in ridgelines. The aspect parameter of the nDSM data can clearly distinguish 

different surfaces of pitched roof polygons without the need of defining the dominant 

building orientation. Therefore the aspect is used to classify sub-polygons within the 

pitched rooftops. “Aspect” tool in ArcGIS is applied to create the aspect image derived 

from the nDSM of the first return data (Figure A3.14). 

 

Figure A3.14 “Aspect” tool in ArcGIS 

The ridgelines are identified by again applying the Canny edge detector to the aspect 

image within the boundaries of the pitched roof polygons. The sudden changes in aspect 

values can be easily detected by Canny algorithm. Afterwards, similar edge processing 

(see section A3.2 and A3.3) is employed to generate closed polylines. The main part of 

the Canny code for ridgeline detection can be seen as follows: 

 



 

;----------------------------------------------------------------------
procanny_test2_pitched
t0=systime(1) 
    
Filename='E:\Master_Research
ng\pitched_aspect3.tif'
GetData,ImgData = ImgData,ns = ns,nl = nl,nb = nb,Data_Type = 
Data_Type,FileName = FileName,Map_info = map_Info
 
for a = 0, 3dobegin
for b = 0, 3dobegin
for c = 0, 19dobegin
img_canny = canny(ImgData,HIGH=
          x=0.1*a+
          y=0.1*b+
          z=0.1*c+
Envi_Write_Envi_File
'E:\Master_Research
test2\Pitched_canny_H'
trim(string(y),1),
_info = map_Info 
endfor 
endfor 
endfor 
print, 'The spent time is
 
end 
;----------------------------------------------------------------------

Those processed polylines

inserting vertices along 

for creating TIN structures in the 3D visualization

Figure A3.15

112 

----------------------------------------------------------------------
pitchedroof 

Master_Research\LiDAR\BuildingReconstruction
_aspect3.tif' 

,ImgData = ImgData,ns = ns,nl = nl,nb = nb,Data_Type = 
Data_Type,FileName = FileName,Map_info = map_Info 

dobegin;from 0.6 to 0.9, with 0.1 interval
dobegin;from 0.2 to 0.5, with 0.1 interval
dobegin;from 0.6 to 2.5 

(ImgData,HIGH=0.1*a+0.6,LOW=0.1*b+0.2
*a+0.6 
*b+0.2 
*c+0.6 

Envi_Write_Envi_File,img_canny,Out_Name = 
Master_Research\LiDAR\BuildingReconstruction\IDL_programming

_canny_H'+strmid(strtrim(string(x),1),0,4
),0,4)+'_S'+strmid(strtrim(string(z),1

The spent time is', systime(1)-t0, 'seconds' 

----------------------------------------------------------------------

polylines (Figure A3.15 Left) are then densified in ArcGIS 10 by 

vertices along polylines so that there are enough and evenly distributed vertices 

structures in the 3D visualization (Figure A3.15 Right)

15 Before and after performing “Densify” tool in ArcGIS

 

---------------------------------------------------------------------- 

BuildingReconstruction\IDL_programmi

,ImgData = ImgData,ns = ns,nl = nl,nb = nb,Data_Type = 

;from 0.6 to 0.9, with 0.1 interval 
;from 0.2 to 0.5, with 0.1 interval 

0.2,SIGMA=0.1*c+0.6) 

IDL_programming\canny_
4)+'_L'+strmid(str
1),0,4)+'.tif',Map

---------------------------------------------------------------------- 

then densified in ArcGIS 10 by 

enough and evenly distributed vertices 

.15 Right). 

 

tool in ArcGIS 
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Figure A3.16 “Densify” tool in ArcGIS 

In the “Densify” tool, the densification method and distance need to be specified. Usually 

the “Distance” method is chosen for the function. The distance should be adequate but 

not too concentrated to influence the performance of TIN structures. In this case, the 

distance of 10 meters is chosen based on empirical observation. 

The densified points are then assigned with the corresponding height values of the nDSM 

data, thus every vertex has an elevation value representing the building height in that 

location. This step can be done using the “Extract Values to Points” tool in ArcGIS 

(Figure A3.17). However, the assigned heights of those vertices cannot be all the same 

due to many reasons (e.g. the positional accuracy of roof segment outlines and ridgelines, 

noises along building edges caused by interpolation), which can affect the visualization 

performance. To compensate the problem, the points located at the outlines of the pitched 

roof segments are selected by intersecting with the extracted building footprints (Figure 

A3.18), the mean height values of those points are then calculated and re-assigned to each 

point. 
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Figure A3.17 “Extract Values to Points” tool in ArcGIS 

 

Figure A3.18 Selected points in building edge areas (points highlighted in cyan) 
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Triangulated Irregular Network (TIN) structures are created based on those vertices using 

the “Create TIN from Features” tool in ArcScene (Figure A3.19). However, the points 

from one of roof structures can possibly form triangle nets with points from another. 

Therefore, the boundaries of the pitched segments are used as masks on the vertices so 

that each TIN structure created within would represent a single pitched roof plane. 

 

Figure A3.19 “Create TIN From Features” tool in ArcScene 

For the final visualization of pitched roof planes, the base frames and the rooftops are 

dealt with separately. The average height values of the densified points located at the roof 

segment outlines are assigned the respective roof segments, which are extruded by adding 

the average heights to the base height to represent the base frames. Finally the TIN 

structures of the pitched roof planes are piled upon the base frames (Figure 3.11). 

A3.6 References  

ESRI, 2011. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems 

Research Institute. 
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Appendix 4 

Glossary of Terms and Abbreviations 

DEM (Digital Elevation Model) –is often used as a generic term for DSMs and DTMs, 

only representing height information without any further definition about the surface. 

DSM (Digital Surface Model) –represents the elevation of the earth's surface and 

includes all objects on it. 

DTM (Digital Terrain Model) –represents the elevation of bare ground surface with all 

objects like trees and buildings removed. 

GIS (Geographic Information Systems) –is a combination of the computer hardware, 

software, data, methods and people, and it aids in the collection, maintenance, storage, 

analysis, output and distribution of spatial data and information. 

GPS (Global Positioning Systems) –is a Global Navigation Satellite System (GNSS) that 

gives precise x, y, z positional information, day or night, in most weather and terrain 

conditions, anywhere on or near the Earth surface. 

IMU (Inertial Measurement Unit) –is an electronic device that measures and reports on a 

craft's velocity, orientation, and gravitational forces, using a combination of 

accelerometers and gyroscopes, sometimes also magnetometers. 

LiDAR (Light Detection And Ranging) –is an active remote sensing technique that can 

measure the elevation and the reflected energy of targets by illuminating the target with 

laserlight. LiDAR is able to collect an accurately geo-referenced set of dense point clouds 

by recording reflected laser beams emitted by aircraft. 

NAD (North American Datum) –is the official datum used for the primary geodetic 

network in North America. 

nDSM(Normalized Digital Surface Model) –The difference model of a DSM and a DTM 

is called nDSM, which is a representation of the height of objects on a plane surface. 
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NDTI (Normalized Difference Tree Index) – can be calculated using the nDSM of the 

first return and last return to represent elevation difference between the two returns: 

NDTI =
nDSM#$ − nDSM%$

nDSM#$ + nDSM%$
 

Generally, elevation difference between first return and last return data is caused by 

penetration through trees. Therefore NDTI can be used to remove trees from buildings in 

the non-ground objects.  

RS (Remote Sensing) –is the science and art of obtaining information about an object 

area object, area, or phenomenon through the analysis of data acquired by a device that is 

not in contact with the object, area or phenomenon under investigation. 

TIN (Triangular Irregular Networks) – TIN structures are a digital means to represent 

surface morphology. TINs are a form of vector-based digital geographic data and are 

constructed by triangulating a set of vertices (points).  

UTM (Universal Transverse Mercator) – is a projected coordinate system that uses a 2-

dimensional Cartesian coordinate system to give locations on the surface of the Earth. It 

is a variation of Mercator projection with horizontal position representation. 
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