12 research outputs found

    A Structured Design Methodology for High Performance VLSI Arrays

    Get PDF
    abstract: The geometric growth in the integrated circuit technology due to transistor scaling also with system-on-chip design strategy, the complexity of the integrated circuit has increased manifold. Short time to market with high reliability and performance is one of the most competitive challenges. Both custom and ASIC design methodologies have evolved over the time to cope with this but the high manual labor in custom and statistic design in ASIC are still causes of concern. This work proposes a new circuit design strategy that focuses mostly on arrayed structures like TLB, RF, Cache, IPCAM etc. that reduces the manual effort to a great extent and also makes the design regular, repetitive still achieving high performance. The method proposes making the complete design custom schematic but using the standard cells. This requires adding some custom cells to the already exhaustive library to optimize the design for performance. Once schematic is finalized, the designer places these standard cells in a spreadsheet, placing closely the cells in the critical paths. A Perl script then generates Cadence Encounter compatible placement file. The design is then routed in Encounter. Since designer is the best judge of the circuit architecture, placement by the designer will allow achieve most optimal design. Several designs like IPCAM, issue logic, TLB, RF and Cache designs were carried out and the performance were compared against the fully custom and ASIC flow. The TLB, RF and Cache were the part of the HEMES microprocessor.Dissertation/ThesisPh.D. Electrical Engineering 201

    Synthesis of hardware systems from very high level behavioural specifications

    Get PDF

    NASA Tech Briefs, Spring 1980

    Get PDF
    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences

    Computer aids for the design of large scale integrated circuits.

    Get PDF
    The work described in this thesis is concerned with the development of CADIC (Computer Aided Design of Integrated Circuits), a suite of computer programs which allows the user to design integrated circuit layouts at the geometric level. Initially, a review of existing computer aids to integrated circuit design is carried out. Advantages and disadvantages of each computer aid is discused, and the approach taken by CADIC justified in the light of the review. The hardware associated with a design aid can greatly influence its performance and useability. For this reason, a critical review of available graphic terminals is also undertaken. The requirements, logistics, and operation of CADIC is then discussed in detail. CADIC provides a consise range of features to aid in the design and testing of integrated circuit layouts. The most important features are however CADIC's high efficiency in processing layout data, and the implementation of complete on-line design rule checking. Utilization of these features allows CADIC to substantially reduce the lengthy design turnaround time normally associated with manual design aids. Finally, the performance of CADIC is presented. Analysis of the results show that CADIC is very efficient at data processing, especially when small sections of the layout are considered. CADIC can also perform complete on-line design rule checking well within the time it takes the designer to start adding the next shape

    Navigation/traffic control satellite mission study. Volume 3 - System concepts

    Get PDF
    Satellite network for air traffic control, solar flare warning, and collision avoidanc

    High level behavioural modelling of boundary scan architecture.

    Get PDF
    This project involves the development of a software tool which enables the integration of the IEEE 1149.1/JTAG Boundary Scan Test Architecture automatically into an ASIC (Application Specific Integrated Circuit) design. The tool requires the original design (the ASIC) to be described in VHDL-IEEE 1076 Hardware Description Language. The tool consists of the two major elements: i) A parsing and insertion algorithm developed and implemented in 'C'; ii) A high level model of the Boundary Scan Test Architecture implemented in 'VHDL'. The parsing and insertion algorithm is developed to deal with identifying the design Input/Output (I/O) terminals, their types and the order they appear in the ASIC design. It then attaches suitable Boundary Scan Cells to each I/O, except power and ground and inserts the high level models of the full Boundary Scan Architecture into the ASIC without altering the design core structure
    corecore