Electrical and Electronic Engineering, Imperial College London
Doi
Abstract
On-chip communication system has emerged as a prominently important subject in Very-Large-
Scale-Integration (VLSI) design, as the trend of technology scaling favours logics more than interconnects.
Interconnects often dictates the system performance, and, therefore, research for new
methodologies and system architectures that deliver high-performance communication services
across the chip is mandatory. The interconnect challenge is exacerbated in Field-Programmable
Gate Array (FPGA), as a type of ASIC where the hardware can be programmed post-fabrication.
Communication across an FPGA will be deteriorating as a result of interconnect scaling. The programmable
fabrics, switches and the specific routing architecture also introduce additional latency
and bandwidth degradation further hindering intra-chip communication performance.
Past research efforts mainly focused on optimizing logic elements and functional units in FPGAs.
Communication with programmable interconnect received little attention and is inadequately understood.
This thesis is among the first to research on-chip communication systems that are built on
top of programmable fabrics and proposes methodologies to maximize the interconnect throughput
performance. There are three major contributions in this thesis: (i) an analysis of on-chip
interconnect fringing, which degrades the bandwidth of communication channels due to routing
congestions in reconfigurable architectures; (ii) a new analogue wave signalling scheme that significantly
improves the interconnect throughput by exploiting the fundamental electrical characteristics
of the reconfigurable interconnect structures. This new scheme can potentially mitigate
the interconnect scaling challenges. (iii) a novel Dynamic Programming (DP)-network to provide
adaptive routing in network-on-chip (NoC) systems. The DP-network architecture performs runtime
optimization for route planning and dynamic routing which, effectively utilizes the in-silicon
bandwidth. This thesis explores a new horizon in reconfigurable system design, in which new
methodologies and concepts are proposed to enhance the on-FPGA communication throughput
performance that is of vital importance in new technology processes