413 research outputs found

    Signal Identification In Discrete-Time Based On Internal-Model-Principle

    Get PDF
    This work presents an implementation of a signal identification algorithm which is based on the internal model principle. By using several internal models in feedback with a tuning function, this algorithm can decompose a signal into narrow-band signals and identify the frequencies, amplitudes and relative phases. A desired band-pass filter response can be achieved by selecting appropriate coefficients of the controllers and tuning functions, which can reject the noise and improve the performance. To achieve a result with fast transient characteristics, this system is then modified by adding a low-pass filter. This work is based on the previous work in continuous time. However, a discrete implementation should be much more practical. The simulation result shows a good tracking of the original signal with minimal response to measurement noise

    Theory, design and application of gradient adaptive lattice filters

    Get PDF
    SIGLELD:D48933/84 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    RealTime Implementation Of An Internal-Model-Principle Signal Identifier

    Get PDF
    This thesis presents a new means approach of tuning an adaptive internal model principle based signal identification algorithm whose computational costs are low enough to allow a realtime implementation. The algorithm allows an instantaneous Fourier decomposition of nonstationary signals that have a strongly predictable component. The algorithm is implemented as a feedback loop resulting in a closed loop system with a frequency response of a bandpass filter with notches at the frequencies of the Fourier decomposition. This is achieved through real time selection of the coefficients of the transfer functions in the feedback loop. Previous work showed how the dynamics of the algorithm could be chosen to be represented by a bandpass filter with notches. However this involved solving a large set of coupled linear equations. This thesis shows how the equations can be decoupled into pairs of linear equations which have explicit solutions. In other word, rules for explicitly solving for these parameters are given that only involve evaluating frequency responses at the frequencies of the instantaneous Fourier decomposition. Last but not the least, alternative approach for choosing suitable coefficients to eliminate the DC component of the signal under consideration has been proposed as well by replacing a frequency response of a bandpass filter with lowpass filter and adding a model of the constant signal to the feedback loop

    Technique for Measurement of Weld Resistance for AC Resistance Spot Welding via Instantaneous Phasor Measurement

    Get PDF
    The resistance measurement in the resistance spot welding (RSW), is an ongoing research topic. The high current flow during the welding process induces an electromagnetic field in the wires which are attached to the electrodes to measure tip voltage. This results an additional voltage drop which is proportional to the derivative of current. Also the presence of silicon controlled rectifier (SCR) in the welding power supply generates harmonics in both supply voltage and current. These issues together complicate the methods for resistance estimation. A set of simultaneous linear equations is derived for the on-line measurement of dynamic resistance and induced voltage constant by using the dynamic circuit analysis of weld setup. This can be solved to determine the weld resistance using instantaneous phasors measurements for the 1st, 3rd and 5th harmonics of current and measured voltage signals. The instantaneous phasor measurements for these desired harmonics are obtained by employing the following proposed method. In this thesis, a new method for the measurement of instantaneous phasor is proposed for the narrow band signals. The proposed algorithm is based on the internal model principle (IMP) defined for the cancellation of a sinusoidal disturbance signal. The IMP has two states, exhibiting the properties of being sinusoidal and orthogonal. The instantaneous values of IMP states are defined as real and imaginary components of a complex signal at each time instant. The instantaneous measurements of envelope and phase of a sinusoidal signal are determined from instantaneous values of complex signal by using arithmetic properties of complex numbers. In case of signal comprising of sum of sinusoids of different frequencies, the approach for obtaining instantaneous phasor for each sinusoidal component is presented by connecting multiple internal models in the parallel and open-loop configuration. The instantaneous phasor measurement of fundamental frequency signal is not only advantageous in detecting faults like short circuiting, harmonic distortion and frequency variations but it can also be applied to protect power system from these faults. In this work, the applicability of the proposed instantaneous phasor measurement algorithm is analyzed for scenarios of power disturbances due to the the harmonic distortion and decaying DC offset. The results are discussed and compared with few existing methods

    Signal processing for airborne doppler radar detection of hazardous wind shear as applied to NASA 1991 radar flight experiment data

    Get PDF
    Radar data collected during the 1991 NASA flight tests have been selectively analyzed to support research directed at developing both improved as well as new algorithms for detecting hazardous low-altitude windshear. Analysis of aircraft attitude data from several flights indicated that platform stability bandwidths were small compared to the data rate bandwidths which should support an assumption that radar returns can be treated as short time stationary. Various approaches at detection of weather returns in the presence of ground clutter are being investigated. Non-coventional clutter rejection through spectrum mode tracking and classification algorithms is a subject of continuing research. Based upon autoregressive modeling of the radar return time sequence, this approach may offer an alternative to overcome errors in conventional pulse-pair estimates. Adaptive filtering is being evaluated as a means of rejecting clutter with emphasis on low signal-to-clutter ratio situations, particularly in the presence of discrete clutter interference. An analysis of out-of-range clutter returns is included to illustrate effects of ground clutter interference due to range aliasing for aircraft on final approach. Data are presented to indicate how aircraft groundspeed might be corrected from the radar data as well as point to an observed problem of groundspeed estimate bias variation with radar antenna scan angle. A description of how recorded clutter return data are mixed with simulated weather returns is included. This enables the researcher to run controlled experiments to test signal processing algorithms. In the summary research efforts involving improved modelling of radar ground clutter returns and a Bayesian approach at hazard factor estimation are mentioned

    MSAT-X: A technical introduction and status report

    Get PDF
    A technical introduction and status report for the Mobile Satellite Experiment (MSAT-X) program is presented. The concepts of a Mobile Satellite System (MSS) and its unique challenges are introduced. MSAT-X's role and objectives are delineated with focus on its achievements. An outline of MSS design philosophy is followed by a presentation and analysis of the MSAT-X results, which are cast in a broader context of an MSS. The current phase of MSAT-X has focused notably on the ground segment of MSS. The accomplishments in the four critical technology areas of vehicle antennas, modem and mobile terminal design, speech coding, and networking are presented. A concise evolutionary trace is incorporated in each area to elucidate the rationale leading to the current design choices. The findings in the area of propagation channel modeling are also summarized and their impact on system design discussed. To facilitate the assessment of the MSAT-X results, technology and subsystem recommendations are also included and integrated with a quantitative first-generation MSS design

    Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, part 1

    Get PDF
    The proceedings of the workshop are presented. Some areas of discussion are as follows: modeling, systems identification, and control of flexible aircraft, spacecraft, and robotic systems
    corecore