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Abstract 

Direct multi-frequency estimation and tracking using a filter with adaptive zeros is the centre 

of the study in this thesis. The applicability of this approach is tested with the analysis of 

temporally and spatially sampled signals and proves to be a simple but useful tool for analysis 

General ideas and analysis techniques related to the study of non-stationary sinusoids are ex-

plained in chapters 2 and 3. There, several approaches oriented to the extraction of information 

from these kind of signals are described, including a brief description of potential applications 

in the areas of communication and speech processing. 

The proposed approach to estimate multiple frequency trajectories and amplitude envelopes of 

multiple non-stationary sinusoids is then presented in chapter 4. There, the ideas are focused 

on the design of an algorithm to adapt the zeros of a filter, structured in cascade form, to 

track multiple non-stationary frequencies. Although this approach has been used in the past to 

analyse non-stationary multicomponent exponentials signals, the novel technique introduces a 

new gradient-based algorithm focused on the direct estimation and tracking of the instantaneous 

frequency of each component of the signal. 

A second algorithm is also proposed in chapter 4 to estimate the amplitude envelope of a non-

stationary sinusoid relying on two consecutive samples. This algorithm is extended to the 

multicomponent case by first isolating each sinusoid, relying on a cascade of notch filters. The 

theoretical propositions are validated in computer simulations of the algorithm for the case of 

synthetic signals, a bat sonar signal and a voiced segment of speech. 

In chapter five, a spatial filter in decomposed form is used to analyse computer simulations 

of signals from a linear array of uniformly spaced sensors over which impinge multiple non-

stationary plane waves. The ideas exploited constitute an extension to the spatial domain of 

direct frequency estimation using gradient-descent techniques. The resulting decoupled adapt-

ive filter allows the tracking of the instantaneous spatial frequency of each component of the 

directional signal, which is equivalent to tracking the angle at which the different plane waves 

impinge on the array. 
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Chapter 1 
Introduction 

1.1 Motivation 

The research work described in this thesis was motivated by the desire to find an adaptive 

signal processing technique to measure the instantaneous frequencies of multiple non-stationary 

sinusoidal signals. This desire was driven by the necessity for an appropriate technique to 

measure the format frequency trajectories of speech resonances. These resonances are known 

to convey important phonetic information and measuring their frequencies has been the subject 

of many past and present research efforts. 

After a solution to the problem of tracking multiple frequencies in the spatial domain was 

proposed (as summarised in Chapter 4), the idea of measuring the frequencies of superimposed 

exponentials was extended to the spatial domain. This extension was motivated by the success 

of the proposed solution in the temporal domain. 

1.2 Original Contribution 

Although the analysis of multiple exponential signals with time-varying characteristics has been 

subject of research in the past and the use of adaptive filters in the analysis of non-stationary 

signals is not new, explicit signal decomposition in conjunction with direct adaptive estimation 

of instantaneous frequency is introduced for first time in the area of signal processing with the 

research work described here. A contribution can be found in a better understanding of the ap-

plicability of adaptive filtering techniques to the analysis of non-stationary multiple exponential 

signals. 

The first part of the research work has been oriented towards the development of an efficient 

technique to extract information from voiced segments of speech. Specifically, the task of 

tracking formant frequencies which has been of great interests to researchers in the field of 

speech processing. The second part focuses on the field of spatial processing applications. 



Introduction 

Examples are presented by simulating discrete samples from the output of an array of sensors 

(antennas) with potential application in the development of radar surveillance systems. 

1.3 Thesis organisation 

The key work reported in the thesis can be divided in two main areas: The first part comprising 

chapters 2, 3 and 4 is focused on the analysis of non-stationary sinusoids oriented towards the 

task of tracking formant frequencies in voiced segments of speech: the second part (chapter 5) 

focuses on the analysis of complex exponentials obtained form the discrete spatial sampling of 

planar waves relying on the use on a linear array of sensors. The final aim in the second part is 

to track the directions at which the waves impinge on the array. 

In Chapter 2, the concept of non-stationary exponential signals is defined in conjunction with a 

review of some of the many discrete-time signal processing techniques that have been used in 

the past to analyse this kind of signals. The techniques reviewed include: 

the Hilbert transform; 

energy Operators[8] [9] [10]; 

time-localised linear prediction [15]; 

time-dependent autoregressive modelling and difference equation representation [16] 

[17] [18] [191 [22]; 

time-frequency representations [29]. 

This chapter is concluded with an overview of some of the potential areas where the multicom-

ponent exponential model could be used including the area of speech processing where the 

task of formant tracking with its many practical applications has driven researchers to explore 

different approaches in recent years. 

In Chapter 3, a detailed review is made of the theory of adaptive digital filters describing the 

different techniques that have been used in the task of analysing non-stationary exponential sig-

nals. Different structures, accompanied by their respective techniques are described including 

the cascade structure with its application in the analysis of speech signals. 

2 



Introduction 

In Chapter 4, the concepts which constitute the heart of this thesis are presented using an ap-

propriate mathematical framework. There, a gradient-based technique is developed and ana-

lysed to directly adapt the phase of the zeros of a filter to enable the tracking of multiple non-

stationary frequencies. Examples of the performance of the proposed approach are given in the 

task of tracking the instantaneous frequency of multiple non-stationary real-valued synthetic 

sinusoids as well as in tracking formant trajectories in a voiced segment of speech. After the 

non-stationary frequencies have been estimated a cascade of notch filters is used to isolate a 

given sinusoidal component before a two-sampled-based algorithm is used to estimate its in-

stantaneous amplitude. 

In Chapter 5, a review of the concepts of spatial frequency estimation using arrays of sensors 

is presented. For the problem of non-stationary waves, three approaches for tracking the angles 

of arrival were presented. These approaches have been grouped under the three general classes: 

adaptive subspace techniques [81] [82] [83]; 

direct recursive update of the angles estimates [84] [85]; 

adaptive null-steering [90] [89] [91] [92]. 

These illustrate the common goal of providing a way to recursively adapt the parameters of 

spatial filters to "track" information in non-stationary scenarios. This is followed with a de-

scription of a technique based on the ideas of directional signal separation and direct parameter 

estimation. The problem concentrated on is tracking the direction of arrival of rapidly moving 

non-stationary sources using relatively large arrays of sensors. 

Chapter 6 concludes the thesis with a summary of the thesis, a description of key contributions 

and suggestions for potential future directions of research. 

91 



Chapter 2 
Analysis of non-stationary 

multi-component exponential signals: 
Time-domain case 

In this chapter, a brief review of some of the many techniques that have been used to extract 

information form non-stationary multicomponent exponential (NSMIE) signals is presented. 

This review is made to provide the basis for the direct estimation approach that constitute the 

central idea of this thesis. As a result, only research work closely related to the main idea are 

included. 

Adaptive techniques, providing the final connection of past research work with the approach 

summarised here, have been left to the third chapter where they are explained with more detail. 

2.1 Definition of non-stationary multicomponent exponential sig-

nals 

A single component time-varying complex exponential signal (cisoid) can be defined as: 

s(t) = a(t) exp(j(t)) 	 (2.1) 

where a(t) represents the instantaneous amplitude and q(t) the instantaneous phase of the 

signal. The real-valued equivalent of this signal is given by a sinusoidal signal: 

s(t) = a(t) cos(q5(t)). 	 (2.2) 

For these signals, we can define their instantaneous frequency w(t) as the derivative of the 

phase: 

W 
(t) = do(t)) 

(2.3) 
dt 
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These concepts can be extended to the case of multicomponent non-stationary exponential sig-

nals which can be defined as: 

s(t) 	al (t) exp(j(t)) 	 (2.4) 

in the complex signal case, and 

s(t) = 	al (t) cos (01 	 (2.5) 

in the real-valued signal case. 

Whether these are models of real-world signals or they are the actual representations of man-

made signals, there is a need to devise signal processing techniques to estimate the instantan-

eous parameters of the representation from noisy measurements of the signal. 

2.2 	The analytic signal 

In order to be analysed using discrete-time processors, the above mentioned signals need to be 

sampled. From these samples, their instantaneous amplitude and fequency can be estimated as: 

â(n) = ./Re[s(n)]2 + Irn[s(n)]2 	 (2.6) 

	

(n) = arctan(Im5l) 	 (2.7) 
Re[s(n)] 

where n represents the discrete time index. 

An instantaneous frequency estimate can obtained form the phase estimates by performing the 

phase differencing operation in discrete-time [26]: 

j(n) = ((n +1) - 	 (2.8) 

Wb(fl) = ((n) - 	- 1)) 	 (2.9) 

5 
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= ((n+1) —(n — 1)) 
	

(2.10) 

where the sub-indexes f, b and c stand for forward, backward and central finite differences. 

The lack of a similar method to estimate the instantaneous parameters a(n) and O(n) from 

real-valued mono-component signals motivated the search for techniques to perform real-to-

complex transformation. Gabor [4] proposed a transformation based on the suppression of all 

the negative frequency components of the signal to create the analytical signal. 

In the frequency domain we can define the analytical signal of s(n) as: 

f 2S(Q) 

= j 0 	
if Q < 0 

where S (Q) represents the Fourier transform of 3(n). The resulting complex signal is expressed 

as 

8a(fl) 	a(n) exp(j(n)), 	 (2.12) 

from which s(n) will be given by: 

s(n) = Re[sa(n)] = a(n) cos('n). 	 (2.13) 

As a result of this transformation, a(n) and ç(n) (known as the analytic instantaneous amp-

litude and phase) are uniquely defined. 

A related way to define the analytical signal in the time domain is by using the Hubert trans-

form which in continuous time can be defined as: 

1 	1 	() 
Sh(t) H(s(t)) = s(t) * 

- - f 
st 

t — u
d(n) 	 (2.14) 

irt 	7r  

which can be expressed in the frequency-domain as: 

Sh(Q) = H()S() 	 (2.15) 

where 

H(Q) = -j sgn(). 	 (2.16) 
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The analytic signal will then be given by: 

8a (t) = s(t) + jSh(t). 	 (2.17) 

For discrete-time signals s(n) their Hubert transform can be defined in the time domain as the 

convolution of s(n) with a Hubert filter: 

sh(fl) = s(n) * 	 (2.18) 

where h(n) is an infinite impulse response (IIR) filter defined by: 

{ 2 si?%2 n/2 

h(n) = 	 (2.19) 
0 	 n=0. 

In practice this hR filter can be approximated by a finite impulse response filter (FIR) [5]. 

The Hubert-transformed signal can be used to obtain the instantaneous amplitude and fre-

quency estimates according to the following expressions: 

ä(n) -VI  	+ s(n) 	 (2.20) 

(n) = arctan(s/1(n) 
 s(n) 	

(2.21) 

From the instantaneous phase q(n) we can get the instantaneous frequency estimate by differ-

entiation (forward, backward or symmetric) in discrete time. 

2.3 Teager-Kaiser energy operators for instantaneous amplitude 

envelope a frequency separation. 

Another way to estimate the instantaneous amplitude envelope and frequency of sinusoidal 

signals is by using energy operators which can be defined as: 

= 8(t) 2  - S(t) (t)' 	 (2.22) 

'4 
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for continuous-time signals s(t) with (t) = ds/dt and as: 

d[3(n)] = (n) 2  - s(n - 1)s(n+ 1), 	 (2.23) 

for discrete-time signals s(n). 

These operators, first proposed by Teager and subsequently studied by Kaiser [8] [9], provide 

a way to obtain estimates of the squared product amplitude-frequency of sinusoidal signals. 

These ideas are briefly explained bellow. 

An energy operator iT/C  applied to a sinusoid s(t) = Acos(w(t) + £1), can be used to obtain an 

estimate of the squared product amplitude-frequency [131: 

W[A cos (wt + 8)] = (Aw)2 	 (2.24) 

for any constants A and w. 

The reason way this operator has been denominated energy operator is because if the signal s(t) 

is used to represent the displacement produced by a mass-spring linear oscillator, the squared 

product amplitude frequency will equal the total energy (per half-unit mass) of the oscillator. 

These ideas have been extended to the analysis of sinusoidal signals with time-varying amp-

litude envelope and frequency in [10] where it was shown that for a sampled sinusoid .s(n) = 

a(n) cos(ç(n)), the energy operator provides an instantaneous estimate of the square product 

amplitude-frequency: 

(a(n)w(m)). 	 (2.25) 

This allows the estimation of one of the instantaneous parameters (a (n) or w (m)) when the other 

is constant by a simple scaling of /'P[s(n)]. When both amplitude and frequency modulations 

are present, several algorithms proposed in [10] provide separate estimates of a(n) and w(m). 

These algorithms were denominated energy separation algorithms (DESA) and we cite here 

one of them (DESA1) for the purpose of illustration. 

For a sinusoidal signal s(n) whose first difference is defined as: 

Sid(fl) = s(n) - s(n - 1), 	 (2.26) 
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the DESA1 algorithm give estimates of the signals instantaneous amplitude and frequency: 

_ arccos(1 	W[sld(n)] + [81d(fl + 1)]), 	
(2.27) - 	-  

4P[s(n)] 

11J[s(n)] 	
(2.28) 

1 - (1  

for  <(n) < 7F. 

This approach has been used to model speech resonances in [11] where in order to face the 

multicomponent nature of speech, resonances were isolated using band-pass filtering relying 

on Gabor filters [4]. 

2.4 	Instantaneous frequency estimation using time-localised linear 

prediction 

Another computationally efficient approach proposed in [15] to estimate an unknown mono-

component signal's instantaneous frequency consists of computing the coefficients of a second-

order predictor filter from a small number of samples. Once that the predictor filter coefficients 

have been estimated, the frequency estimate is obtained by evaluating the roots of the predictor 

polynomial. This approach yields an accurate estimate of the frequency for real-valued signals 

in high SNR environments. 

For a signal modelled as: 

	

s(n) = Ap' cos (w(n)m+O), 	 (2.29) 

where A represents the amplitude of the signal and p its damping factor; the second order error 

predictor filter can be defined as: 

e(n) = s(n) - ci s(n - 1) - c28(71 - 2) 	 (2.30) 

	

s(n)(1 - c1q 1  + e2q), 	 (2.31) 

9 
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where q I represents the delay operator. 

The two coefficients c1  and c2  can be computed by using a modified covariance method [15] 

T1,1 T1,2 Ci = - Ti1,0 

T2,i T2,2 

where the correlation estimates are computed from N data samples as: 

I 	
N—i 	 N-3 

Tk 2(2) ( 3(fl_i)3(n — k)+S(fl — i)S(fl — k)). 

An estimate of the unknown signal's instantaneous frequency is then obtained from the root of 

the predictor polynomial (1 - c1  q 1  + c2q 2 ) yielding: 

—Cl 
wLp arccos( 2\/, ). 	 (2.32) 

Using four and five data samples to obtain a highly time-localised frequency estimate, equation 

(2.32) has been shown to yield [151: 

wLp4
(n) arccos (s(n - 2)s(m - 1) + 2s(n - i)s(n) + s(n)s(n + 1)) 

2(s(n - 1)2 + s(n)2) 	
(2.33) 

wLp5(n) arccos 
(s(n_2)s(n_1)+2s(n— 1)s()+ 2ss(n+s1)+s(n+ 1)s(n+ 2)) 

2(s(n— 1)2+8(m)2+s(m+ 1)2) 

(2.34) 

Using Prony's method instead of the covariance method, the frequency estimate has been found 

to be: 

where 

wp4(n) 	
T(s(n)) 

- 1) + P(s)) 
(2.35) 

(s (n)) 	s(n) 2  - 	- 1)s(n+ 1) 

10 



Analysis of non-stationary multi-component exponential signals: Time-domain case 

is the energy operator ( 2.23), and 

T(s(n)) 	s(n - 1)s(n) — s(n — 2)s(n+1) 

a new operator. This technique has been compared with discrete energy operators in the task 

of estimating instantaneous frequency of amplitude and frequency modulated sinusoids show-

ing that it constitutes a more efficient algorithm in terms of computational complexity while 

providing similar estimation performance. 

2.5 	Time-dependent autoregressive modelling and difference equa- 

tion representation of chirp signals 

Time-dependent autoregressive models have been used in the past to analyse non-stationary sig-

nals (e.g. [16] [171 [181 [191). In this approach, the time-dependent parameters of the model 

are expressed as linear combinations of basic functions to allow their estimation by solving a 

set of linear equations. Recently, this approach has been used to estimate the instantaneous 

parameters of signals consisting of one sinusoid [21] or several superimposed sinusoids [221 

with time varying amplitudes and frequencies . This is achieved by using a second stage once 

the time-dependent parameters have been estimated. These ideas are briefly introduced next. 

Consider a time-dependent autoregressive (TDAR) process given by: 

s(n) + E Ck(Th)S(fl - k) = w(n) 	 (2.36) 

where Ck (n) represent the time-dependent autoregressive parameters, w (n) a zero mean decor-

related input and s(n) the output signal. 

When this model is used to represent non-stationary sinusoids at high signal-to-noise ratios, 

equation (2.36) can be simplified as a time-dependent difference equation equation of the form 

[22]: 

s(n) =E Ck(n)s(n - k) 	 (2.37) 

where the time-dependent parameters parameters Ck (n) can be estimated by expanding them 

11 
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with some known functions (n): 

cke 	ck(n), 	 (2.38) 

assuming that the parameters vary slowly in the analysis interval. 

Substituting (2.38) into (2.37) we get: 

K P-i 

	

s(n) 	Ck/3(fl)S(fl - k) 	 (2.39) 
k1 i=O 

and the resulting time-independent coefficients Ckj can be obtained by solving a set of linear 

equations [16] [17]  [18] [23]: 

Rc = r, 	 (2.40) 

where the elements of R and r are given by: 

- 	—1) 	 (2.41) 
77, 

	

r,j 	 - 1) 	 (2.42) 

for u= (1— 1)P+j  and v= (k— 1)P+i. 

Once the time-dependent autoregressive parameters have been estimated, a second stage will be 

needed to obtain instantaneous amplitude and frequency estimates from sampled amplitude and 

frequency modulated sinusoids by extracting the time-varying roots of the difference equation. 

This approach was used in [22] in conjunction with skew-shift operators [24] [25] to estimate 

the instantaneous amplitude and frequency of superimposed real-valued chirps. In [21], this 

approach has been used to estimate instantaneous amplitude envelope and frequency of modu-

lated sinusoids and a classification of non-stationary signals was introduced as a function of the 

movement of the time-varying poles of their associated first order autoregressive model. 

This classification can be obtained by expressing the differential equation used to model a 

12 



Analysis of non-stationary multi-component exponential signals: Time-domain case 

sinusoid as: 

s(n) = p(n)s(n - 1), 	 (2.43) 

then different kind of non-stationary signals can be studied and grouped according to the move-

ment of the pole p(n) in the z-plane [21]. The resulting models are explained below. 

2.5.1 Damped sinusoidal model 

For a complex-valued damped sinusoid of the form: 

s(n) =pflexp(jwn), p < 1 	 (2.44) 

the ratio of two successive samples or instantaneous pole will be given by: 

p(n) = s(n) 
( - 1) = 

pexp(jw). 	 (2.45) 

2.5.2 Amplitude modulated sinusoidal model 

For a complex-valued damped sinusoid with amplitude modulated with a discrete-time real-

valued signal u1  (ii): 

ui (n) exp(jwcn) 	 (2.46) 

the ratio of two successive samples or instantaneous pole will be given by: 

p(n) - s(n) 	- it, (n) 
exp(jwc). 	 (2.47) 

- s(n —1) - ui(n —1) 

In this case it is worth noting that the time-varying part of the pole p(m) is real, which results 

in a time variation of the magnitude of the pole while its angle remains constant. 

13 
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2.5.3 Frequency modulated sinusoidal model 

For a complex-valued damped sinusoid with frequency modulated with a discrete-time real-

valued signal 'u2  (n): 

s(n) = Aexp(j(wn+cxu2ifl), 	 (2.48) 

the ratio of two successive samples or instantaneous pole will be given by: 

p(n) = s(m) 
exp(jLJc  + añ2 (n)), 	 (2.49) 

s(n-1) 

where ü2  (n) is the first other backward difference of u2  (n). In this case it is worth noting that 

the time-varying part of the pole p(n) is complex, which results in a time variation of the angle 

of the pole while its amplitude remains constant. 

2.5.4 Amplitude and frequency modulated sinusoidal model 

In the case of a complex-valued damped sinusoid with amplitude and frequency modulated with 

discrete-time real-valued signals u1  (n) and ?12 (n): 

s(n) = fi (ii) eXp(j(Wc fl+ aU2  (n))), 	 (2.50) 

the ratio of two successive samples or instantaneous pole will be given by: 

.s(n) - ui(n) 

- s(n - 1) - u1  (n - 1) exp(jw
c  + "2 (71)) 	 (2.51) 

where ñ2  (n) is the first other backward difference of it2 (n). In this case it is worth noting that 

the time-varying part of the pole p(n) is complex, which results in a time variation of the angle 

of the pole while its amplitude remains constant. 

2.6 	Time frequency representations 

Time-frequency representations allow displaying the energy distribution of non-stationary sig-

nals in the time-frequency plane. As will be explained in the following, time-frequency repres-

entations provide an indirect mean to extract information from time-varying exponential signals 

14 
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with a limited practical applicability that can be attributed to its high computational complexity, 

limited resolution and the appearance of spurious components in some of the representations 

types. 

Once a representation of a multicomponent signal has been obtained in the time-frequency 

plane, the instantaneous frequencies of each exponential component can be obtained by de-

termining local maxima (picking the peaks) in the representation. A detailed review of this 

approach was presented in [26], [27]. 

2.6.1 Short Time Fourier Transform 

The Fourier transform can be used to analyse non-stationary signals by decomposing them into 

segments where its characteristics are considered to be stationary. This results in the short-time 

Fourier transform (STFT) [28]: 

+00 

F3(t,Q) zzj 
	

s(t)h(n - t)e 3udu 	 (2.52) 

where h(t) represents the window introduced to obtain time-localised spectral estimates. The 

time resolution of the STFT is determined by the duration of the window h(t) while its fre-

quency resolution is proportional to the bandwidth of the window. Increasing the resolution 

in the time domain would imply decreasing the duration of the window while increasing fre-

quency resolution would imply decreasing its duration. This trade-off implies that no infinite 

resolution can be obtained simultaneously in both domains. 

The STFT belongs to a class of representations known as linear time-frequency representations 

which include the Gabor and Wavelet transform [28]. 

The discrete-time discrete-frequency STFT can be expressed taking into account sampling con-

siderations [28] as: 

—1 
F(n,m) = 	s(t)h(n - k)_32 mk for 	<m < - 	(2.53) 

2 - 

where n E Al. 

15 
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The squared magnitude of the STFT is known as the spectrogram: 

+c 
F, (t, Q) 2 	

f 	s(t)h(u - t)e ° duI 2 	 (2.54) 

which measures the energy of the signal around the point (t, w). And the discrete time discrete 

frequency squared magnitude of the STFT will the be defined by: 

F3 (n, rn) = I 	s(t)h(n - k)e_ 2 mk I 2  for 	<m < 	 (2.55) 
k 

where n E .A. 

Although not complying with some of their desired properties, the spectrogram belongs to a 

class of quadratic time-frequency representations known as time-frequency energy distributions 

that will be reviewed in the next section. 

When used to analyse non-stationary exponential signals, the ridges of the spectrogra7n provide 

estimates of the instantaneous frequency trajectories of the components of the signal. This 

technique constitutes an indirect and computationally expensive approach to obtaining instant-

aneous frequency estimates that is also affected by the limited resolution achievable with the 

spectrogram. 

2.6.2 Time frequency distributions 

The purpose of these distributions is to provide an expression of the energy of the signal as a 

function of time and frequency. The total summation in time and frequency of a joint time and 

frequency density P, (t, w) would provide the total energy of the signal: 

100 too 

	

E=J
J P(t,Q)dtdQ 	 (2.56) 

-03 -03 

which is known as the energy conservation property. Also the temporal 1 s(t)12  and IS(w)I2  

spectral densities should be derived from the joint density as: 

s(012 
= J-10 P, (t, )dQ. 	 (2.57) 
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Ism I, = fPs t,Q)dt 	 (2.58) 

which are known as the marginal properties. 

Two other important properties satisfied by some TFD's are invariance by translation in time 

and frequency which means that a translation of the signal in time and frequency (frequency 

modulation) should be reflected as the translation of the signal's distribution with equal amounts 

in the time-frequency plane [29]. Time-frequency representations satisfying this property can 

be grouped under the Cohen's Class [29] which will be defined by exploiting the concept of 

the local autocorrelation function (LAF). 

The LAF of a signal s(t) can be defined as [30]: 

	

R(t, T) = s(l + 7/2)s*(t - 7/2). 	 (2.59) 

This function can be filtered in time and frequency by convolving it with a "kernel" function 

i(t, r) to obtain ageneralised local autocorrelation function (GLAF): 

	

GR(t,i-) 	k(t,T) * R(t,T). 	 (2.60) 

where '(t, r) is the time-lag expression of the kernel that can be obtained as the inverse Fourier 

transform of the frequency-lag expression (w, T): 

	

1 	+00 
C(,y)eOtdQ. 	 (2.61) 

Finally the Cohen's Class of TED's can be defined as the Fourier transform of the GLAF: 

+00 

P(t, Q) = 
1-00 

GR(t, 7 )e_37- dr. (2.62) 

Two distributions belonging to this class are the Wigner-Ville [3 11 (WV) and the Choi-Williams 

[32] distributions whose kernels are given by: 

1 	 (2.63) 
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for the Wigner-Ville distribution, and 

= e_02T2; 	 (2.64) 

for the Choi-Williams distribution. 

The WV distribution was formulated in [31] in the context of quantum mechanics and re-

introduced by Ville [33], motivated by the desire to perform instantaneous frequency measure-

ments. The first moment of this distribution provides the instantaneous frequency of a mono-

component signal [281: 

fQP(t,c)dQ 	
(2.65) CO (t) 

=  fP(t,Q)d 

Given its quadratic nature the WV distribution leads to the appearance of spurious peaks in the 

distribution when multicomponent signals are analysed [29]. This fact motivated the work of 

Choi and Williams [32] to devise a representation with reduced spurious peaks by convolving 

the local autocorrelation function with a Gaussian kernel. 

These time-frequency distributions can be used to analyse multicomponent exponential signals 

showing a higher concentration of energy along the instantaneous frequency of each component 

of the signal when compared with the spectrogram. They can be used to obtain instantaneous 

frequency estimates from the peaks of the representations but still constitute an indirect and 

computationally complex way to perform instantaneous frequency measurements. 

As an illustrative example, several time-frequency representations are presented for a signal 

composed of two superimposed chirps (Fig. 2.1). These representations are: the spectrogram 

(Fig. 2.2), Wigner-Ville (Fig. 2.3) and Choi-Williams (Fig. 2.3) distributions. It can be ob-

served in these figures that the WV distribution presents an increased resolution in comparison 

with the Spectrogram but this improvement is obscured with the appearance of spurious cross 

terms. 

Finally, the CW distribution which is equivalent to the WV distribution convolved in time and 

frequency with a Gaussian kernel, shows a representation with degraded resolution compared 

to the WD distribution. 
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time (samples) 

Figure 2.1: Two superimposed chirps with linearly increasing frequency. 

Taking into account important sampling considerations [28] to avoid aliasing in the frequency 

domain, the Cohen class can be expressed in discrete time as: 

L/2 

P(n,) 	GR(m,l)e 1 , 	 (2.66) 
1=—L/2 

L/2 

GR(n,l) = 	 - m,l)s(m+ l)s*(m - 1), 	 (2.67) 

where 1 represents the lag with maximum value L. 

For the discrete-time Wigner-Ville distribution, the kernel will be defined as 

= 

whereas for discrete-tine Choi-Williams distribution, will be: 

(n, 	= (1/4l2/a) exp(—n2/(412/a)), 

Iv] 
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Figure 2.2: Spectrogram of two superimposed chirps with linearly increasing frequency. 

2.7 	Other approaches to the analysis of non-stationary multi-component 

signals 

In the folowing, two other approaches which nave been used to analyse NSME signals are 

briefly described. 

Residual signal analysis 

This technique is based on signal decomposition and parameter tracking [36]. A given com-

ponent is isolated by subtracting the rest of the components. Then the isolated signal is analysed 

with a "tracker". This technique has been reintroduced recently in [38] [39]. 

Signal Transduction 

Motivated by the possibility that the human auditory system exploits FM-to-AM transduction 

using the spectral shapes of auditory filters, some researchers have proposed an approach to 

AM-FM estimation of a single-component sinusoidal signals using discrete-time filters with a 

non-flat frequency response. When the FM signal passes through the filter, the instantaneous 

frequency of the signal moves across the filter's non-flat passband and a change in the output 

amplitude envelope occurs. The modulated amplitude and frequency of a single component 
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Figure 2.3: Wigner-Ville distribution of two superimposed chirps with linearly increasing fre-
quency. 

sinusoidal signal can be estimated by using two overlapping transduction filters and processing 

the amplitude envelopes of the filter outputs [40]. This approach has been further generalised 

to signals that consist of two AM-FM sinusoids in [42]. 
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Figure 2.4: Choi-Williams distributions of two superimposed chirps with linearly increasing 
frequency. 
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2.8 Applications 

2.8.1 Analysis of communication signals 

Sinusoidal signals are used as conveyers of information in communication systems by modu-

lating the sinusoid's amplitude and frequency with information signals [47] [48]. These ideas, 

introduced in the research works of Carson [49], Vander Pol [50] and Armstrong [51], are 

still being used in the development of of current communication systems. 

With the advent of discrete-time signal processors which have recently been incorporated into 

these systems, it is necessary to develop new discrete-time techniques to extract information 

(demodulate) single and multiple sinusoidal carriers of information as substitutes to previous 

analog techniques such as those relying on phase locked loops (PLL's) [48]. 

2.8.2 Analysis of speech and music 

Traditionally the speech production system has been modelled as a linear time-invariant (LTI) 

filter excited by periodic or random excitations depending on whether modelling voiced or 

unvoiced utterances [48]. This model is depicted in Fig. 2.5 where the glottal, vocal tract 

and radiation sections are approximated by discrete time (LTI) filters. In this approach there 

is an implicit representation of vocal tract resonances (commonly known asformants ) in the 

poles of the filters [48]. Although this model has been successfully used to represent speech 

utterances and constitutes the basic structure in the design of many schemes for speech coding a 

synthesis, a more realistic representation should incorporate the time variant features of speech. 

As a result of their importance as phonetic features, formants have been explicitly used in the 

development of systems for speech synthesis and recognition, and the necessity to measure 

these features has motivated the search for appropriate signal processing techniques to per-

form this task. Despite many efforts made within the speech processing community, measuring 

formant frequencies still constitutes an unsolved problem. 

In the discrete models described above, speech resonances are implicitly represented as the 

impulse response of time-invariant one-pole systems: 

R(n) = aexp(—an) cos(wn + ), 	 (2.68) 
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where a and w represent the damping factor and frequency of the decaying sinusoid and n is 

the discrete-time index. 

These model should be extended to obtain a more realistic representation by making its para-

meters time-variant: 

Rtva(fl) = a(n) cos((n)n + 0), 	 (2.69) 

where a(n) and w(n) represent the instantaneous amplitude and frequency of the resonance 

model. 

This mathematical representation of a speech resonance is implicitly supported in the observa-

tions made by Teager [52] indicating rapid changes in the amplitude and frequency of reson-

ances within short period of time in voiced segments of speech. This fact has motivated the 

search for signal processing techniques to provide instantaneous measurements of amplitude 

envelope and frequency of single [11] and multiple superimposed sinusoidal signals. 

Musical waveforms have also been modelled as superposition of non-stationary sinusoids and 

techniques relying on time-frequency representations [43] and signal transduction [42] have 

been used to estimate the parameters of the model. 
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2.9 Summary 

In this chapter, non-stationary multicomponent exponential (NSME) signals were defined in 

conjunction with a brief review of some of the many techniques that have been proposed to 

extract information from this kind of signals. 

While estimates of the parameters of complex mono-component exponential signals can be 

directly extracted from their discrete-time samples, applying this approach to real-valued ex-

ponentials (sinusoids) requires the use of a real-to-complex transformation such as the Hubert 

transform. Other techniques that can be used to extract information from non-stationary sinus-

oidal signals include energy operators and time-localised linear prediction. Extension of these 

techniques to the analysis of multicomponent signals requires the use of band-pass filtering 

preprocessing to separate the components. 

For the estimation of amplitude and frequency of non-stationary multicomponent signals, sev 

eral approaches such as time-dependent differential equations and time-frequency representa-

tions have been proposed. A brief description of these techniques has also been included in this 

chapter. 

The extraction of information from time-dependent differential equations requires two-steps: 

first, the parameters of the equation have to be estimated from the non-stationary signal by using 

a parameter expansion relying on a set of basis functions to transform the nonlinear problem 

into a linear one; secondly, the parameters of interest have to be estimated by extracting the roots 

of the differential equation. This technique has recently been successfully used to demodulate 

amplitude and frequency modulated signals and to separate multicomponent signals into its 

components 11]. 

Instantaneous amplitude and frequency estimates for NSME signals can also be obtained from 

time-frequency representations which allow displaying the energy contents of signals in the 

time-frequency plane. This is also an indirect way to obtain the estimates since a first step must 

be used to compute the representation while a second step is required to extract the desired 

parameters from the representations by requiring to moment estimation or peak-picking. 
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Chapter 3 
Adaptive FIR filters to analyse 

non-stationary multi-component 
signals 

This chapter describes some of the adaptive filtering structures and algorithms that have been 

used in the past to analyse non-stationary multicomponent exponential signals. This is done 

with the purpose of introducing the adaptive approach that has been the subject of the research 

work summarised in this thesis. 

Finite impulse response filters (FIR) structured in transversal, lattice and cascade forms have 

been used in the past to analyse non-stationary multi-component exponential signals (NSME) 

signals. As the adaptive FIR filtering theory is based on finding the optimal values for the 

filter parameters, the description of these algorithms is started by describing the closed optimal 

solution known as Wiener-Hopf equation. 

Order-recursive techniques implemented in the form of FIR filters structured in lattice form 

are also described as a means for obtaining the optimal parameters. Adaptive implementation 

of these structures which has been used in the past to analyse NSME signals are subsequently 

described highlighting its use in the analysis of non-stationary multicomponent signals. 

Finally adaptive FIR filters structured in cascade form are presented providing the ultimate link 

with the approach proposed in chapter 4. 

3.1 	Optimum transversal FIR 

The linear estimation technique by which a given signal d(n) is estimated by passing a signal 

s(n) through a Finite Impulse Response (FIR) filter is shown in figure ( 3.1). The optimal 

parameters of this filter can be found as those that minimise the absolute squared differences 

between d(n) and its estimate d(n) at the output of the filter. 
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d(n) 

s(n) 
	

FIR filter 
	d(n) 	

1-) 

	e(n) 

Figure 3.1: FIR filter for signal estimation. 

If the output of the filter d(n) can be found as the convolution of the unit sample response c(n) 

of the filter with the signal s(n): 

	

d(n) = s(n) * c(n). 	 (3.1) 

which can be expressed in vector form for a filter with p weights as: 

d(n) = CTS(n) 	 (3.2) 

where s(n) = [s(n),s(n— 1),...,s(n_p+1)]T  and  c = [c(0),c(1),...,e(p— ]T. 

The optimum FIR filter filter coefficients , c, can be found as those that minimise the summed 

square errors (SSE): 

e(n) 	{e(n)e*(n)} 	 (3.3) 

where n E [0, N], N being the total number of data samples. 

Substituting 

	

[ I 

e(n) = d(n) - d(n) = [1 - CT] 	
d(n) 
	 (3.4) 

s(n)  

in equation ( 3.3) we obtain an expression of as a function of c: 

W. 
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1 

 [I1 	I -C 
 

1
[1 -cT 	 *H

s(n) 	L 	 *]J 

[ 	

1 1 
= [1 —CT I 	d(  I 	I I d*(n) sFI(n) I 71 	 s(n) 	 j 

= [1 _CT 	

[ 

d(n)d(n) d(n)sH(n)  ij [ 1 1 
d(n)s(n) s(n)sH(n) jf [_c*j 

71 

[rd(0) r1 [ i 1 
CT ] II 	I 

[ r 	R] [_c*] 

i 
CT  ] R 
	

i 

[ 	
I 	 (3.5) 

C*] - 

where R represents the matrix of autocorrelation of the vector sequence s(n), and Rd a 

matrix containing the autocorrelation of d(n) and its cross-correlations with s(n) and R. 

Assuming that both d(n) and s(n) are jointly wide-sense stationary processes [55], the correl-

ation matrix Rd becomes: 

N-i ( [ 
Rds = urn 	

d(m)d*(n) d(n)s"(n) 

	

d(n)d*(n) d(n) sH(n) 

[ d*
H(n) (n) s (n) s(n)s 	- 	d*(n) s (n) s(n)sH(n) ] } 12- 00 

(3.6) 

which is known as a stochastic correlation measure. 

In order to find a set of filter coefficients to minimise , it is necessary and sufficient that the 
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derivative of with respect to c be equal to zero [55]: 

vc* = 0 
	

(3.7) 

from equation ( 3.5) we have that the gradient 	can be computed as 

1 ii [ 1 
J ] 

R 	 I rds  Rd 1 I 
[_cj 

or 

	

rds - RdC 	 (3.8) 

equalising it to zero we get the equation for the optimum filter parameters: 

	

rc js  - RdsCopt = 0 
	

(3.9) 

which is known as Wiener Hopf equation [55]. 

One way to determine the optimal parameters in equation ( 3.9) is by finding the inverse of the 

autocorrelation matrix: 

c0ds (3.10) 

which results in a heavy computational operation for filters of large order. 

The minimum sum of square errors associated with the optimal filter can be found by substitut-

ing the optimal filter parameters into equation ( 3.5) which results in: 

[1 
= [1 - c7 min t ] 

Rd I 	I 
[ —ct  ] 
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[1I - [ —C 

	

H 	 .(3.11) 
—capt 

  

Taking into account that: 

HI 
R [ 	= I 	I 	(3.12) 

1 	1 	[ rd(0) rdS  	1 	1 	[ rd(0) - r3copt  1 

	

[ 
—c0  J 	r(J 	R3 

	[ 
—c 	

] 	[ 	
0 	

j 

and substituting into ( 3.11) 

	

min = 	- rc0 	 (3.13) 

which in conjunction with equation ( 3.9) is known as the extended Wiener-Hopf equation: 

R [ 	

] 

= [ min 1 	(3.14) 

0 ] 

3.1.1 Linear prediction 

Wiener filtering can be restated as linear prediction if the desired signal is taken to be a "future" 

sample of the signal 

	

d(n) = s(n+ 1) 	 (3.15) 

estimated from previous "past" samples: 

	

s(m) = [s(n),s(n— 1),...,s(n— (p— i))]T. 	 (3.16) 

Consequently, the cross-correlation rd,  will be transformed into the auto-correlation: 

= E[s(n + 1)s(n)] = r313 	 (3.17) 

The extended Wiener-Hopf equation can then be rewritten as: 
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r(0) H  I 

	

[ 	1 	1 	[mjn I I 	 I - I  

[ 	
R 
	[ 	j [ 0  

	

[ I 

 [ 	1 	1 	
[1 

(3.18) 

	

—copt 	0 
 ] 

where 	is a (p + 1) x (p + 1) autocorrelation matrix. 

The optimal parameters in this case are known as linear prediction or autoregressive parameters. 

3.1.2 Spectral estimation based on the autoregressive model 

The autoregressive vector of optimal coefficients c,pt  can be used to obtain an estimate of the 

spectrum of the signal [55] as: 

2 1 	
(3.19) 

	

P8 [exp(jQ)] = 	
c0  (k) exp(—jQk) 

In the case of multiple sinusoids in noise, the frequencies of each component can be found by 

searching for local maxima in this spectrum estimate. This approach implies that the signal is 

stationary within the segment used to estimate the coefficients and may therefore be unsuitable 

for the estimation of of non-stationary frequencies. 

Another way to estimate the frequencies of the noisy sinusoids at high signal-to-noise ratios 

would be extracting the roots of the linear prediction polynomial: 

P C(q') = ECopt  (k)q 	 (3.20) 
k=O 

where q' represents the delay operator, and selecting those roots located nearest to the unitary 

radius circumference on the z - plane. 
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Figure 3.2: FIR filtering for linear prediction. 

3.2 	FIR filter structured in lattice form 

Order-recursive techniques [56] [55] that can be used to obtain the optimal auto-regressive 

or predictive parameters, have lead to the implementation of FIR filters in lattice form which 

represents a modular easy implementable structure as shown in figures ( 3.4) and ( 3.3). 

e0(n) 	 e(n) 	 e(n) e,(n) 	 e,(n) 

e(n) - 	 e (ii) - 	 e(n) ebp.j (n) 	 e,(n) 

Figure 3.3: Lattice filter structure. 

The inputs of each section are the forward e'_1  (n) and backward e_1  (n) errors of the previous 

section which are decorrelated to get a the output errors e (n) and e! (ii): 

e! (n) = ef 1  (n) - Fe_1  (n - 1) 	 (3.21) 

4(n) = 4(n - 1) - Fe 1(n) 	 (3.22) 

where Fi represents the reflection coefficients of the i - th section. Optimal filter parameters 

177 are obtained to minimise the variance of the output error: 

= E[Ie(n)[]= E[c[(n) e (n)] = E[ef(n)(e 1 (n) - 17e1(n - 1))] 	(3.23) 
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Figure 3.4: Section oflatticefilter 

Deriving { with respect to the filter parameters results in: 

E[ef(n)e i  (n - 1)] = E[(e 1  (ii) - Fe 1  (n - i))4* i  (77 - 1)] 	(3.24) 

	

= E[(e( i(n)4*i(n - 1)1 - FE[e 1(n - 1fle1(n - 1)1. 	(3.25) 

Equalising this gradient to zero 

= o 
	

(3.26) 

the optimal paramters are found to be: 

- 	E[(e1(n)e*1(m -1)] 

- E[e 	 * (_ (n - 1))e77 - 1)] 

- 1)] 	
(3.27) 

This approach can also be used to estimate the frequencies of multiple sinusoids in noise by 
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first transforming the reflection coefficients into autoregressive coefficients and then using the 

autoregressive spectrum or the root extraction procedure to estimate the desired frequencies. 

3.3 Adaptive FIR filters 

The techniques studied before allow the estimation of the filter parameters based on the as-

sumption that the analysed signals are stationary. In the case of non-stationary signals there 

is a need to make the estimation techniques and therefore the filters adaptive in order to track 

non-stationary characteristics. 

In the specific case of multiple non-stationary sinusoids in noise, this necessity is evident and 

although the estimation of transversal and lattice structure is in principle unsuitable for the 

analysis of such signals, these techniques have been used in the past and will be presented here 

as a "summary of the evolution" of a adaptive filtering techniques designed to analyse NSME 

signals. 

3.4 Adaptive transversal FIR filters 

FIR filters structured in transversal form can be made adaptive by using algorithms that ideally 

will minimise the residual error on a sample-by-sample basis. Two adaptive procedures are 

presented in the following lines aiming at this goal. 

3.4.1 Steepest Descent Algorithm 

For the case of non-stationary signals equation ( 3.9) will be time-dependent: 

[

Td(O, n) r(n)[ 	1 	

] 	

[ min(Th) 1 	 (3.28) 
rd (n) R, (n) ] [ —c0  (n) 	0 	

] 

This implies that an appropriate estimation technique should take into account these time- 

varying statistics which has motivated the search for adaptive techniques to track the non-

stationary nature of the analysed signal. One way to do this is by using adaptive techniques 
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based on gradient descent methods in which the vector of filter parameters are iteratively es-

timated by following the direction of steepest descent over the mean square error (MSE) surface 

determined by the negative of the gradient of this surface respect to the parameters space. 

Using the steepest descent method the parameters of the optimal filter can be estimated recurs-

ively as: 

c(n + 1) = c(n) + iLV*(n), 	 (3.29) 

where the parameter i, often referred as step size, determines the convergence characteristics 

of the algorithm (rate and stability). Choosing "too large" a step size would cause divergence 

while a "too small " step size would guarantee convergence but at a slow rate. 

Extending equation ( 3.8) to the non-stationary case we have the gradient of the MSE for the 

non-stationary case: 

V(n) = rd,(,)  - R(n)c(n). 	 (3.30) 

Substituting equation( 3.30) in equation( 3.29) the steepest descent algorithm becomes 

c(n + 1) = c(n) + 1t(rds(n) - R(n)c(n)). 	 (3.31) 

This equation has limited applicability in practice since the estimation of the gradient requires 

a-priori knowledge of the signal statistics. This fact has motivated its simplification to what is 

known as the least mean square algorithm (LMS). 

In order to derive this algorithm, the gradient V(n) can also be expressed as 

V(n) = Vc*E[e(n)e*(n)1 = \7c*E[e(n)(d*(n) - cs*(n)] 	(3.32) 

_E[e(n) s*(n)] 	 (3.33) 

Substituting in equation ( 3.29) we have: 

c(n + 1) = c(n) + ILE[e( fl) s*(n)]. 	 (3.34) 
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In practical scenarios an instantaneous estimate of the expectation E[e(n) s*(n)]:  

E[e (n)s*(n)] = e(n)s*(n) 	 (335) 

can be used, leading to the LMS algorithm: 

c(n + 1) = c(n) + ILe (n)s*(n) . 	 (3.36) 

which has a computational complexity of 0(N), where N represents the length of the signal in 

samples. 

As stated before, the convergence of this algorithm is determined by the value of the step size 

which means that some criteria should be used to determine an appropriate value to guaran-

tee convergence while avoiding instability. Using an analysis technique based on the eigen-

decomposition of the autocorrelation matrix [57], the boundaries for the value of ft can be 

found as: 

(3.37) 
max 

where Anax  is the maximum eigenvalue of the autocorrelation matrix. 

A more practical bound [56] is given by: 

1 
o 

	

	 (3.38) 
POW(s) 

where POW (s) represents the signal power. 

The LMS algorithm has been used in the past to estimate the frequency trajectories of non-

stationary sinusoids by finding time-localised spectral estimated and searching for maxima [58] 

or minima [61]in these functions. 

Figure 3.5 illustrates the adaptive spectrum estimation procedure proposed in [58] by which 

an adaptive spectrum is obtained from the LMS-estimated autoregressive coefficients. 
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Figure 3.5: Adaptive spectrum calculation proposed by Griffiths [58]. 

3.4.2 Recursive least squares algorithm 

In the LMS adaptive filter the ensemble average E [c(n,)s*(n - k)] is estimated using instant-

aneous values: 

E[e(n)s*(n - k)] = e(n)s*(n - k). 	 (3.39) 

This approach is useful in many applications but in others cases leads to slow convergence 

due to the eigenvalue spread of the autocorrelation matrix [55] [56]. An alternative approach 

consists on using a minimisation technique not relying on expectation operators but in measures 

directly computed from the available signal. For example, the least square error computed 

from N samples of the signal could be used: 

€(n) = 	e(i) 	 (3.40) 
i=n—N 

This measure can be estimated recursively as 

€(n) = A€(n - 1) + e(n)12  = 	ATh_ule(n)12 	 (3.41) 
i=n—N 
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where a forgetting factor A has been introduced to give more "weight" to recently acquired 

samples. This equation can be expanded as 

c(n) - 	A{ e (n) e*(n)} 	 (3.42) 

) n [l 
 CT 	

{ [ 

d( 	
d* (n) s*@ 

S (n) 	 ] } [ ] 	 —C] 

[1 	- CT ] 
	

,\flZ 

{ 

[ d(n)d*(n) (1( fl ) S*( fl ) 

] [_c] d*(n) s (n) s(n)s*(n) 
f 

[1 _CT ] Rd(n) [] 

where Rd (ii) can be found recursively as: 

d 
Rd, (n) 	

(n) 
ARds (n - 1) + 	I d(n) s*(n) ] 	

(3.43) 
s(n) 

R(n) = AR(n - 1) + s (n) sH(n) 	 (3.44) 

and rd(n) as: 

rds(n) = A rd, (rl - 1) + d*(n) s (n) 	 (3.45) 

Substituting the optimal solution ( 3.9) (reproduced here for convenience): 

rd(n) - IR.(n)c0t  = 0 	 (3.46) 
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in equation ( 3.45) we get after arranging terms, a recursive method to estimate the parameters 

of the filter: 

Rs (n)c0 (n) = AR(n - 1)c0t ('n - 1) + d*(n)s(n) 	 (3.47) 

Replacing equation (3.44) in ( 3.47) we get: 

Rs(n)c0t (n) = ( R, (n) - s(n)sH 	c pt  - 1) + d*es(n), 	(3.48) 

which, after pre-multiplying by Its  and some arrangements, can be written as: 

Cot (fl) = C0t(fl - 1) + R(n )s ( n )e*( n ) 	 ( 3.49) 

In order to avoid an explicit matrix inversion to estimate the optimal parameters, the inverse 

can be computed recursively by relying on the matrix inversion lemma [56]: 

	

)c 2R;1  (n - 1)s(n)s"(n)R' (ii - 1) 	
(3.50) R-1  (n) - 1) - 

	1 + -1sTnR'n - 1)s*( n ) 

If P (n) is defined as the inverse of the autocorrelation matrix: 

P(n) = 	 (3.51) 

and the gain factor k(n): 

- i)s(n) 	
(3.52) 

1 + A1sT(n)R 1 (n  - 1)s*(n) 

which after some arrangements can be written as 

k(n) = P(n)s(n), 	 (3.53) 

equation ( 3.49) can be rewritten as: 

c0t (n) = c0t(n - 1) + k(n ) e*( n ) 	 ( 3.54) 

The RLS algorithm has been used in [62] to detect the formants of voiced speech through 

instantaneous frequency estimation. There, a hierarchical approach was used to recursively 



Adaptive FIR filters to analyse non-stationary multi-component signals 

estimate and remove the predominant resonant component. 

3.5 Adaptive FIR filters in a lattice structure 

Implicit in the lattice structure there is an orthogonalisation process that can be interpreted as 

a decoupling process. This has motivated the research for an adaptive version of this structure 

[63] [64] to overcome the convergence dependence on eigenvalue spread which limits the 

performance of adaptive transversal filters based on stochastic gradient. 

The adaptive version of the lattice filter is based on the use of the gradient estimate in equation 

(3.24) to estimate the reflection coefficients through: 

F(n+ 1) = F(n) - 	 (3.55) 

F(n + 1) = F(n) - tjE[c[ (n)e* i (n - 1)]. 	 (3.56) 

The practical use of equation ( 3.56) is limmited by the a priori requisite of the second order 

statistics of the forward and backward prediction errors. However as in the case of the trans-

versal LMS algorithm the expected values can be substituted by instantaneous estimates leading 

to the Gradient Adaptive Lattice (GAL) filter [55]. 

F(n+ 1) = F(n) -pi[eif (n)e * i (n  —1)] 	 (3.57) 

In the case of multiple non-stationary exponentials in noise this algorithm can be used to estim-

ate the frequency track of each component by first obtaining the coefficients of the equivalent 

transversal filter and the picking the peaks of the corresponding autoregressive spectral estim-

ate or extracting the roots of the corresponding autoregressive polynomial. This idea was used 

in [65] to track multiple narrow-band components whose power levels are widely separated 

including a formant tracking example of real speech. 

3.6 	Adaptive FIR filters structured in cascade form. 

This is the structure that has been the centre of study in the research work reported in this 

thesis. The key point is the design of an appropriate technique to estimate the parameters of 
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each section of the cascade. Intuitively it provides the possibility of independently tracking 

the parameters of multicomponent signals and if appropriately designed the algorithm could 

provide a highly time localised estimate with low computational load. 

The use of adaptive FIR filters structured in cascade form and its application to the analysis of 

speech was first explored in [67].  Subsequently this structure was studied by other researchers 

in [69] [71] [72] [73] [74] [75]. 

i e(!1)  

Figure 3.6: Structure of a FIR filter in cascade. 

In [74] a subsection adaptation scheme based on the RLS algorithm was proposed to estimate 

a linear predictive model for speech coding purposes. A brief description of this algorithm is 

presented here as an introduction to the problem of estimating the parameters of the cascade 

structure. 

3.6.1 Recursive least-squares adaptation 

In order to estimate the parameters of the filter, it is necessary to find the gradient of the error 

with respect to the coefficients of each section [67] [69]: 

4)k(n) = Vcke(fl) 	 (3.58) 

where 'k  (n) and Ck (n) represent the gradient and the coefficients of the k - th section respect-

ively. The output of the total error predictor filter is e(n). This gradient can be computed by 

filtering the output e(n) with C 1  (n), which represent the inverse of the k - th section. The 

autocorrelation matrix of the cascade RLS will be defined as the autocorrelation of the output 

gradient: 

(m) = [(n),(n),..., N/2(n)]T 	 (359) 

where N represents the order of the filter. Stated in this way, the cascade RLS algorithm 

requires the computation of an N x N matrix autocorrelation matrix. However this task 

can be simplified by realising that in the linear prediction case the computation of 'k (ii) is 
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equivalent to computing the output after removing all the poles except those belonging to the 

k - th section. This leads to an autocorrelation matrix in the form of a nearly block diagonal 

matrix with blocks Rk representing the 2 x 2 autocorrelation of the k - th section. 

Based on the assumption that the resulting autocorrelation matrix has this topology, the para-

meters of each section can be computed independently by using the RLS algorithm. The coef-

ficients of the k - th section, ck(n),  are adapted as follows: 

ck(n) = R 1 (m)pc(n) 	 (3.60) 

where pck ('11) represents the cross-correlation between the input and the desired signal. The 

computation of the coefficients can be simplified using the matrix inversion lemma [56], which 

leads to to the cascade recursive least squares subsection adaptation (CRLS-SA) algorithm 

[74]: 

	

k,1 (n) = C' (q')CN/2 (n) 	 (3.61) 

k,2(n) = k,i(fl - 1) 	 (3.62) 

	

[k,1(n)k,2(fl)]T 	 (3.63) 

)Pk(fl - 1)k(n) 
kk(fl) = 	 (3.64) 

1+ 	(n)Pk(n - i)k(n) 

Pk(n) = 	- 1) - 	 - 1) 	 (3.65) 

ek(m) = 	- c(n - 1)sk(n) 	 (3.66) 

Ck(Th) = Ck(fl - 1) + kk(n)ek(m) 	 (3.67) 

where eN/2  represents the final output of the predictor error filter, e (n) the predictor error 
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output of the k - th section and sk (n) the input of the k - th section. 

---------------------------------------------------------------------------------- 

Figure 3.7: Estimation of the parameters of the cascade structure using the cascade-RLS al-
gorithm [74]. 
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3.7 Summary 

In this chapter adaptive FIR filters have been reviewed in the context of the analysis of non-

stationary multicomponent signals. The chapter started with a review of the theory behind FIR 

filters, describing transversal and lattice structures using statistical concepts. After that adaptive 

FIR filters were introduced as a means to analyse non-stationary signals highlighting their use 

in the past in the analysis of nonstationary sinuoids in noise. There, it was explained how this 

task was achieved by relying on autoregressive spectral estimates or root extraction procedures 

in conjunction with adaptive filters structured in transversal and lattice form. 

In the final part of the chapter, the cascade structure was presented in conjunction with the most 

recently proposed algorithm to estimate its parameters. This structure constitutes the basic 

analysis tool of the work summarised in Chaper 4 and the review made here is intended to 

reinforce the ideas behind this approach. 
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Chapter 4 
Adaptive zeros for direct 

multi-frequency tracking: Time 
domain case 

The techniques described so far provide indirect ways to estimate the instantaneous frequency 

of each exponential component of the composite signal in the sense that several stages, con-

suming computation effort and increasing the overall complexity of the procedure, are required. 

This fact has motivated the search for a direct approach to estimate the non-stationary frequency 

trajectories of time-varying multicomponent exponential signals. 

The approach introduced in this chapter can be briefly condensed into the following: provided 

that the amplitude of each exponential component is slowly varying (relatively speaking), which 

implies an associated time-varying pole with near to unitary radius and time-varying angle; a 

filter composed by a cascade of zeros with constant unitary radii and adaptive angle can be used 

to simultaneously cancel all but one component and estimate the residual signal's instantaneous 

frequency. 

In order to guarantee the estimation accuracy, the adapted parameters should be the instantan-

eous angles of the zeros which will be - after convergence of the adaptive algorithm - estimates 

of the instantaneous frequencies of the exponential components. 

4.1 	Analysis of mono-component signals 

As described in the previous chapters, deterministic signals with time varying features can be 

represented using a basic complex exponential signal with time-varying amplitude and fre-

quency: 

s(n) = a(n) exp(jç(n)) 
	

(4.1) 

where a(n) and 0(n) represent the instantaneous amplitude and phase of the signal respectively. 
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This signal can also be defined as a function of the complex phase p(n) 

s(n) = exp(p(n)) 	 (4.2) 

where (n) = (ln[a(n)] + j(n)) E C (set of complex numbers). 

For this signal we can define its pole track as: 

p(n) 
-

- 

s(n) - a(n) 

	

s(n - 1) - a(n - 1) 
exp(j(n) - j(n - 1)) 	 (4.3) 

= p(n)exp(jw(n)) = exp(( - o(n - 1)) = exp()) 

where p(n), w(n)and w(n) represent the instantaneous damping factor, frequency and complex 

frequency of the signal. The pole track defined as the ratio of two successive complex-valued 

samples conveys information about the frequency of the signal and the estimation of its para-

meters will be performed relying on a filter with adaptive zeros. 

In order to estimate the parameters of this signal we can use a time-varying predictor filter for 

which the filter signal can be defined as: 

(n) = (n) = â(n) exp(j(n)) = exp((n)) 	 (4.4) 

and its associated zero track: 

Z (n) — 	
/(n) - a(n) 

	

exp(jç6(n) - An - 1)) 	 (4.5) 
- (n-1) - â(n-1) 

exp((n) - (n - 1)) = exp((n)). 

The filter signal, which is defined as an estimate of s(n), is introduced here to define the zero 

track. This filter signal conceptually permits the suppression of s(n) by a simple subtraction 

and a time-varying predictor filter which, with the corresponding zero track, would allow can-

cellation of 8(n). The technique presented in the sequel is focussed on the estimation of the 
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zero track by using a gradient-descent technique to minimise the output of the filter. The filter 

signal is never explicitly calculated, rather the estimated zero track provides the mechanism for 

instantaneous frequency estimation. 

The pole-track of the basic signal as defined in ( 4.3) can be estimated using a gradient-descent 

technique to minimise the instantaneous residual energy: 

e(rn) = I e(m)12  = Is(m) - z(m)s(nr - 1)12 	 (4.6) 

js(rn - 1) 2(p(m) - z(m)) I 2 

where the time index in represents an expanded-time index introduced to appropriately model 

the adaptation process that will be characterised by approaching and locked periods. 

Equation ( 4.6) which describes a quadratic function of the distance between the instantaneous 

location of the signals pole and the filters zero can be interpreted as the free energy of an 

adaptation process with gradient-type dynamics. From this perspective, a vector field originated 

at the signal's pole attracts the filter's zero with velocity: 

Az(m) = f(z(m)) 	ILV(m)); 	 (4.7) 

where f-  represents the inertia of the system. If the location of the attractor (pole) is represen- 

ted in the plane defined by 	,the free-energy induces a velocity of attraction: 

f(i(rn)) = -1V((m)) 	 (4.8) 

= 

where 	represents the Jacobian of the transformation. 

It is interesting to note that 

(rn) = —V(m)) 

(4.9) 
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which means that the induced phase acceleration A2 (m) is directly proportional to the gradi-

ent of the free-energy at the corresponding filter's instantaneous frequency and inversely pro-

portional to the inertia of the adaptation process. 

4.2 	Analysis of multicomponent signals 

Having presented the ideas involved in the analysis of mono-component signals, we now pro-

ceed to extend the concepts to the case of real-valued multi-component signals. These signals 

can be modelled as a superposition of the basic mono-component signals defined in (4.2): 

s(n) = 	srk(n) 	(sk(m) +s(n)) 	 (4.10) 

where 

sk(n) = exp(k(n)). 

Related to these signals there will be a set of poles or super-pole: 

sup(n) = U{I'k(n),p(n)} 	 (4.11) 

where 

Pk(n) exp(ttk(n)). 

In order to estimate the parameters of K components, a filter of the same order can be used 

defined by the super-zero: 

suz(n) = U{zk(n),z(n)} 	 (4.12) 

where 

Zk(fl) = exp(i(n)) 
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And the free-energy of a given pair signal-predictor can be re-defined as: 

(m) = I e(rn)2 
	

(4.13) 

= sk(m) (Pk (rn) - Zk(Tfl)) +9*(m)(13k(rn) - z(m))I2 

where 

9k (M) = (1— z* (in) 

s(m)(1 - zi(m)q')(l - 

= e(m)(1 - 	 (4.14) 

represents the k-th semi-residual signal and Pk  (m) its time-varying pole. 

A general structure for the signal separation procedure in the case of real-valued signals is 

represented in Fig. 4.1, and a close look at the structure on each second-order section is given 

in Fig. 4.2. As each second-order section is composed of two zeros, it will also be referred 

to here as a zero pair to remark on the fact that the parameters that are actually being estimated 

are the angle and the phase of a pair of complex conjugate zeros. 

The free-energy at the output of the cascade can be expressed as a function of the filter para-

meters as: 

(m) = Vrk(m)Pk(c, q 1))2 	 (4.15) 

where srk (m) represents the k - th real-valued semi-residual signal, 

Pk(ck, q 1) = (1 + ckl(m)q 1 + ck2(rn)q 2) 	 (4.16) 

its associated predictor or zero pair filter, and 

ck(m) = [ckl(rn), ck2(m)] 	 (4.17) 
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ME 

Figure 4.1: Structure of a third-order predictor-estimator filter. 

[-2Re(zk (m)), (mod(zk(m))) 2] 

[-2k(m) cos( k (rn)),(m)] 

represents the vector of time-varying parameters. 

In this case the induced velocity will be defined by: 

-9k (m) = IL9 Ck/9k 	(m) 	 (4.18) 

where 

= [ k , k1t 

represent the parameters (angle and radius) of the k - th zero, 
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P 

e2(m) 

e On) 

Figure 4.2: One section of the cascade (second-order predictorfilter or zero pair). 

[ 1t2' 01 [LoI 
[0 it] 

a constant representing the inverse of the inertia of the adaptation process, 

it 	 _ — pksin(Wk) 0 1 

- [ 	
I'll 

cos(k) 	Pk  

the Jacobian of the transformation from the space defined by the parameters of the filter to the 

space defined by the parameters of its zeros, and 

srk(rn) = 

the direction of adaptation defined by a unitary vector in the direction of  
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4.3 	Convergence analysis 

In order to prove that the adaptation process described in the previous section converges to the 

optimal value, we can define the error estimate for a complex mono-component signal as: 

	

zvz — p 	 (4.19) 

where z represents the adaptive zero and p the pole of the signal. From (4.6) we have: 

	

> 0 V zv E 	z plane 	 (4.20) 
Azvi - 

which means that the residual energy is a concave function of Izv I with a minimum at: 

zv = 0. 	 (4.21) 

In a similar way, if the definitions: 

	

WV, - W 	 (4.22) 

and 

pv=5—p 	 (4.23) 

are used, it is clear that: 

zvI > 0 for 5 constant 	 (4.24) 
AJwvJ - 

AIzvI > 0 for ' = constant 	 (4.25) - 

In other words, is a concave function of wv and pv. From ( 4.22) and ( 4.23), it can be 

seen that is a concave function of ' and fi with a minimum at 	,5] 	[W, p], guaranteeing 

convergence for a large enough inertia. 

For the case of real-valued mono-component signals the existence of a unique minimum can 

be visualised by interpreting the problem as the estimation of the instantaneous values of two 

complex mono-component signals with a cascade of two complex first-order filters adapted in 
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parallel. 

The convergence of equation ( 4.18) can then be achieved by complying with the constraints 

IVI < WVj Vwv E [0,71] 

and 

ILV 	< IpVI VpvE [0, 1]. 

If the magnitudes V 	and jVgj are scaled to jej while the input signals are normalised to 

have magnitude less than one, then the constraints can be shown to be (Appendix 1): 

PC  for 	P. 

and 

If a slow adaptation process is desired, the values of the 	and 	must be selected well below 

its upper limits. 

In the case of multi-component real-valued signals, finding the optimal zeros of the filter can 

be interpreted as simultaneously finding the optimal values of first-order sections whose inputs 

are scaled and delayed versions of each component of the input signal plus "interference" 

As the zeros approach the biased poles (due to the interference) of the signal, the amplitude of 

the "interference" will be smaller in relation to the component being estimated, and the proof 

of convergence for the complex mono-component signal case can be extended to the real and 

multicomponent cases. Once the zeroes are locked to the poles, any variation in a component's 

frequency will be independently tracked by its respective zero. 

4.4 	Computational complexity 

The computational complexity of the proposed algorithm is of order O(KM), where K rep-

resents the number of components being tracked and M represents the total number iterations 
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',Equipotential lines 
::: s 

	pole

: 

	

Re'pf the numerical field 

Z-plane 

Figure 4.3: Diagram showing the an "snap-shot" of the position in the z-plane of the instant-
aneous signals poles and their filtering zeros. 

required by the algorithm to converge to the optimal values. This can be understood by ob-

serving updating equation ( 4.18). In the case of locked periods when the zeros of the filter 

are locked to the poles of the signal, the computational complexity will be of order 0(1(N), 

where N represents the total number of samples. This represents an advantage when compared 

with frequency tracking techniques based on the use of time-frequency representations which 

require algorithms with computational complexity of higher order to obtain the required trans-

forms. For example, the computational complexity of just computing the spectrogram would 

amount (not considering data storage requirements) to an order of 0 (NW WL NF) where WL 

represents the length of the window used to compute the short-time Fourier transform, N 

the number of windows and NF the number of frequency bins. In addition a second stage 

incrementing the computational load is required to track K ridges. 

4.5 	Signal separation 

Once the trajectory of the signal parameters have been estimated, a time-varying notch filter of 

the form [76]: 

Nk(n,q1) - P
k (c(n),q') 

(4.26) - Pk- (c(n),rql) 
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X Filter's poli 

0 Filter's zer 

Z-pla 

Figure 4.4: Diagram showing the an "snap-shot" of the position in the z-plane of the time-
varying poles and zeros for a notch filter (pole-zero pair). 

can be used to cancel the k - th component of the composite signal. The notch filter will be 

denominated here as a pole-zero pair because it is defined by two complex conjugate poles and 

two complex conjugate zeros each having a pole at the same angle as a zero but with a radius 

scaled by the factor 'r (see Fig. 4.4). 

Since each pole-zero pair tuned to the frequency trajectory of a component will cancel it, a 

cascade of pole-zero pairs defined as: 

NCk(n,q 1 ) = flNi(n) 	 (4.27) 

k 

will allow the isolation of the k - th component of a composite signal with K components. 

Once that a given component has been isolated it can be treated as a mono-component signal 

and its amplitude envelope can be estimated using a technique described in the next section. 
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e(m) 

P2)1-'  - 	. 

s(m)=si (m)+s2 (m) 

Figure 4.5: Cascade of two zero pairs for tracking the instantaneous frequency qf two super-
imposed sinusoids. 

4.6 Amplitude envelope estimation 

In addition to the task of tracking the instantaneous frequency of each component of the com-

posite signal, it is necessary to estimate the instantaneous amplitude of each component in order 

to fully characterise it. 

The estimation technique proposed here is based on two samples. Specifically we have that two 

consecutive samples for an amplitude and frequency modulated sinusoid will be given by: 

s(n) = a(n) cos(c/(n)), 	 (4.28) 

and 

s(n+ 1) = a(n)cos(çb(m) +w(n)). 	 (4.29) 

Assuming a small variation of the signals amplitude envelope for two consecutive samples, the 

ratio of this samples will be given by: 

s(n+1) - cos((n)+w(n)) 

s(n) - cos((n)) 
(4.30) 

Using trigonometric properties, the instantaneous phase can be expressed as: 

cos(w(n))
-  

s(n+1)1 

(n) = arcta n 	. 	 (4.31) 

[ 	
sin (w(n)) 	

] 
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Based on an estimate (n) of the instantaneous frequency, an estimate of the instantaneous 

phase can be obtained as: 

s(n+1) 1 
(n) = arctan cos( 

- s(n) 	
(4.32) 

sin((n)) 

Substituting Equ. (4.32) in Equ. (4.28) an estimate of the signal instantaneous amplitude 

envelope can be finally obtained as: 

a(n) = 
s(n) 

I[cos I

s(+I)

cos {arctan 	sin((m)) 	f 
(4.33) 

This is a two-samples estimate of the signals amplitude envelope that will be tested with com-

puter simulations in the following section. 

4.7 	Computer simulations 

Although the proposed algorithm allows the separation of damping and frequency related in-

formation, the signals studied here are analysed with filters whose zeros are constrained to be 

on a circumference with unitary radius in the z - plane. This is done to take advantage of 

the narrow-band nature of each component of the analysed signals. Additionally the inertia of 

the adaptive process (inverse of the adaptation constant 11w)  is adjusted empirically to suit the 

dynamics of the analysed signals. 

In order to estimate the amplitude envelope of a given component of the composite signal, the 

desired component is first isolated using a time-varying notch filter (pole-zero pair) and then 

the amplitude envelope estimate is obtained using the approach introduced in section 46. 

4.7.1 Mono-component signals signals 

CASE A. AM-FM demodulation of a real-valued synthetic mono-component signals 

Figures 4.6, 4.7 , 4.8 and 4.9 show the performance of the proposed and energy separation 

approaches in the task of tracking the amplitude and frequency of a sinusoid with sinusoidally 

W. 
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modulated amplitude and frequency (SNR=20 logio( total signal power) = 35dB) noise power 

s(n) = [1.2 cos(0.4n) + 2] sin[ + 0.8 sin(0.4n)]. 	 (4.34) 

In those figures, it can be observed how the proposed algorithm provides an overall more ac-

curate instantaneous frequency estimate for the signal analysed. Particularly around the regions 

with higher rate of frequency change the absolute estimation error obtained with the energy sep-

aration algorithm is slightly larger than that obtained with the proposed algorithm. Although 

this fact is not enough to claim superiority of the proposed algorithm over the energy separa-

tion approach, the ultimate intention of the comparison is to present an alternate approach to 

perform amplitude and frequency demodulation with estimation errors that are comparable to 

those of previously proposed techniques. 

ca 
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Figure 4.6: Estimates of the instantaneous frequency and amplitude envelope (red dots) ob- 
tained with the proposed approach (u 	0. 1, 	1)for a synthetic sinusoid with 
sinusoidally modulated amplitude and frequency (SN R = 35dB). 
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Figure 4.7: Estimates of the instantaneous frequency and amplitude envelope (red dots) ob-
tained with the DESAI algorithm for a synthetic sinusoid with sinusoidally modu-
lated amplitude andfrequency (SNR = 35dB). 
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Figure 4.8: Absolute error for the instantaneous frequency and amplitude envelope obtained 
with the proposed approach. 
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Figure 4.9: Absolute error for the instantaneous frequency and amplitude envelope obtained 
with the the DESAJ algorithm. 

0 

61 



ye zeros for direct multi-frequency tracking: Time domain case 

CASE B. A chirp with linear frequency rate and sinusoidal amplitude envelope 

A second example for AM-FM demodulation consists on a chirp with linearly modulated fre-

quency and sinusoidal amplitude envelope: 

7r 71 	 2.88n2  
s(n) 	[0.7 cos(—) + 2] cos( 	+ 0.12n). 	 (4.35) 

200 	2000 

The instantaneous frequency and amplitude envelope estimated obtained with the proposed ap-

proach is shown in Fig. 4.10 and the corresponding absolute instantaneous error are displayed 

in Fig. 4.11. 

The performance of the algorithm has also been tested and compared with other approaches 

for a noisy version of this signal. The other approaches used were: energy operators based 

estimation and the Hilbert transform. For the energy operators approach the discrete energy 

separation algorithm (DESAI)[10] was used and the Hilbert transform was performed by using 

the DFT of the signal. 

Figs. 4.12, 4.13 and 4.14 display the performance of the algorithms for SNR=30dB. And Figs. 

4.15 and 4.16 display the mean absolute perceptual errors for different signal-to-noise ratios. In 

Fig. 4.15 it can be observed how the proposed approach outperforms both the energy separation 

an Hilbert transform based algorithms in the task of estimating the instantaneous frequency of 

the analysed signal for SNR's between 30 and 47dB. 

In the task of estimating the amplitude envelope of the analysed signal ( Fig. 4.16), the perform-

ance of the proposed approach lies between those of the energy operator and Hilbert transform 

based algorithms for SNR's between 30 and 50dB. 
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Figure 4.10: Estimates of the instantaneous frequency and amplitude envelope (red dots) ob-
tained with the proposed approach (i' = 0.2, fi = 1)for a synthetic chirp with 
linearly increasing frequency and sinusoidally modulated amplitude. 
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Figure 4.11: Mean absolute errors for the simulation whose results are shown in Fig. (4.10) 
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0 100 200 300 400 500 600 700 800 900 1000 

Figure 4.12: Estimates of the instantaneous frequency and amplitude envelope (red dots) with 
the proposed approach (u 	0. 1, 5 = 1, S.NR = 3OdB) for a synthetic chirp 
with linearly increasing frequency and sinusoidally modulated amplitude. 
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Figure 4.13: Estimates of the instantaneous frequency and amplitude envelope (red dots) ob-
tained with the DESA-J algorithm for a synthetic chirp with linearly increasing 
frequency and sinusoidally modulated amplitude. 
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Figure 4.14: Estimates of the instantaneous frequency and amplitude envelope (red dots) ob-
tained with the Hubert transform algorithm for a synthetic chirp with linearly 
increasing frequency and sinusoidally modulated amplitude. 
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Figure 4.15: Mean absolute instantaneous frequency error for a chirp signal with linearly 
modulatedfrequency and sinusoidally modulated amplitude corrupted by additive 
Gaussian noise. 
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Figure 4.16: Mean absolute instantaneous amplitude error for a chirp signal with linearly 

modulatedfrequency and sinusoidally modulated amplitude corrupted by additive 

Gaussian noise. 
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CASE C. Analysis of a bat sonar signal 

A bat sonar signal is analysed here as an example of a real mono-component signal. This signal, 

obtained from the Time-Frequency tool-box (http://iut-saint-nazaire.univ-nantes.fr/ auger/tftb.html), 

was sampled with a frequency of 230.4 Hz. 

The Wigner-Vi lie distribution of a decimated (7 : 1) segment of the bat sonar signal (illustrating 

its mono-component nature) is shown in Fig. 4.18. 
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Figure 4.17: Sonar signal of a bat 
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Figure 4.18: Wigner-Ville distribution of the bat sonar signal 



Adaptive zeros for direct multi-frequency tracking: Time domain case 

Figures 4.19, 4.20 and 4.21 show the instantaneous frequency and amplitude envelope ob-

tained with the proposed, energy separation and Hilbert transform approaches applied to the 

decimated segment of the bat sonar signal. The instantaneous frequency and amplitude es-

timates obtained with all the approaches are consistent in the sense that they follow the same 

trajectory, only the energy separation algorithm provides poor estimates in the segment with 

non-stationary frequency. 
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Figure 4.19: Estimates of the instantaneous frequency and amplitude envelope (red line) ob- 
tained with the proposed approach (,a 	0. 1, = 1)for the bat sonar signal. 
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Figure 4.20: Estimates of the instantaneous frequency and amplitude envelope (red line) ob-
tained with DESA-] algorithm for for the bat sonar signal. 
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Figure 4.21: Estimates of the instantaneous frequency and amplitude envelope (red line) ob-
tained with Hubert transform algorithm for for the bat sonar signal. 
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4.7.2 Multicomponent signals 

CASE D. Convergence of a cascade of two zero pairs 

This example is intended to illustrate the convergence of a cascade of two zero pairs for the case 

of two stationary sinusoids with different amplitude corrupted by zero mean additive Gaussian 

noise (total SNR=30 dB): 

s(n) = cos(1.5n) + 3 cos(2n). 	 (4.36) 

The convergence process is illustrated in Figs. 4.22, 4.23 and 4.24 where it can be observed 

how the algorithm converges to the optimal solution irrespective of the initial conditions. 
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Figure 4.22: Convergence to the frequencies of two tones with different amplitude (total 
SNR=30 dB)for a cascade of two second-order filters with initial values w1  (0) 
0.1 rads and w2 (0) = 0.5 rads (liw = 0.4 and  = 1). 
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Figure 4.23: Convergence to the frequencies of two tones with different amplitude (total 
SNR=30 dB)for a cascade of two second-order filters with initial values w1  (0) = 
1.6 and W 2(0)  1.9 rads (p = 0.4 rads and  = 1). 
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Figure 4.24: Convergence to the frequencies of two tones with different amplitude (total 
SNR=30 dB)for a cascade of two second-order filters with initial values w1  (0) = 
2.5 and w2 (0) = 3 (t = 0.4 and  = 1). 
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Case E. Frequency hopping tones 

This example is intended to show the performance of the algorithm in the task of tracking the 

frequencies of two tones with hopping frequencies embedded in additive Gaussian noise with a 

signal-to-noise ratio of 30 dB. The frequency tracks obtained with a cascade of two zero pairs 

with unitary radius and with an angle adaptation constant of iLw = 0.2 are shown in Fig. 4.25. 

The value of the adaptation constant was chosen empirically to achieve a relatively slow con-

vergence time while producing a frequency track with relatively low tracking noise. 

It can be observed in the figure how the proposed approach effectively tracks the instantaneous 

Lai  real ;track 

LH 
- estimated track 

time (samples) 

Figure 4.25: Real and estimated frequency trajectories for a two superimposed tones with hop-
ping frequency (SNR=30dB). 

frequency of each sinusoid. The adaptation constant chosen leads to transitory periods with a 

duration of around 30 samples after which the frequency tracks stabilise around the instantan-

eous frequency laws. 
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For illustration purposes, the Choi-Williams distribution of this signal is displayed in Fig. 4.26. 

This representation provides a high concentration of energy around the frequency laws of the 

signals but its estimation is computationally expensive which makes a ridge tracking algorithm 

based on this representation, a non practical solution. 

CW, Lg50, Lh=125 sigma=1, N=1 000, log, scale, imagesc, Threshold=1% 	 dB 

100 200 300 400 500 600 700 800 900 1000 
Time [samples] 

Figure 4.26: Choi-Williams distribution of two superimposed tones with hopping frequency 
(SNR=30dB). 
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Case F. Crossing chirp signals 

In this example a multicomponent time-varying signal consisting of two chirps crossing in the 

time-frequency plane with constant but different amplitude is analysed: 

7tfl 	47rn2 	2n 
.s(n) =cos(—+ 	+3cos( 	)) 10 10000 	100 

	

97r 	4irn2 	2n 
+3cos(- - 
	

+3 cos( 	)). 	 (4.37) 

	

10 	10000 	100 

Figure 5.8 shows the frequency trajectories estimated using two zero pairs with p5(n) = 1 and 

= 0.5, and initial values for the angle of the zeros where set equally spaced over the 

constraining circumference (Z'1  (0) z= 7r /3 and 2  (0) = 27r/3). 

A conventional way to determine the frequency trajectory of these chirps would be using the 

ridge tracking algorithm [26], which consist of detecting and joining the peaks of a time-

frequency representation such as the spectrogram. This would imply a great computational 

effort required for the estimation of the time-frequency distribution and pick-peaking on a rep-

resentation with limited resolution. 

Results obtained with ridge tracking over the spectrogram of the signal (computed with win-

dows of 20 samples) are provided in Fig. 4.27. There it can be observed how the algorithm fails 

to provide good instantaneous frequency estimates near the crossing points due to the limited 

resolution of the spectrogram. 

The proposed approach (Fig. 4.28), although yielding inaccurate frequency estimates near 

the crossing point, represent an advantage over the ridge tracking algorithm in terms of com-

putational complexity, and for its ability to provide instantaneous frequency estimates on a 

sample-by-sample basis. 

It must be noted that the real frequency trajectory of a given sinusoid (lost by a zero after 

the crossing point in the time-frequency plane) could be recovered by using a second stage 

to include additional information extracted form the instantaneous frequency estimates. The 

comparison of frequency estimates sampled at a low rate (in relation to the frequency at which 

the signal was sampled) can be used to detect changes in frequency trajectory that could be 

interpreted as the result of crossing in the time-frequency plane. 
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0 	10 	20 	30 	40 	50 	 15 	20 	25 	30 	35 
time (samples/(2 p1)) 	 time (samples/(2 p1)) 

Figure 4.27: Instantaneous frequency estimates of two chirps crossing in the time-frequency 
plane using ridge tracking over the spectrogram. 
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Figure 4.28: Instantaneous frequency estimates of two chirps crossing in the time-frequency 
plane using a cascade of two zero pairs. 
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Case G. 

In this case a multicomponent time-varying signal consisting of two crossing chirp embedded 

in noise (SNR=l5dB) is analysed: 

	

irn 	47rn2 	9cirn 	4p2  
+cos(— - ____ 

	

s(n) cos( + j 	
10 	

(4.38) 

for the purpose of showing the behaviour of the algorithm in more noisy environments. This 

signal was analysed with two zero pairs (15(n) = 1 and f(n) = 0.3). The results obtained are 

illustrated in Fig. 4.29. Despite the noise, the estimated frequency tracks are close to the real 

values with a mean square error (MSE) of the instantaneous frequency measure obtained after 

the transitory period was 2.08 10 (rads2 ). 
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Figure 4.29: Instantaneous frequency estimates (white lines) of two crossing chirps in noise 
(SNR=15 dB). 

In figure 4.30, the Wigner distribution of this signal is depicted for the purpose of illustrating 

that despite of the high resolution achievable with this approach tracking the peaks of this 

distribution would prove a computationally expensive procedure. 
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Figure 4.30: Wigner distribution of two crossing chirps in noise (SNR= 15 dB). 
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Case H. 

The following example is intended to illustrate the effect of using a number of zero pairs inferior 

to the number of analised sinusoids. The time-varying signal consisting of two crossing chirp 

embedded in noise (SNR=l5dB): 

irn 47rn2 	97rn 47rn2  
s(n) =cos(-j-+ i0000)+2cos(jö 

	10000 _ - 	
(4.39) 

analysed with one zero pair ( ô(n) = 1,w(0) = 0.5 ,I2 j(n)  = 0.3). The results obtained in Fig. 

4.31 show how the the frequency track estimated is biased towards the frequency trayectory of 

the signal with greatest amplitude. This result should be expected since the "fuction" of the 

adaptive filter is to minimise its output energy. 

0 	 50 	 100 	 150 
time (sampes/(2pi)) 

Figure 4.31: Angle track of one zero-pair (black line) for two crossing chirps in noise (SNR= 15 
dB). 
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Adaptive zeros for direct multi-frequency tracking: Time domain case 

Case I. Two tones with sinusoidally modulated frequency overlapping in the time-frequency 

plane 

This example illustrates the flexibility of the proposed algorithm and its ability to track signals 

overlapping in the the time-frequency plane. The signal analysed is a multicomponent time-

varying signal consisting of two sinusoids overlapping in the time-frequency plane: 

fl 	 71 irz 	irn 	. 	 in 

	

cos(— + -)] + sin[— 	cos(— + 0.57rn)]. 	(4.40) s(n)=sin{ 	
200 3 	8 	200 

i=1 

	

This signal was analysed with two zero pairs ( 3 = 1 and 	= 0.3). The estimated frequency 

trajectories are displayed in Figure 4.32 superimposed over the spectrogram of the signal. 

Figure 4.33 illustrates how a pole-zero pair (r = 0.75 tuned to the estimated frequency traject-

ory of one of the components can be used to suppress it. 

Finally, the isolated component is treated as a mono-component signal to estimate its amplitude 

envelope (Fig. 4.34). 

Figure 4.32: Instantaneous frequency estimates (white lines) of two chirps with sinusoidally-
modulated frequency overlapping in the tune-frequency plane 
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Figure 4.33: Recovered chirp after notch-filtering the signal offig. 4.34. 
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Figure 4.34: Instantaneous frequency and amplitude envelope for the recovered chirp after 
notch-filtering the signal offig. 4.34. 
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Case J. 

This example illustrates the performance of the proposed approach in the task of analysing a 

signal composed of three sinusoids with time-varying amplitude and frequency: 

7r'  )][sin("  
'irn2  

s(n) = [1 + 0.5cos()][sin(-,- +
200 
	
20000 

271-n 	7M 2 	37rn 	7rn2  
+sin(---+ 20000)+sin(-''-+ 20000 )]+ii(n). 	 (4.41) 

The additive noise j(n) in this case is zero-mean Gaussian and the total SNR is 35dB. 

In order to analyse this signal, the instantaneous frequency tracks of each sinusoid were estim-

ated with a cascade of three zero pairs ( ,ô = 1 and ,u, = 0.3). The results of this estimation 

are displayed in Fig. 4.35 where the estimated frequency trajectories are superimposed over 

the spectrogram of the signal. Subsequently, one component was isolated using a cascade of 

two pole-zero pairs (r = 0.8) as displayed in Fig. 4.36. Finally, the instantaneous amplitude 

envelope was estimated treating the isolated signal as a mono-component signal as displayed in 

Fig. 4.37. 
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Figure 4.35: Instantaneous frequency estimates (white lines) of three amplitude and frequency 
modulated sinusoids. 
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Figure 4.36: Spectrogram of the sinusoid recovered after notch-filtering (cascade of two pole-
zero pairs) the signal offig. 4.35 
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Figure 4.37: Estimates of instantaneous frequency and amplitude envelope for the isolated si-
nusoid offig. 4.35. 
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CASE K. Voiced segment of speech 

The performance of the proposed approach is finally evaluated in it's ability to estimate the 

trajectory of the formant frequencies of a voiced segment of speech. This segment of speech, 

uttered by a male speaker, was initially sampled at 16 kHz and then decimated to 8 kHz. After 

that, the resonant components of the signal were "preemphasised" using a first-order filter of 

the form: 

H(q 1 ) = 1 - 0.95q 1 . 	 (4.42) 

In order to analyse this signal, the desired parameters are estimated using four zero pairs and 

the algorithm is locally iterated over windows of 100 samples with fi = 1 and 	= 0.5. 

Fig. 4.38 shows how the estimated formant frequency trajectories match the ridges of the 

signal's spectrogram, and Fig. 4.39 displays the prediction residual which is characterised by a 

marked impulsive nature. 
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Figure 4.38: Estimated trajectory offormant frequencies for a voiced segment of speech. 
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Figure 4.39: Residual signal obtained after filtering speech with time-varying cascade of pre-
dictors. 
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4.8 Conclusions 

In this chapter, an adaptive technique was introduced to estimate the frequencies of multiple 

superimposed non-stationary sinusoids. This technique is based on the use of a filter composed 

by a cascade of zero pairs whose parameters are instantaneously estimated to minimise the 

output energy of the filter. For sinusoids with "slow-varying" amplitude, the zero pairs can be 

constrained to lie on a circle with unitary radius on the z-plane. 

In addition to the technique proposed for the estimation of multiple instantaneous frequencies, 

another method was introduced to estimate the amplitude envelope of mono-component signals 

relying on two consecutive samples. 

After the frequency trajectory of each sinusoid has been estimated, a given component of the 

composite signal can be isolated using a cascade of time-varying notch filters (also referred as 

pole-zero pairs) tuned to the appropriate frequency tracks to cancel all but the desired com-

ponent. Once a given signal is isolated, its amplitude envelope can be estimated using the 

two-sample-based algorithm. 

The proposed approaches were tested with computer simulations for synthetic and real signals. 

In the case of synthetic signals, it must be remarked that the proposed approaches was shown to 

provide instantaneous frequency and amplitude envelope estimates for signals with up to three 

sinusoidal components. The applicability of the the adaptive zeros approach was consolidated 

for real signals by estimating the amplitude envelope and instantaneous frequency of a mono-

component bat sonar signal and by tracking the formant frequencies of a voiced segment of 

speech. 



Chapter 5 
Adaptive zeros for direct 

multi-frequency tracking: Spatial 
domain case 

The ideas proposed in Chapter 4 to estimate and track multiple frequencies in the temporal 

domain, will be extended to the spatial domain in the remaining part of the thesis. The present 

chapter is therefore intended as an introduction to the ideas involved behind this extension as 

well as a revision of some closely related approaches that have been explored in the past to 

estimate and track multiple spatial frequencies. 

After the general background review, the approach of signal decomposition via direct parameter 

estimation and tracking, which is the subject of the research work summarised in this thesis, 

is explored for tracking the angle of arrival of multiple plane waves impinging on a distributed 

linear array of uniformly spaced sensors. The technique proposed is focused on the use of large 

arrays that avoid the necessity of collecting large number of data samples, therefore enabling 

the tracking of rapidly moving sources. 

5.1 	Non-stationary exponential signals as models for spatially 

sampled planar waves. 

When a uniformly spaced linear array (TJLA) of sensors (antennas) is used to sample a planar 

electromagnetic wave, the array's output signal can be modelled as an exponential function of 

the sensors index and therefore a function of a discretely measured space. As will be explained 

later, the frequency of this exponential signal conveys information about the direction from 

which this signal is arriving in the array. In the case of multiple planar waves, the array's output 

can be modelled as multiple exponential signals and the frequency of each of these signals 

conveys information about the direction of arrival of each planar component of the composite 

electromagnetic wave. 
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If the planar waves are produced or reflected by moving sources, the direction of arrivals will 

vary with time and this will be reflected as multiple sinusoids with non-stationary frequencies 

at the output of the array. 

Among the most widely used techniques for angle of arrival estimation are those based on 

eigenvalue decomposition (ED) of the autocorrelation matrix of the sensors output measure-

ments. 

The preference for these techniques is due to their ability to resolve closely spaced spatial 

frequencies. Despite the success of these high resolution techniques in the task of estimating 

the direction of arrival of multiple plane waves impinging on an array of sensors, some problems 

remain unsolved: 

The computational complexity of these techniques is dramatically affected by the ar-

ray size limiting their applicability in real-world scenarios. For instance, the problem 

availability of small numbers of data samples as in the task of tracking rapidilly moving 

sources, could be solved by using large arrays but this advantage cannot be exploited in 

ED-based algorithms due to their computational complexity dependence on the array's 

size. 

When relying on ED decomposition the angle of arrival of the different waves are ac-

cessed in an indirect way either by peak-picking on a pseudo-spectrum or by extracting 

the roots of a polynomial. This process of indirect estimation cannot fully exploit of track 

continuity in an angle-time space in the case of non-stationary sources. 

In the following the concepts of narrow-band signals conveyed by planar waves and how this 

results in exponential signals at the output of a sampling array of sensors will be explained. 

The general geometry of a plane wave impinging on a uniform linear array of electromagnetic 

sensors (antennas) consisting on M elements, is depicted in Fig. 5.1. Assuming that the plane 

wave is narrowband [77] with carrierfrequency Q, the noise-free output of the in - th element 

of the array at time instant t can be modelled as: 

X(m, t) = A(t) cos[Qt + (m - 1)w (t) + c] 	 (5.1) 

where 

A(t) is the amplitude of the signal 
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Source 

- - - 0 ---------
sensor M sensor I 	sensor 2 	sensor 3 

Figure 5.1: Geommetry of the DOA scenario. 

Q the carrier frequency and 

w(t) the electrical angle (inter-sensor phase shift) defined by: 

271- d 
w(t) 	---szn(9(t)), 	 (5.2) 

where (t) is the angle of arrival, ) the wavelength and d the inter-sensor distance. 

This signal can be demodulated and low-pass filtered (Fig. 5.2) to obtain a sampled complex 

baseband signal: 

cos(()t) 

e(x(n)) 

-sin( o) 

Figure 5.2: Complex demodulation and low-pass filtering 

x(m, n) = s(m, n) + llm (n) =a (n) exp[j(rn - 1)(n)] + 0 (n) 	(5.3) 

where 

a(n) represents the sampled amplitude of the signal 

M. 
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'q(m, n) the m-th sensor noise and 

w(n) the sampled electrical angle: 

w(n) = 
27rd 	

(5.4) 

where 8(n) is the sampled angle of arrival. 

Equation ( 5.3) can be extended to model L plane waves, in which case the combined output of 

the m - th element will be given by: 

x(m, ii) = 	al  (n) exp(j(m - 1)wi(n)) + 77 (rn, n). 	 (5.5) 

This equation shows how the output of a linear array, upon which are impinging multiple non-

stationary plane waves, can be modelled as a superposition of multiple exponential signals with 

time-varying spatialfrequency. This fact has motivated the extension of direct multi-frequency 

estimation and tracking ideas introduced in the previous sections to the spatial domain. In this 

case the multiple frequencies that should be tracked convey information about the angles at 

which several plane waves impinge on a linear array with uniformly spaced elements. 

Figure 5.3: Geometry of the multi-source case. 
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am 

Figure 5.4: Structure of an array of sensors for multiple angle of arrival estimation. 

5.2 	Techniques for stationary direction of arrival estimation 

In this section, eigen-decomposition-based approaches to estimate the angles of arrival of mul-

tiple stationary plane waves will be briefly described as an introduction to the non-stationary 

problem. Although other approaches have been explored in the past in the case of stationary 

scenarios, the high resolution achievable with eigen-decomposition techniques has made this 

approach one of the preferred solutions in recent years and efforts have been made to extend 

this approach to the non-stationary scenario. 

Equation ( 5.5) can be expressed in matrix-vector form as: 

x(n) = B(n)a(n) + i7(n) 	 (5.6) 

where: 

x(n) = [x(O,n)x(2,n) ... x(M— i,)]T 	 (5.7) 

represents the sampled output of the array, 

a(ii) = [a, (n)a2 (n) ... aL (n)IT 	 (5.8) 
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the amplitudes vector, 

(n) = [i(1, n) i(2, n)... ?1(M, )]T 	 (5.9) 

the noise vector, and 

B(n) = [b1  (n) b2  (n) ... b(n)] 	 (5.10) 

represents the direction matrix composed of direction vectors: 

bi(n) = [1 exp(jOi(n))... exp(j(M - 1)01(n) )IT. 	 (5.11) 

The autocorrelation matrix of the arrays output can be written as: 

R 	E[x(n) x (n)H] , 	 (5.12) 

which can be expanded for spatially incoherent noise as: 

Rx = cr21 + BRS BH 	 (5.13) 

where a2  represents the noise power and: 

Rsaa'T 	 (5.14) 

the signal autocorrelation matrix also known as the power matrix. 

5.2.1 Direction of arrival estimation using techniques based on eigenvalue de-

composition 

Assuming stationary exponential signals at the output of the array, the frequency of each com-

ponent of the signal can be computed by decomposing the autocorrelation matrix R into its 

eigenvalues and eigenvectors: 

R = V, (A,+ a2I)V'+ V77  (a21) 77 V' 	 (5.15) 
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where 

	

V = [vi  v2  . . . v] 	 (5.16) 

represents the M x p matrix of signal eigenvectors, 

V77  = [v+i Vp+2 . . . V] 	 (5.17) 

the M x (M - p) matrix of noise eigenvectors and A a diagonal matrix containing the 

eigenvalues of the signal. 

The space spanned by the signal eigenvector is denominated signal subspace while the space 

spanned by the signal eigenvector is denominated noise subspace. It can be proven [55] that 

each of the signals vectors b1 lies in the signal subspace and therefore the frequencies of each 

exponential can be estimated by peak-picking on a pseudo-spectral function of the form: 

PD(exp(jQ)) = M 	
(5.18) 

I 	

1 

z=p+1 Ib''I2 

where 

b = [1 exp(j)... exp(j(M - i)Q)]T. 	 (5.19) 

or by finding the roots of a filter of the form: 

M 

C(q 1 ) 

	

	 (5.20) 

i=p+1 

where 

M-i 

Vi  (q —') = 	v(k)q 	 (5.21) 

is the eigenfilter associated with the i - th eigenvector. 

Several frequency estimation techniques encompassed under this approach are detailed below: 
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where 

Vs 	[vi  v2  . . . v] 	 (5.16) 

represents the M >< p matrix of signal eigenvectors, 

V77  = [v 1  vp+2 	. v] 	 (5.17) 

the M x (M - p) matrix of noise eigenvectors and A5  a diagonal matrix containing the 

eigenvalues of the signal. 

The space spanned by the signal eigenvector is denominated signal subspace while the space 

spanned by the signal eigenvector is denominated noise subspace. It can be proven [55] that 

each of the signals vectors b1  lies in the signal subspace and therefore the frequencies of each 

exponential can be estimated by peak-picking on a pseudo-spectral function of the form: 

PD(exp(j)) = 	M 	
1 	

(5.18) 
>1jp+i cIb'vd 2  

where 

b = [1 exp(jQ)... exp(j(M - i))]T. 	 (5.19) 

or by finding the roots of a filter of the form: 

C(q') 	 (5.20) 
i=p+1 

where 

M-i 

Vi(q 1 ) 	 (5.21) 

is the eigenJilter associated with the i - th eigenvector. 

Several frequency estimation techniques encompassed under this approach are detailed below: 
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. Pisarenko Harmonic decomposition with frequency estimation function given by [55]: 

PD(exp(jQ) = 	 (5.22) 

and filter 

M-1 

v(k)q 	 (5.23) 

where Vmjn represents eigenvector associated with minimum eigenvalue. 

MUltiple SIgnal Classification (MUSIC) with frequency estimation function given by 

[55]: 

1 
(5.24) PD(exp(jQ))= ]/1 

Iip+1 

and filter 

C(q 1) = E V(q'). 	 (5.25) 
i=p+1 

. Minimum norm algorithm with frequency estimation function given by [55]: 

PDMN(exp(jQ)) 
= bH 1 CMN2' 	

(5.26) 

and filter 

M-1 

C(q') = : i: c(k)q_k 	 (5.27) 
k=O 

where CMN is a vector lying on the noise subspace with minimum norm and first element 

equal to one. In terms of noise eigenvectors of the autocorrelation matrix, this vector can 

be found as [55]: 

(VV)ui  
VMN = 	 (5.28) 

u(V,71 V')ui ' 
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where 

- [i 0. . . 	 (5.29) 

These techniques have been extensively used in the past providing an indirect way to estimate 

angle of arrival of multiple plane waves. 

5.3 	Direction of arrival estimation for multiple non-stationary plane 

waves 

Measuring time-varying spatial frequencies is not a trivial task as the characteristics of the 

analysed signals are non-stationary making inappropriate the stationary approaches described 

in the previous section. Despite the difficulty of this problem, the necessity of solving it has 

motivated the search for appropriate signal processing techniques and several solution have 

been proposed recently. 

Among the techniques studied are: 

Adaptive eigenvalue methods. 

. Direct recursive update of the angles of arrival. 

Adaptive null-steering. 

These techniques will briefly introduced in the following lines to set the context background 

for the approach proposed in this thesis. 

x(n) 	x(n) 	x,(n) 	x 3(n) 

c

1101 

 

fff.1 D 	 _ 

Figure 5.5: Adaptive array 
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5.3.1 Adaptive subspace techniques 

The idea behind this approach is to adaptively estimate the eigenvalues belonging to the noise 

subspace. Algorithms exploiting this approach are characterised by two stages: A first stage 

used to update the noise eigenvectors and a second stage to estimate the roots of the resulting 

filter polynomial. As both stages aim at the appropriate utilisation of previously estimated 

parameters, efficient eigenvector and root updating algorithms have been proposed. 

In the following lines, this idea is illustrated with the description of one algorithm for the ad-

aptive estimation of the least eigenvector. 

Adaptive estimation of the least eigenvector (adaptive Pisarenko) 

The Pisarenko eigenvalue problem is equivalent to the minimisation of [79]: 

CT RX C = rain 	 (5.30) 

subject to the constraint 

C 
T 

 C = 1. 	 (5.31) 

The solution to this minimisation problem is the least eigenvector: 

C = 	 (5.32) 

This minimisation problem can be solved iteratively by using a constrained Lest Mean Squares 

algorithm [80][57]: 

c(n + 1) = (n) + Ac(n) 	 (5.33) 

Ac(n) = 2ëH(n)x(n)x(n) 	 (5.34) 

c(n+1) 
(5.35) 

- IIc(n+ 1)11 

This adaptive approach can be used in conjunction with a root extraction step to adaptively es-

timate the angles of arrival of multiple plane wave. However, as the parameters of interest are 
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5.3.1 Adaptive subspace techniques 

The idea behind this approach is to adaptively estimate the eigenvalues belonging to the noise 

subspace. Algorithms exploiting this approach are characterised by two stages: A first stage 

used to update the noise eigenvectors and a second stage to estimate the roots of the resulting 

filter polynomial. As both stages aim at the appropriate utilisation of previously estimated 

parameters, efficient eigenvector and root updating algorithms have been proposed. 

In the following lines, this idea is illustrated with the description of one algorithm for the ad-

aptive estimation of the least eigenvector. 

Adaptive estimation of the least eigenvector (adaptive Pisarenko) 

The Pisarenko eigenvalue problem is equivalent to the minimisation of [79]: 

c'Rc = mm 	 (5.30) 

subject to the constraint 

= 1. 	 (5.31) 

The solution to this minimisation problem is the least eigenvector: 

C 	 (5.32) 

This minimisation problem can be solved iteratively by using a constrained Lest Mean Squares 

algorithm [80] [57]: 

c(n + 1) = ë(n) + Ac(n) 	 (5.33) 

Ac(n) = 2i(n)x(n)x(n) 	 (5.34) 

c(n+1) 
(5.35) 

- c(n+ 1)H 

This adaptive approach can be used in conjunction with a root extraction step to adaptively es-

timate the angles of arrival of multiple plane wave. However, as the parameters of interest are 
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the roots and not the coefficients of the filters, some researchers have explored the possibility 

of directly adapting these roots 

Adaptive root tracking algorithms 

In [79] a technique to directly adapt the roots (zeros) of the filter instead of its coefficients was 

proposed. The update of the zeros is performed to make the algorithm equivalent to the LMS 

algorithm. This ideas will be briefly explained in the following lines. 

A filter of the form: 

C(q 1, n) = co(n) + ci(n)q1  + c2(n)q 2  + ... + c_1(n)q_(M_) 	(5.36) 

can be factored as: 

= co  (1 - z1 (n)q1 ) (1 - z2(n)q1)...(1 - zM_1 (n)q') 	(5.37) 

where z (n) represents the 1 - t  complex root of the polynomial C1  (q 1 , n). 

Using a the gradient based algorithm, the 1 - th root update formula is given by: 

zj(n + 1) = zl(m) + Lz1(n) 	 (5.38) 

where the increment Az1 (n) can be determined in a way that is equivalent to the LMS algorithm 

to ensure the asymptotic convergence of z ( n) to its optimal value. 

From ( 5.37) an increment in a root value can be expressed as a function of the coefficients of 

the filter through: 

A/1-1 

Azi(n) = 	
Dzi(n) 

Acm (n) 	 (5.39) 
m=O acm(m) 

where the partial derivatives are given by: 

Dzi(n) -1 	zj(n)(Mt_i) 

Dcm(n) - co (n) UkOj (z(71) - -k (n)) 
(5.40) 
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the roots and not the coefficients of the filters, some researchers have explored the possibility 

of directly adapting these roots. 

Adaptive root tracking algorithms 

In [79] a technique to directly adapt the roots (zeros) of the filter instead of its coefficients was 

proposed. The update of the zeros is performed to make the algorithm equivalent to the LMS 

algorithm. This ideas will be briefly explained in the following lines. 

A filter of the form: 

C(q 1 , n) = co (n) + ci (n)q' + c2(n)q 2 + ... + 
c1(7)q_(M_1) 	(5.36) 

can be factored as: 

= co (1 - 	 - z2(n)q 1)...(1 - zM_1(n)q 1) 	 (5.37) 

where z (n) represents the I - th complex root of the polynomial C (q', n). 

Using a the gradient based algorithm, the 1 - th root update formula is given by: 

zl(n + 1) = zl(n) + Azi(n) 	 (5.38) 

where the increment Az1 (ii) can be determined in a way that is equivalent to the LMS algorithm 

to ensure the asymptotic convergence of zj (n) to its optimal value. 

From ( 5.37) an increment in a root value can be expressed as a function of the coefficients of 

the filter through: 

M-1 
dzi(n) 

Azi(n) = L l3rn() Ac
m() 	 (5.39) 

m=O 

where the partial derivatives are given by: 

Dzi(n) - 1 

acm(n) - co (n) Uk~j(zj(7) - zk(n)) 	
(5.40) 
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Using the LMS algorithm, the increment in the filter coefficients Ac,, (n) can be expressed as: 

Ac,, (n) - 2e(n)x 2  (n) 	 (5.41) 

where e(n) represents the output of the array. A detailed derivation of the above algorithm 

can be found in [79] in conjunction with a convergence and stability analysis. This approach 

was used in [80] in conjunction with the adaptive Pisarenko technique, to separate directional 

signals using a master-slave structure. 

Other algorithms have been proposed in [81] [82] and [83] to adaptively estimate a filter asso-

ciated with the eigenvector lying on the noise subspace combined with efficient root updating 

schemes to adapt the roots of the filter. However, these approaches constitute however indirect 

ways to compute the angles of arrival which has motivated the research work presented in the 

next chapter to directly update the electrical angles (spatiaifrequencies) estimates. 

5.3.2 Direct recursive update of the angles estimates 

This approach first proposed in [84] and later refined in [85], consists of the direct recursive 

updating of the angles estimates by relating the changes in the autocorrelation matrix to those 

in the values of the angles. 

R=a21+BPB'1' 	 (5.42) 

The unrefined algorithm proposed in [84] can be briefly described in the following steps: 

Compute a first estimate of the array output autocorrelation matrix R(0). Apply the 

MUSIC algorithm to obtain initial estimates of the angles of arrival 0 	[01 02 	0L]' the 

noise power a2 , the direction matrix B(0) and the signal autocorrelation matrix R,, (0) 

by solving Eq. (5.42) 

2. Recursively estimate the angles by solving the equation: 

GAO = y 
	 (5.43) 
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where 

cos(ei)yi'i 

G=jd 	
2cos()?i 

(M-1) (M - 1) cos(Oi)y1 	' 

COS (OLyL'LL 

2cos(OL)y/'L 

(M - 1) COS (OL)(M - 1)L'L 

(5.44) 

where 

= exp(j27(Isin(0)/,\) 

A8(k)=O(k)—O(k) 

[01, 02, •••, /,M]T =first row of Ak_iR 

y= first column of AR with first element deleted 

3. Update the angle estimates and go to step 1. 

5.3.3 Adaptive null steering 

A final approach reviewed here is the design of spatial filters to direct nulls at directional signal 

researched in [89] and [90]. The idea in this approach consists on directing nulls at directional 

signals by using a gradient-based techniques to minimise the array's output power. 

For a spatial filter of the form: 

M-1 

C(q 1) = 1 + E Ck 
q —k (5.45) 

OR 
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which can be expressed in factored form as: 

M-1 
C(q 1) = 11 (1 + zkq ' ) 	 (5.46) 

where zk is the k - th complex response zero. 

If the filter coefficients are chosen in such a way that zk corresponds to a phase shift Wk, the 

filter will have nulls at M - 1 directions defined as: 

Wk = 27rdsin(0) k = 
1,..., M - 1. 	 (5.47) 

A way to estimate each complex zero in a cyclical manner is by using the LMS algorithm in 

conjunction with a filter decomposing scheme. For example, if we want to compute the zero z, 

the filter C(q 1) can be decomposed in the form: 

C(q 1) = (q - zi)Cj(q 1 ), 	 (5.48) 

where 

D1  (q— = 11 (q - zk). 	 (5.49) 

01 

This structure is depicted in figure ( 5.6) where the zero z1  is the complex weight in the last 

stage of the structure. 

Finally, the LMS algorithm [57]can be used to update the complex zero Z11 on a sample-by-

sample basis according to: 

zl(n + 1) = zl(n) + ye*  vi 	 (5.50) 
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Figure 5.6: Processing structure for adjusting the filter zeros with two spatially shifted M-
element subarrays. 
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5.4 	Adaptive zeros for direct multi-frequency tracking. Spatial do- 

main case 

The approach proposed in this chapter is based on the concepts of adaptive nulling introduced 

in the previous section which have been used in the past to reduce the effect of narrow-band 

interference and to estimate the directions of arrival of multiple plane waves. In this approach, 

each directional signal is first isolated by using an spatial filter whose zeros are found to cancel 

all other directional signals. Once the directional signal is isolated, a second stage is used to 

estimate the angle of arrival using a gradient descent technique that, due to the decomposition 

procedure, is proven to lead to one only optimal solution. Although the algorithm proposed 

has the theoretical pre-requisite of the initial zeros being chosen to cancel (to a sufficient level) 

directional signals, this has proven empirically to be a non-restrictive requisite. 

Despite its close relation to previously proposed techniques, the algorithm proposed here makes 

use of a gradient descent technique to directly estimate the electrical angles. This emphasis 

although subtle allows the on-line angle tracking procedure presented here. 

5.4.1 Direct estimation of electrical angle based on a gradient-descent technique: 

single component case 

The algorithm proposed here can be decomposed into two sections: the first allows the spatial 

decomposition of the array output while the second is used to estimate the angle of the isolated 

component. The analysis will be started by studying the case of a single wave impinging on 

the array. For this case, the output of an spatial error predictor filter (first-order) applied to the 

array output can be defined as: 

e(m,ri) = x(m,n) - z x(m — 1,n) 	 (5.51) 

where z = 3 exp (j) represents the filter's zero and x (m, n) the output of the m-th sensor 

at discrete-time instant n. The mean square error (MSE) of the filter output, assuming spatio- 

temporal stationarity and zero constrained to be on the unit circle ( 	1), can be defined 

as: 

E[e(rn,n) e*(m,n)] ,  
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2(r(0) - I(r(i))I cos(arg{'r(l)} - 	 (5.52) 

where the spatial correlations r(0) and r(1) are given by: 

r(0) = E[x(m, n)x*(m,  n)], 	 (5.53) 

and 

	

r(1) = E[x(rn,n)x*(in - 1,n)]. 	 (5.54) 

Modelling the array output as 

x(m, n) = s(n) exp (j(n)(in - 1)) + r(m, n) 	 (5.55) 

where i(m, n) represents spatio-temporally white Gaussian noise with variance a2, it can be 

shown that: 

r(1) = E[x(m,n)x*(m_ 1n)] = Pexpjw(n) 	 (5.56) 

and 

r(0) = E[x(m, n)x*(rn,  n)] = P + a 	 (5.57) 

where 

P = E[ s (n) 2] .  

An optimal phase for the spatial predictor predictor (with zero constrained to be on the unit 

circle) can be computed using a gradient descent technique to minimise the MSE (5.52): 

argmin[]. 	 (5.58) 

In this case the update equation is given by: 

(k + 1) = .2.'(k) + A(k) 	 (5.59) 
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where: 

= -it 4- 	 (5.60) 
OCO 

and where: 

J(r(1)*exp(j) - r(1) exp(—j)), 	 (5.61) 
Ow 

= I(r(1))j sin (arg{r(fl}—). 

5.4.2 Isolating and tracking multiple spatially distributed sources 

In this section it will be shown how a decomposed spatial predictor can be used to isolate the 

components of the array output to permit the subsequent use of the gradient-based estimation 

procedure proposed in the previous section to estimate the instantaneous angle of the residual 

signal. 

Suppose that in the course of tracking the directions-of-arrival of several plane waves an initial 

estimate of the desired angles is available. The array output can then be suppressed with a 

spatial predictor whose zeros are located at these angles: 

etot(rn) = xT(m)wtot 	 (5.62) 

where: 

xT(m,n) = [x(m,n),x(m— 1,n), ...,x(m— p,n)] 

and 

wtot = [1(*)[1, —z] 

where fl(*) represents the multiple convolution operation, and Zj = exp(jj) the i - th 

cancelling zero. A spatial component can be isolated in similar way by implementing a partial 
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predictor imposing zeros in all angles except at the one of interest. 

= xT(rn)wi 	 (5.63) 

where 

Wi = fl(*)[i, —z] 

The lag-one spatial correlation ( 5.54) of the partial residual ( 5.63) is given by: 

= E[ej(rn)e(rn - 1)] = w!QTwi 	 (5.64) 

where Q is a p by p matrix: 

Q = E[x(m)xF(m - 1)] 	 (5.65) 

and where: 

xT(rn,n) = [ x (n2,n) ,x (m _l,n),...,x (rn _(p _l),n)] 

for m > M - p + 1. The elements of this matrix are then given by: 

qj,j = r(aj,) = E[x(m,n)x*(m - a,,n)] 	 (5.66) 

	

where aij = i - j + 1 for i,j 	1,2. ..... p. An estimate of these elements from the available 

data can be computed as: 

1 
N M 

	

= (M - 	
1: x(rn,n)x*(rn - 	 (5.67) 

71=1 m=1+c11 , 

where a,3 =i—j+1 for i,j=1,2. .... ,p. 

Finally equations ( 5.59)-( 5.61) and ( 5.64) can be combined to estimate the angle of the isol-

ated component with the following algorithm: 

Initialise { (0), for 1 = 1, 2..p} by distributing their values in the interval [0, 7r]. 
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Fork= 1,..,KDo 

For 1= 1, ...p Do 

	

i(i,k) = w1(k)HQT w1(k) 	 (5.68) 

	

- 
	

(i(i, k))H sin (arg{ij(1, k)} 	- 	 (5.69) 

A 1 (k) = _i - 	 (5.70) 

	

C.1(k + 1) = C'1 (k) + &11(k) 	 (5.71) 

End 

For 1= 1, ...p Do 

wi(k + 1) 
= ft 

(*)[1, —exp( 1(k + 1))] 	 (5.72) 
i-1,i~4l 

End 

End 

where K represents the number of iterations. 

The structure of the resulting spatial filtering and estimation process is illustrated in figure 5.7 

which had been previously proposed in [90] [89] [91] 92]. It is therefore worth emphasising 

that the main contribution of the algorithm proposed here, which is considered to be subtle but 
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significant; is that, a gradient-descent technique is used to directly estimate the electrical angles 

wl enabling the angle tracking task. 

As a consequence of using the smoothing structure shown in figure 5.7, the conclusions reached 

in [92] stating that using an spatial a smoothing structure requires more than (L + 1) elements 

to resolve L coherent signals, are applicable here. 

ULA 

Sub-arrray 
P elements 

Element M 	 Element in 

V. . L 
Element_m-(p+ I) 	

• 	

Element I 

y
x(m-(p-1)) 

 

x(m) 

~_]
----------------------------------------------- 

I 

WI 	 WI 

e,(m) 	 e1 (m-1) 

Z,= exp(jW1 

Figure 5.7: Spatial smoothing for resolving coherent sources with adaptive null steering. 
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5.4.3 Convergence analysis 

In this section, the convergence characteristics of the algorithm will be explained. 

In equation ( 5.52), it can be seen how the MSE for a predictor of first order is a function with 

a unique minimum at: 

CY = arg{r(1)}. 	 (5.73) 

In the case of one spatial sinusoid (resulting from spatially-sampling one plane wave) in additive 

spatially-decorrelated noise, the phase of the lag-one spatial correlation (arg{r(i)}) will equal 

the frequency of the sinusoid (electrical angle of the impinging plane wave): 

CY = arg{r(i)} = w. 	 (5.74) 

This means that a gradient-descent algorithm to estimate the electrical angle w, based on the 

minimisation of the MSE, should converge to its optimal unique solution. 

In the case of several spatial sinusoids (corresponding to several plane waves), the output of the 

array can be modelled as: 

x('rn, n) = 	s(n) exp(j(m - 1)wi(k)) + 77(rn, n) 	 (5.75) 

this can be expressed as 

x(m, n) = exp(j(m - 1))wi(k) + int(m, n) + (rn, n) 	(5.76) 

where 

inti(m,n) = 	Sk(fl) exp(j(m —1)) 	 (5.77) 

represents the 1 - th "interference". 

The lag-one spatial correlation of the output of the 1 - th filtering section (WI) will be given by: 

= E[ej(m)e<(m - 1)] 	 (5.78) 
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E[w((a1(m)s1 (n) + int(rn, n) + (m, n)) 

(al (m) exp(—jLI)sl(n) + int(rn - 1, n) + ff(m - 1, n))H)Tw1] 

where 

inti(m,n) 	akske, 	 (5.79) 

ki 

inti( -  1,n) = 	aksk(n)exp(—jwk), 	 (5.80) 

al (in) = [exp(jmwl) exp(j(m - 	... exp(j(in - p)w1)]T , 	(5.81) 

and 

7(m, n) = [(m, n) i(m - 1, n) . . . 	- p, )]T. 	 (5.82) 

The lag-one correlation at the output of the 1 - th filter can be rewritten as: 

= Piawi 2 exp(jwi) + l(1)bias 	 (5.83) 

where il(1)bjas  will be in part dependent on the autocorrelations of the 1 - th interference 

intj(m - 1, n) an its cross-correlations with al (m)sl (n) and ?7(m, n,). However, if the 1 - th 

interference is "sufficiently" cancelled by the respective 1 - th filter w (as would naturally 

result in the case of tracking) , the bias will be reduced to: 

Cl 
(5.84) 

aTwi 2 8N R 
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where 

T 

oo ... oo 
10 ... oo 

C1 = wf 	0 1 ... 0 0 	w1 , 	 (5.85) 

00...00 

00."10 

and SNR = 

Finally, the optimal phase (in the MSE sense) of the 1 - th zero (L) will be given by: 

= arg{(1)} = arg{PiawiI 2 exp(jwi) + 1 (1)bias } 	 (5.86) 

l(1)b as  
arg{exp(jwj) + } 

PjjaTwij 2  

which in the case of "locked tracking" (when the spatial filters place nulls near the electrical 

angles of the waves) reduces to: 

arg{exp(jwj) + 	
C1 

	

aTwjJ2SNR} 	
(5.87) 

This proves that a gradient-descent algorithm to estimate the electrical angle wj, based on the 

minimisation of the MSE, should converge to the biased solution given in equation ( 5.86) 

which in the case of "locked tracking" reduces to equation ( 5.87). 

5.4.4 Computer simulations 

In order to show the applicability of the proposed approach in the task of tracking the direction 

of arrival of non-stationary plane waves, several simulations are performed. In all the simula-

tions the case of an uniform linear array of isotropic sensors with elements spaced a distance of 

half the wavelength is considered. 

In all examples the output of the array was modelled as: 

x(n, m) = s1 (n) exp(j(rn - 1)wi(n)) + S2 (n) exp(j(rn - 1)w2 (n)) + i(n), 	(5.88) 
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where 

'j (n) = ir sin (O(m)) for i = 1, 2. 	 (5.89) 

and 

s(n) = Aexp(çb(n)) for i = 1, 2. 	 (5.90) 

being 01 (ii) and 02 (n) two independent random variables uniformly distributed in the interval 

[0,7r]. 

Case A. 

The first simulation consists of two coherent non-stationary sources with equal power (A1  

A2 ) impinging on an array of 30 elements with angles of arrival 01 (t) = 20 - 51 and 02 (t) 

—20 + 5t contaminated by spatially decorrelated noise at a signal to noise ratio (defined as 

A? /0-2) of 10 dB. 

A predictor of order four was used in this case with two of its zeros (intended to track the de-

sired angles) being constrained to be on a circumference with unitary radius while the other 

two were constrained to be on a circumference of radius 0.7. The number of samples per time 

index is 5 (n = 5t) and the algorithm is iterated 10 times with it = 0.4 

The results of this simulation are shown in Fig. 5.8. There, it can be observed how the pro-

posed algorithms produces good angle estimates before and after the crossing point. It must 

be remarked that, although the tracking zeros "exchange sources" after the crossing point, the 

"real trajectory" of each source can be recovered by comparing consecutive angle estimates to 

detect sudden changes in direction. 

111 



Adaptive zeros for direct multi-frequency tracking: Spatial domain case 
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time index 

Figure 5.8: Angle tracks for two coherent source: proposed approach, M=30, SNR=lOdB ('o' 
estimated angles, '- 'real track). 
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Case B. 

A second simulation consists of two coherent non-stationary sources with equal power (A1  

A2) impinging on an array of 20 elements with angles of arrival 91(t) = 20 - 5t and 02 (t) 

—20 - 5t contaminated by spatially decoirelated noise at a signal to noise ratio of 3 dB. 

The number of samples per time index in this case is 50 and the algorithm is iterated 10 times 

per time index with t = 0.4 . The results of this simulation are shown in Fig. 5.9. The mean 

square error in the angle estimates obtained in this simulation was 0.3 deg2 . 

01- 	•...... ................................:.........: 	........:  

-101-- ............................................................................................ 

-301-  .................. . 	 -1 

-401- 	 ...... 	.................. 

501 

	

-601-- ...................................................... 	 . - .... 

1 	 2 	 3 	 4 	 5 	 6 	 7 	 8 	 9 	10 

time index 

Figure 5.9: Angle tracks for two coherent sources, proposed approach, M=20, SNR3dB ('o' 

estimated angles, '—' real track). 
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Case C. 

In order to prove the effect of model order selection in the performance of the algorithm, the 

previous simulation is repeated (SNR=10 dB) for: 

a) a filter consisting of two zeros (Fig.5.10), one on the unit circle ( red circle in the figure) 

and another with radius of 0.7 (blue circle in the figure), 

b)a filter consisting of one zero (Fig.5.11) on the unit circle( red circle in the figure), 

c) a filter consisting of four zeros (Fig.5.12) ,three on a circumference with unitary radius 

(black, blue and green circles in the figure) and one with radius of 0.7 (red circle in the figure). 

In the first case, it can be observed how the trajectories are still tracked by the zeros despite one 

of them being well inside a circumference with unitary radius. 

In the second case, the zero tracks the median angle trajectory reflecting the optimum output-

power-cancelling "fuction" of the proposed adaptive algorithm. 

Finally, in the third case, it can be observed how the trajectories are tracked by two of the zeros 

on a circumference with unitary radius, the third zero on a circumference with unitary radius 

and the zero inside the circumference cover the rest of the angle space. In order to prove the 

"validity" of a given source trajectory estimate, it is necessary to include additional information 

such as the power of the signal at a given direction which can be obtained by using beamform-

ing techniques [93]. 
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Figure 5.10: Angle tracks for two correlated sources obtained with two adaptive zeros, M20, 
SNR= JOdB( 'o' angles estimated with proposed approach,'-' real track). 
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Figure 5.11: Angle trajectory obtained with one adaptive zero for the case of two correlated 
sources, M=20, SNR= IOdB( 'o' angle estimated with proposed approach,'-' real 
track). 
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Figure 5.12: Angle tracks for two correlated sources obtained with four adaptive zeros M=20, 
SNR= 10dB ('o 'angle estimated with proposed approach,'-' real track). 
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SNR 
(dB) 

MSE(dB) 
Proposed root-MUSIC 

15 -21.2 -41 
10 -15.43 -36 
5 -7.33 -29.2 

Table 5.1: MSE of the angle estimate for the proposed an root-MUSIC approaches 

Case D. 

In order to compare the performance of the algorithm proposed, a simulation consisting of two 

uncorrelated sources with equal power and angles of arrival G (t) = 43 - 52t and 02  (t) = 

—43 + 52t (M=30, N=10) is implemented. 

For the proposed algorithm, a filter containing four zeros was implemented with two zeros 

constrained to be on a circumference with unitary radius while the other two were constrained 

to have a radius of 0.4. Only the zeros on a circumference with unitary radius are shown in the 

figure. 

The MSE of the angle measurement for several values of SNR are shown in Tab. 1, and the 

angle tracks obtained using both techniques are plotted in Fig 5.13. The results show that 

the proposed algorithm successfully tracks the angle trajectories with less accuracy that the 

root-MUSIC [95] [94]algorithm. However, one must take into account that the root-MUSIC 

algorithm required the ED of a M x M correlation matrix plus polynomial root estimation at 

each time-index, which represents high-accuracy at the expense of high computational load. 
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Figure 5.13: Angle tracks for two uncorrelated sources, proposed approach in comparison 
to root-MUSIC, M=30, SNR=l5dB ('o' angles estimated with proposed ap-
proach,' *'  estimated angles (root-MUSIC),'-' real track). 
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Case E. 

Finally, the case of two closely spaced uncorrelated sources is considered.In this case a ULA of 

50 sensors is simulated with 10 snaposhots per time index and signal-to-noise ratio of 20 dB. 

The performance of the algorithm is this case is displayed in Fig. 5.14. In this figure, it can be 

observed how the proposed algorithm successfully tracks the linear angle trajectories as they 

approach up to a separation of 2 degrees. 
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Figure 5.14: Angle tracks for two closely spaced uncorrelated sources, M=50, N= 10, 
SNR_-20dB ('o 'angles estimated with proposed approach,'-' real track). 
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5.5 Conclusions 

In this chapter, the concepts of multiple nonstationary spatial frequencies have been defined in 

conjunction with a brief description of some of the signal processing technqiues that have been 

used in the past to estimate and track these frequencies. It was explained in the chapter, how the 

output measurements of a linear array with uniformly spaced sensors (antennas) upon which 

impinge several nonstationary planar electromagnetic waves, can be modelled as time-varying 

exponential signals. It was also explained how these frequencies provide information about the 

angle of incidence of the planar waves on the linear array. 

Eigenvalue-decomposition-based techniques where presented as the most commonly used tech-

niques (due to their associated high resolution) to obtain estimates of the frequencies of station-

ary spatial exponentials. 

For the problem of nonstationary waves, three approaches for tracking the nonstationary angles 

of arrival were subsequently reviewed. These approaches have been grouped under the three 

general classes: 

Adaptive subspace techniques, 

Direct recursive update of the angles estimates, and 

Adaptive null-steering, 

which illustrate the common goal of providing a recursive way to adapt the parameters of spatial 

filters to "track" information in non-stationary scenarios. 

After the presentation of the general background review, a technique was proposed to directly 

estimate and track the direction of arrival of multiple nonstationary plane waves impinging on 

a linear array of sensors. The proposed approach, which is based on spatial signal separation 

and direct angle estimation, has been successfully tested for the case of simulated nonstationary 

coherent sources. 

Computer simulations show that the accuracy of the proposed algorithm in the estimation of 

multiple angle tracks is lower than that obtained with the root-MUSIC algorithm. However the 

proposed technique represents an advantage due to its direct estimation approach which trans-

lates as an efficient reutilisation of previously estimated parameters. Additionally the proposed 

approach is suitable for use in the case of correlated signals and in large array applications. 
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Chapter 6 
Conclusions and suggestions for future 

work 

6.1 Conclusions 

In this thesis, the development of an adaptive technique to measure the instantaneous frequency 

of multiple non-stationary sinusoids was presented. 

The second chapter of the thesis provided a review of some of the many approaches that have 

been used in the past to estimate the instantaneous parameters of multiple non-stationary si-

nusoids, as well as as brief explanation of some potential applications of the estimation of 

these parameters in the design of communication systems and in the area of speech analysis 

where resonances of the vocal tract have been modelled in the past as non-stationary sinusoidal 

signals. 

A detailed review of the adaptive FIR filters approach to analyse non-stationary multicompon-

ent signals, which is the centre of study in this research work, was provided in chapter three to 

describe the general background of the technique that has been explored in the thesis. 

The main ideas explored in the research described here, which focused on the direct estimation 

and tracking of the frequency trajectory of several superimposed sinusoids using a cascade of 

second-order filters, were then presented in chapter four. There, a gradient-based re-estimation 

technique was used to adapt the parameters of each zero associated to each section of the 

cascade. 

It was explained in the thesis that if the parameters of the zeros are adjusted to minimise the 

total output error for multiple superimposed non-stationary sinusoids, the angle of the zeros are 

actually estimates of the frequencies of the sinusoids. 

These ideas were tested in computer simulations where the performance of the proposed ap-

proach was illustrated by tracking single and multiple instantaneous frequencies of synthetic 

and real signals. The most remarkable of these simulations consisted of the analysis of a 
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segment of voiced speech where the novel algorithm was used to successfully track formant 

frequency trajectories of the sonorous segment. 

In addition to the frequency estimation algorithm proposed in chapter four, another technique 

was presented there to estimate the amplitude envelope of a mono-component sinusoidal signal. 

This technique was extended to the case of multiple sinusoids by first using a separation stage 

to isolate the components of the signal. This separation was performed relying on a cascade of 

adaptive notch filters tuned to previously estimated frequency trajectories. 

By directly adjusting the angle of the zeros, it is possible to provide a direct estimate of the fre 

quencies of the sinusoids which is particularly beneficial in the case of multi-frequency track-

ing. 

The idea of adaptive zeros for multi-frequency estimation was also extended to the spatial 

domain case by designing an adaptive spatial filter to track the electrical angles and therefore 

the angles of arrival of multiple plane waves impinging on a linear array of uniformly spaced 

sensors. 

An introduction to the problem of tracking the direction of arrival of multiple plane waves was 

given in chapter 5 followed by a detailed description of the proposed spatial approach. The 

resulting adaptive zero tracking algorithm belongs to a class of adaptive nulling structures that 

had been proposed in the past for the task of interference suppression in linear arrays and source 

tracking. 

Adapting the zeros of an spatial filter proved to be a successful approach in computer simula-

tions with straightforward applications in the case of large arrays and coherent scenarios. 

The main emphasis of the proposed estimation technique was explained to be the direct estim-

ation of the electrical angle of each tracked spatial signal using a gradient-based technique of-

fering significant computational saving over eigen-decomposition based techniques. This task 

had not been explored in the past and constitutes the basis of the tracking technique proposed 

in chapter 6. 
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6.2 	Suggestion for future Work 

Tracking the instantaneous frequency of multiple non-stationary sinusoids has many potential 

applications especially in the area of speech processing where the task of formant tracking has 

captivated the attention of many researchers for many years. This special interest in tracking 

the frequencies of speech resonances is due to the fact that these frequencies are recognised as 

important features in the process of speech perception and understanding. 

New research work could be oriented towards the incorporation of formant frequency estimates 

in the development of systems for speech synthesis, coding and recognition. This task is not 

new as it has been explored in the past in numerous research works [96] [97] [98] [100] [101] 

but as no satisfactory proposition has yet been made, the proposed technique could offer a new 

window of research in this subject. 

In the case of tracking spatial frequencies, the proposed approach has proved successful in 

computer simulations of the problem, leaving open the question of the applicability of this 

technique in real-world scenarios. Additionally it would be interesting researching possible 

improvements to the proposed algorithms to increase its robustness to noise and estimation 

accuracy. 
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Appendix A 
Boundaries for the adaptation 

constants 

Boundary for /i 

For a complex mono-component signal: 

s(n) = a(n) exp[j(n)], 	 (Al) 

the instantaneous error obtained after passing it through a filter composed of one zero z(n) 

3exp[j(n)] will be: 

e, (n) = s, (n) - s, (n - 1)z(n) 	 (A.2) 

= a(n) exp[j(n)] exp[jç(n) - jw(n)],ô(n) exp[j(n)]. 	(A.3) 
p(n) 

This implies that the absolute instantaneous error for a real valued signal: 

s(n) = s(n) + s(n) 	 (A.4) 

will have the following upper bound: 

<2aj1 - 
/3(n)
—exp[j(n) —jw](n) I 	 (AS) 
p (n) 

which can be simplified assuming /3(n) = p(n) as: 

<2a(n)j1 - exp[j(n) - jw(n)] 	 (A.6) 
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or 

	

<I(exp(j(n) - jw(n)) - 1). 	 (A.7) 
2a(n) 

As 

	

(exp(j(n) - jw(n)) - i) 1 < ( n) - w(n)J = 	 (A.8) 

which leads to 

Ie(n)i 
< wv(n), 

2a(n) 
(A.9) 

if we want 

ILwk(71)I < Jwv(n), 	 (A. 10) 

we must choose 

1 
(A.11) 

2a(n,) 

Finally, for a(n) = 1, we obtain 

1 
< 	 (A.12) 

Boundary for y p  

As stated before, we have for a real-valued monocomponet signal: 

exp[]w(n) —jw(n)] I 	 (A.13) 

or 

Je(n)I 	1 	 1 
< —jp(n) - ,ô(n)I = — IpvI. 	 (A.14) 

2a(n) p(n) 	 p(n) 
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In order to obtain 

1LIe(n)I < Ipv(n)I, 	 (A.15) 

we should choose 

1p 
< p (n) 

(A.16) 
2a(n) 

Finally, for a(n) = 1, we obtain 

p(n) 
lip < 	 (A.17) 
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Appendix B 
Associated Publications 

J. Vargas and M. Jack, "Cascade adaptive predictors with improved sensitivity for speech decor-

relation through decomposition into exponential signals," Electronics Letters, vol. 34, p.1809, 

September 1998. 

J. Vargas and S. Mc. Laughlin, "Adaptive predictors in cascade form to analyse superimposed 

exponential signals with time-varying parameters." Accepted for publication in Signal Pro-

cessing (Elsevier Press) on May 2001. 

J. Vargas and S. Mc. Laughlin, 'Tracking direction of arrival with adaptive decomposed filters" 

Submitted to Signal Processing (Elsevier Press) on January 2001 ,and re-submitted after review 

on May 2001. 
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