903 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationPortable electronic devices will be limited to available energy of existing battery chemistries for the foreseeable future. However, system-on-chips (SoCs) used in these devices are under a demand to offer more functionality and increased battery life. A difficult problem in SoC design is providing energy-efficient communication between its components while maintaining the required performance. This dissertation introduces a novel energy-efficient network-on-chip (NoC) communication architecture. A NoC is used within complex SoCs due it its superior performance, energy usage, modularity, and scalability over traditional bus and point-to-point methods of connecting SoC components. This is the first academic research that combines asynchronous NoC circuits, a focus on energy-efficient design, and a software framework to customize a NoC for a particular SoC. Its key contribution is demonstrating that a simple, asynchronous NoC concept is a good match for low-power devices, and is a fruitful area for additional investigation. The proposed NoC is energy-efficient in several ways: simple switch and arbitration logic, low port radix, latch-based router buffering, a topology with the minimum number of 3-port routers, and the asynchronous advantages of zero dynamic power consumption while idle and the lack of a clock tree. The tool framework developed for this work uses novel methods to optimize the topology and router oorplan based on simulated annealing and force-directed movement. It studies link pipelining techniques that yield improved throughput in an energy-efficient manner. A simulator is automatically generated for each customized NoC, and its traffic generators use a self-similar message distribution, as opposed to Poisson, to better match application behavior. Compared to a conventional synchronous NoC, this design is superior by achieving comparable message latency with half the energy

    Circuit design and analysis for on-FPGA communication systems

    No full text
    On-chip communication system has emerged as a prominently important subject in Very-Large- Scale-Integration (VLSI) design, as the trend of technology scaling favours logics more than interconnects. Interconnects often dictates the system performance, and, therefore, research for new methodologies and system architectures that deliver high-performance communication services across the chip is mandatory. The interconnect challenge is exacerbated in Field-Programmable Gate Array (FPGA), as a type of ASIC where the hardware can be programmed post-fabrication. Communication across an FPGA will be deteriorating as a result of interconnect scaling. The programmable fabrics, switches and the specific routing architecture also introduce additional latency and bandwidth degradation further hindering intra-chip communication performance. Past research efforts mainly focused on optimizing logic elements and functional units in FPGAs. Communication with programmable interconnect received little attention and is inadequately understood. This thesis is among the first to research on-chip communication systems that are built on top of programmable fabrics and proposes methodologies to maximize the interconnect throughput performance. There are three major contributions in this thesis: (i) an analysis of on-chip interconnect fringing, which degrades the bandwidth of communication channels due to routing congestions in reconfigurable architectures; (ii) a new analogue wave signalling scheme that significantly improves the interconnect throughput by exploiting the fundamental electrical characteristics of the reconfigurable interconnect structures. This new scheme can potentially mitigate the interconnect scaling challenges. (iii) a novel Dynamic Programming (DP)-network to provide adaptive routing in network-on-chip (NoC) systems. The DP-network architecture performs runtime optimization for route planning and dynamic routing which, effectively utilizes the in-silicon bandwidth. This thesis explores a new horizon in reconfigurable system design, in which new methodologies and concepts are proposed to enhance the on-FPGA communication throughput performance that is of vital importance in new technology processes

    A comparative study of arbitration algorithms for the Alpha 21364 pipelined router

    Full text link
    Interconnection networks usually consist of a fabric of interconnected routers, which receive packets arriving at their input ports and forward them to appropriate output ports. Unfortunately, network packets moving through these routers are often delayed due to conflicting demand for resources, such as output ports or buffer space. Hence, routers typically employ arbiters that resolve conflicting resource demands to maximize the number of matches between packets waiting at input ports and free output ports. Efficient design and implementation of the algorithm running on these arbiters is critical to maximize network performance.This paper proposes a new arbitration algorithm called SPAA (Simple Pipelined Arbitration Algorithm), which is implemented in the Alpha 21364 processor's on-chip router pipeline. Simulation results show that SPAA significantly outperforms two earlier well-known arbitration algorithms: PIM (Parallel Iterative Matching) and WFA (Wave-Front Arbiter) implemented in the SGI Spider switch. SPAA outperforms PIM and WFA because SPAA exhibits matching capabilities similar to PIM and WFA under realistic conditions when many output ports are busy, incurs fewer clock cycles to perform the arbitration, and can be pipelined effectively. Additionally, we propose a new prioritization policy called the Rotary Rule, which prevents the network's adverse performance degradation from saturation at high network loads by prioritizing packets already in the network over new packets generated by caches or memory.Mukherjee, S.; Silla Jiménez, F.; Bannon, P.; Emer, J.; Lang, S.; Webb, D. (2002). A comparative study of arbitration algorithms for the Alpha 21364 pipelined router. ACM SIGPLAN Notices. 37(10):223-234. doi:10.1145/605432.605421S223234371

    Distributed PC Based Routers: Bottleneck Analysis and Architecture Proposal

    Get PDF
    Recent research in the different functional areas of modern routers have made proposals that can greatly increase the efficiency of these machines. Most of these proposals can be implemented quickly and often efficiently in software. We wish to use personal computers as forwarders in a network to utilize the advances made by researchers. We therefore examine the ability of a personal computer to act as a router. We analyze the performance of a single general purpose computer and show that I/O is the primary bottleneck. We then study the performance of distributed router composed of multiple general purpose computers. We study the performance of a star topology and through experimental results we show that although its performance is good, it lacks flexibility in its design. We compare it with a multistage architecture. We conclude with a proposal for an architecture that provides us with a forwarder that is both flexible and scalable.© IEE

    Doctor of Philosophy

    Get PDF
    dissertationCommunication surpasses computation as the power and performance bottleneck in forthcoming exascale processors. Scaling has made transistors cheap, but on-chip wires have grown more expensive, both in terms of latency as well as energy. Therefore, the need for low energy, high performance interconnects is highly pronounced, especially for long distance communication. In this work, we examine two aspects of the global signaling problem. The first part of the thesis focuses on a high bandwidth asynchronous signaling protocol for long distance communication. Asynchrony among intellectual property (IP) cores on a chip has become necessary in a System on Chip (SoC) environment. Traditional asynchronous handshaking protocol suffers from loss of throughput due to the added latency of sending the acknowledge signal back to the sender. We demonstrate a method that supports end-to-end communication across links with arbitrarily large latency, without limiting the bandwidth, so long as line variation can be reliably controlled. We also evaluate the energy and latency improvements as a result of the design choices made available by this protocol. The use of transmission lines as a physical interconnect medium shows promise for deep submicron technologies. In our evaluations, we notice a lower energy footprint, as well as vastly reduced wire latency for transmission line interconnects. We approach this problem from two sides. Using field solvers, we investigate the physical design choices to determine the optimal way to implement these lines for a given back-end-of-line (BEOL) stack. We also approach the problem from a system designer's viewpoint, looking at ways to optimize the lines for different performance targets. This work analyzes the advantages and pitfalls of implementing asynchronous channel protocols for communication over long distances. Finally, the innovations resulting from this work are applied to a network-on-chip design example and the resulting power-performance benefits are reported

    The MANGO clockless network-on-chip: Concepts and implementation

    Get PDF
    corecore