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ABSTRACT

Portable electronic devices will be limited to available energy of existing battery

chemistries for the foreseeable future. However, system-on-chips (SoCs) used in these

devices are under a demand to offer more functionality and increased battery life. A

difficult problem in SoC design is providing energy-efficient communication between

its components while maintaining the required performance. This dissertation intro-

duces a novel energy-efficient network-on-chip (NoC) communication architecture. A

NoC is used within complex SoCs due it its superior performance, energy usage, mod-

ularity, and scalability over traditional bus and point-to-point methods of connecting

SoC components.

This is the first academic research that combines asynchronous NoC circuits, a

focus on energy-efficient design, and a software framework to customize a NoC for

a particular SoC. Its key contribution is demonstrating that a simple, asynchronous

NoC concept is a good match for low-power devices, and is a fruitful area for additional

investigation. The proposed NoC is energy-efficient in several ways: simple switch

and arbitration logic, low port radix, latch-based router buffering, a topology with the

minimum number of 3-port routers, and the asynchronous advantages of zero dynamic

power consumption while idle and the lack of a clock tree. The tool framework

developed for this work uses novel methods to optimize the topology and router


oorplan based on simulated annealing and force-directed m ovement. It studies link

pipelining techniques that yield improved throughput in an energy-efficient manner.

A simulator is automatically generated for each customized NoC, and its traffic

generators use a self-similar message distribution, as opposed to Poisson, to better

match application behavior. Compared to a conventional synchronous NoC, this

design is superior by achieving comparable message latency with half the energy.



This dissertation is dedicated to those who are curious and compassionate –
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CHAPTER 1

INTRODUCTION

In the growing system-on-chip (SoC) market for portable electronics, the In-

ternational Technology Roadmap for Semiconductors (ITRS) predicts the demand

on processing performance will increase 100× within ten years, but device power

consumption will remain limited to current levels. Design effort is also expected to

remain constant; re-use of existing designs will become more frequent, but this is

countered by increased difficulty of designing new components. Due to these trends,

the ITRS expresses increasing importance of application-specific technology drivers

within microchip development [50]. Application-specific development makes chip

design decisions based on the specific needs of a particular end application. This

is opposed to a general approach in which design decisions are guided by the needs

of all possible uses, and the end products adapt the general-purpose chips to their

use. With this focus comes a need to improve processing-per-watt efficiency through

a greater functional specialization, while also meeting time-to-market requirements.

The concept of an intellectual property hardware block (IP block) addresses both of

these concerns. It is a modular component that can be re-used in multiple designs,

reducing development time for a more power-efficient, application-specific SoC. A

growing challenge is the design of the communication methods between these IP blocks

as the number of blocks within a SoC and their diversity increase, while maintaining

existing development time.

This dissertation addresses the challenge of designing an energy-efficient commu-

nication fabric between the IP blocks of an embedded SoC. Its contributions include

several novel technologies that reduce power consumption in application-specific SoCs.

These contributions are:
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• novel asynchronous, or clockless, router circuits and a network architecture

based on design simplification

• a software framework that determines topology and router floorplan placement

by taking into account wire power and delay; it also generates a simulator for

evaluation

• asynchronous link pipelining strategies that increase throughput in a complexity-

effective manner based on message latency and energy metrics

• a significant reduction of network energy through the network simplicity con-

cept, and a validation that its performance is comparable to a traditional NoC

• an evaluation that emphasizes benchmarking techniques being developed as

standards for the NoC community

1.1 A Case for Specialization

Over the the past decade, the primary goal of commodity microprocessor-based

designs has moved from increasing computational speed to improving energy effi-

ciency. This trend has been driven by a number of factors, including a large increase

in battery-operated consumer electronics (e.g., “smart” phones, e-book readers, and

netbooks) and growing energy costs for running data centers and Internet server

farms.

Process technology scaling has been an important factor in reducing power in the

face of increased chip complexity. Existing designs have their power reduced when

they are manufactured in a new, smaller process. This also provides more die area on

which to incorporate additional logic. The new chip may include replicated general

purpose CPU cores, more on-die memories, graphics processing units (GPUs), and

specialized “accelerators” that have a better energy-per-operation metric (e.g. an

advanced encryption standard (AES) hardware block).

However, there may be a limit approaching for traditional processes technology

beyond the 16 nm node [50]. When this limit is reached, further improvements in

power and performance will not be automatic through process shrinks, but instead

through better architectures and optimizations for specific applications. In this way,
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the end-users’ experience of Moore’s law can continue in that more functionality is

gained year after year.

Another trend relates to the economics of chip manufacturing. The non-recurring

engineering (NRE) costs of a new design have grown significantly with smaller process

technology nodes. Manufacturing NRE costs millions of dollars per silicon “spin,” and

design NRE is on the order of tens of millions of dollars. However, a new design is prof-

itable if it has high enough sales volume. The high NRE cost often makes high-volume,

general-purpose designs more attractive to invest in than specialized designs that have

similar NRE costs. As a process node matures and industry refines its methods, the

NRE costs may be sufficiently reduced such that specialized designs are economically

feasible. This specialization will help enable greater energy-efficiency. From these

trends, it follows that there is great value in developing methods that reduce the

time and manpower required for complex designs. In fact, increasing productivity is

required to control design NRE cost, thus keeping the planned semiconductor industry

roadmap in place [50].

An example of integrating specialized functionality is with H.264 video encoding.

It is a very computationally intensive task, but it can be done by cellular telephones

and other portable, energy-constrained devices. They can perform this task due to

an application-specific integrated circuit (ASIC). Recent results have shown an ASIC

is 500× more energy-efficient than a general-purpose chip multiprocessor (CMP).

However, customizing the CMP with specific functional units tailored to the algorithm

improved its energy usage to within 3× that of the ASIC [44].

Customization of very large instruction word (VLIW) processors is a similar area

of development, with designs capable of being made to the needs of a SoC devel-

oper [108]. Even general-purpose CPUs are increasing function-specific hardware.

The Intel Sandy Bridge CPU, for example, has special AES encryption instructions

and associated hardware that improve both its energy and computation time.

An increasingly common style of embedded SoC is platform-based design [119].

This design method considers a particular class of end-applications, and architects a

SoC as a platform to support them with slight configuration changes. This platform
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is then adapted for a particular product with a specific application’s requirements

in mind. This is beneficial in that the NRE costs are spread over a high volume

product (the platform), each of which can then be easily specialized into lower volume

products. A platform may have, for example, efficient hardware implementations

for image and video processing, as opposed to general purpose CMPs. For now,

both platform-based design and general purpose design see sufficient benefit from

traditional process scaling.

However, a possible future scenario will yield an increase in specialization beyond

the platform. This can happen if the process scaling wall is reached, and further

developments reduce the cost of new chip manufacturing, such as the expensive mask

layers. Another key will be new electronic design automation (EDA) methods and

tools that improve development efficiency. With these in place, more specialized SoCs

will be possible that deliver increased functionality at lower energy and cost.

1.2 Network-on-Chip Overview

A network-on-chip (NoC) is a method providing communication between the cores

or IP blocks of a many-core chip design [28, 10]. Information to be transferred between

cores is formed into packets and sent through links and switching circuits similar to

macro-scale computer networks. Many details of NoC design concepts can be found

in [70].

The use of NoCs is growing more common as scaling limitations of traditional bus

and point-to-point interconnect designs are reached. The number of point-to-point in-

terconnections required increases dramatically as the number of IP blocks are added to

the system, and this exacerbates wire routing, area, power, and signal integrity issues.

A bus is better in this regard, but suffers from lack of bandwidth and high power

when the wire segments are long, and often uses centralized arbitration for access

that limits concurrency. Multi-segment and crossbar-derived multi-layer buses are

improvements, but still have a tight coupling between the IP block’s interface protocol

and bus implementation. For example, adding pipelined buffers to meet timing may

require adjustment of the protocol, thus changing the IP block interface. NoCs solve
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this problem by layering communication transactions, similar to the common Open

Systems Interconnect (OSI) model employed by macro-scale networks [127]. With this

method, the IP block and its interface are agnostic to the details of the mechanism

that transfers information between the interfaces across the network. The IP interface

is typically an industry standard protocol, such as Open Core Protocol (OCP). The

network adapter converts this protocol into one specific to the NoC implementation.

The layered protocol approach comes at the cost of energy and latency overhead, but

achieves standardization that allows for efficient SoC development, and thus lower

design cost.

The scope of NoC design ranges from general-purpose CMPs to embedded, application-

specific SoCs. A NoC’s components are similar to that of a macro-scale network.

Network adapters provide the interface for an IP core, and routers and switches allow

sharing of the physical link resources between many transactions. The design space

of a NoC is very large and includes choices of topology (mesh, torus, star, irregular,

etc.), circuit switched or packet switched, addressing methods, routing algorithms,

and many other parameters such as link widths and frequency.

Figure 1.1 shows the functional components of an asynchronous (async) NoC, and

how it interfaces with IP blocks of a SoC. An IP block has an interface using a standard

protocol such as OCP, AMBA AHB, or a custom data streaming protocol. The

network adapter (NA) converts this protocol into the specific protocol and link-level

signaling used by the particular NoC design. It can also synchronize between two

timing domains; either two synchronous clock domains, or between the core’s clock

and an async network domain. This strategy also enables each core to operate at

its own frequency, referred to as globally-asynchronous locally-synchronous (GALS)

design. An example network adapter implementation of this concept is presented

in [15].

1.3 The Problem of NoC Energy

It is increasingly difficult to design an energy-efficient on-chip interconnect. The

physical implications of process scaling and demands on embedded computation
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Network

Adapter

bus-to-network 

protocol conversion

synchronizer

circuit

network

 link

Router

(no clock signals)

Network

Adapter
IP block

Figure 1.1: Organization of a SoC with an asynchronous NoC.

indicate a need for significant advancements in this area.

One significant contributor to power consumption is a global clock tree that

spans the chip’s entire die. For example, the clock tree in the DSPIN network for a

heterogeneous SoC is 40% of the total router power [81], and in the Intel Teraflops

NoC for a large CMP, it is 33% of router power [48]. One potential solution is gating

various levels of the clock tree based on presence of data, but this requires careful

design that cannot be separated from the NoC implementation. It may also not be

fine-grained enough to achieve all potential benefit.

Wire power is growing as a percentage of the system total. This is due to the large

repeaters required on long links to mitigate increased wire delay and signal integrity

issues on long wires. Link lengths are determined by the physical floorplan of the IP

blocks and routers. A challenge in NoC design is estimating these lengths early in the

process since many parameter choices are dependent on this, such as topology and

link widths, and how to best organize a topology to the two-dimensional floorplan.

Queuing and crossbar energy within routers contribute to a significant portion of

NoC power usage. As crossbar degree increases (e.g., from 3×3 to 5×5), its energy-

per-flit increases due to the quadratic increase in complexity of wiring and gates

between inputs and outputs [53, 48]. Various methods can help reduce crossbar and

queuing power, but it is still a large consumer of both area and power [116, 64].

The difficulty in designing an energy-efficient NoC for an embedded SoC is that

generalized results coming from CMP research may not apply; a search for the optimal

network is needed for each particular SoC. A general-purpose CMP may benefit from
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a new router queuing mechanism and a Clos topology [56], but many SoCs with known

traffic patterns will benefit from customization of the NoC’s topology, floorplan, link

widths, buffer sizes, and other such parameters [122, 74]. The optimal network can

be quite different from one SoC to another, and tools can aid in the search.

1.4 The Solution of Customized,
Asynchronous Simplicity

This dissertation is based on the premise that an asynchronous NoC has qualities

ideally suited to heterogeneous power-constrained SoCs. Additionally, a simplified

asynchronous network will have lower energy and achieve competitive performance

compared to a traditional general-purpose NoC. This network decreases energy usage

by addressing the key areas in Section 1.3.

1.4.1 Asynchronous Nature

An asynchronous network does not require a global clock tree and has automatic

clock gating at every latch, thus it has a significant potential for power reduction over

many synchronous methods. The async protocols and data encodings are chosen to be

energy-efficient. Links use two-phase bundled-data which has twice the throughput of

a four-phase protocol over long wires, and better wire utilization than delay-insensitive

data encoding [102]. Internal to a router, four-phase and bundled-data are used to

give smaller and more efficient circuits.

1.4.2 Network Architecture

The network is composed of routers that have three bi-directional ports. Each port

is input and output buffered with a 1-flit latch, saving area over flip-flop based designs.

Buffering space is low within a router to reduce area, and pipelining links can be a

more efficient use of buffer logic [60]. The small radix crossbar implementation using

2-to-1 multiplexers (MUXs) reduces area and energy of the switch. The intuition

behind low-radix routers when used in small process technology is that repeater logic

needs to be placed along wires at periodic intervals regardless of the router design,

so there could be benefit to performing a routing and buffering function in that logic
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area as well.

A routing path for a packet is formed at a source NA, where each bit in a series

of bits determines the direction to route a packet at each hop through the network.

This method is referred to as source routing and improves latency through a router

by eliminating address decoding logic. A packet is a single flit consisting of the

source-route bits and data bits in parallel on a link. Short packets reduce worst-case

delay with wormhole switching because long “worms” of flits belonging to one packet

do not block multiple routers. The downside of this method is more routing operations

and potential protocol overhead. Partitioning route bits onto their own wires takes

more area than using a header flit. However, it presents an opportunity for reducing

dynamic wire power. Packets in a series often belong to the same source-to-destination

path and thus have identical routing bits. In this case, the route wires do not change

state between each packet as they would in a design in which route information and

data share the link wires.

Routers are connected together in a tree topology. This decision is driven by

the fact that a tree requires the least number of routers (N − 2), and a balanced

tree requires 2 log2N − 2 routing bits, where N is the number of cores. This is

favorable compared to a ring topology that requires N routers and ⌊N/2⌋+1 routing

bits assuming the same packet format. The downside to this topology is minimal

bisection bandwidth, so it causes long latency for global or uniformly distributed

traffic. However, high traffic locality among cores lends itself to this topology, and we

show capacity is adequate for a number of designs based on real SoC traffic patterns.

1.4.3 Topology Optimization

Even though the topology is limited to a tree, there are many options for how

cores should be mapped to it, and how balanced the tree should be. These choices

are determined by the expected traffic patterns within the SoC. The general idea is to

put frequently communicating cores within as few hops as possible. This reduces the

chance of contention with other core-to-core paths, and reduces total router power.

The search for the best topology is done with a simulated annealing algorithm. The
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process is complicated by the fact that wire power can be significant, and thus link

lengths need to be known and factored into the topology search. A contribution of

this approach is the integration of a unique router floorplanning method into the

topology search.

1.4.4 Router Floorplan Optimization

Wire power is a large contributor to total network power, and thus this work

optimizes wirelength by specifying router placements on the floorplan. This is done

using a novel force-directed movement approach to locate routers such that links

carrying high traffic volume are shortened, reducing power and latency.

1.4.5 Link Pipelining

Pipelining synchronous links is often done solely to meet clock frequency require-

ments. However, async links can be pipelined independently, only where needed, to

improve throughput and add network buffering easily due to flow control inherent to

async design.. This work formalizes and evaluates methods to determine which links

to pipeline, and to what depth. Link pipelining can be effective at improving network

throughput in a simple and energy-efficient manner, especially in small processes.

1.4.6 Early-Design Modeling

An important aspect of this work is evaluation of the energy and performance

early in the SoC design stages, allowing changes to be made and quickly re-evaluated.

For this purpose, novel SystemC models were developed of the asynchronous routers

and wires that are used in a simulator automatically generated for each particular

NoC instance. This work also showed the effect of traffic burstiness on latency and

incorporated a self-similar, bursty traffic generator into the simulator.

1.5 Dissertation Outline

Chapter 2 describes the related body of research that is the foundation of this

work. Details of NoC design options and a background in async NoCs is presented in

Chapter 3. The circuit design and architecture of the routers and link buffers, and

their characteristics is given in Chapter 4. The optimization and evaluation framework



10

is titled ANetGen, and described in detail in Chapter 5. The methodology and results

of a system-level evaluation is given in Chapter 6. Finally, a conclusion in Chapter 7

summarizes this dissertation and provides insight and direction for future research.



CHAPTER 2

RELATED WORK

The past decade has seen the rise of the NoC concept and a slew of research

targeting many design aspects. The work in this dissertation is related to several

areas of research, namely those of optimizing a network for a particular SoC design,

asynchronous router and channel design, and traffic modeling and simulation. In this

chapter, we describe the body of related work.

2.1 Interconnect Optimization

Many others have focused on generating or optimizing on-chip interconnects.

Regardless of the specific interconnect details, the problems are similar, in that search-

ing the solution space is complex and usually requires heuristics or approximation

methods.

Bus-based interconnects have been optimized based on latency requirements and

physical design early in the design stage [32, 31]. This methodology includes commu-

nication profiling for an application, bus partitioning, and floorplanning definitions.

It attempts to find the bus solution with the highest communication throughput by

exploring possible floorplans and bus partitions using simulated annealing.

Crossbars are used in bus-based SoC interconnects to increase communication

parallelism. A large crossbar allows more cores to communicate simultaneously, but

will take more power and chip area. Cores also need to be properly mapped to

the various bus partitions to reduce contention and power. A linear programming

solution, and a unique “window” based simulation of actual traffic and floorplan is

presented in [73].

A methodology to optimize the mapping of cores of a SoC onto a predefined

communication topology is presented in [61]. Using abstractions of core-to-core
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communication requirements, its algorithms heuristically find a high performance

solution. The methodology is geared towards memoryless bus-based communication

methods, and only consider performance, not power, in the optimization.

The OIDIPUS tool maps cores of an SoC in a pre-defined topology, such as a

partitioned ring, using simulated annealing [2]. It estimates the physical wire length

from core dimensions, and verifies that the traffic requirements are met. The intention

is to use this for asynchronous routers, thus wire length is used to estimate delay

between cores. It does not consider power and size of the routers themselves, nor

explore other topologies beyond what is given.

PIRATE is a design framework for NoCs that estimates power and packet latency

of various topologies and router configurations [79]. It generates power models for

a set of router parameterizations and uses these to explore a range of topology op-

tions through cycle-accurate simulation. A benchmark SoC performing cryptographic

functions indicated that the ring and ad-hoc topologies offered the lowest power and

nearly the best packet latency. This study did not consider chip floorplans nor the

energy of wires and repeaters.

NetChip is a synthesis flow for NoCs that performs regular topology selection from

among a library of possibilities, determines the mapping of cores onto that topology,

and instantiates the network using SystemC and register transfer level (RTL) mod-

els [12]. The topology generation has been later refined to consider physical concerns

of the floorplan, link length, and wire energy [74]. It is part of a larger workflow to

automatically synthesize a NoC [5]. Core communication requirements, a floorplan,

and router energy and performance models are used to drive a heuristic search for the

most suitable topology and router parameters. The algorithms avoid routing paths

which can deadlock. An additional tool, xpipesCompiler then generates SystemC

and synthesizable RTL descriptions [51]. Experiments on SoC benchmarks show the

optimized network significantly reduces power and hop-count versus the best mesh

topologies. The mesh topology is 2.78x and 1.59x greater than the custom topology

for the respective metrics.

The concept of an application specific NoC was first described in [122]. It is a
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workflow to construct a hierarchical, irregular topology optimized to reduce power

and improve performance. Behavioral and/or statistical models of communication

between cores can be used during the topology optimization. K-way partitioning,

using average communication requirements between cores, clusters cores together that

frequently communicate, forming the topology. They then generate a floorplan of the

SoC. Power and area models of the routers and links, along with the communication

models, drives a simulation-based analysis that checks if the performance and power

constraints are met. For two SoC designs, they claim a large improvement in power,

area, and performance over an unoptimized mesh-based network. This work does not

incorporate power and physical estimates early in the optimization heuristic.

The COSI framework generates an application-specific NoC and floorplan, taking

as input such constraints as core areas and average bandwidth between cores [82].

While it is extensible with new algorithms and components, it does not consider

asynchronous network components and, as future work, cites the need for integrating

traffic burstiness.

A linear programming based method for finding an optimal floorplan and irregular

topology is presented in [100]. The same authors also used a lower complexity

heuristic to obtain results for larger designs, which were intractable under their

previous method [99]. However, neither of these consider the generation of deadlock-

free routing tables. A method for producing a deadlock-free routing model in an

irregularly-connected, but grid-based network is presented in [76]. It is unclear if it

is a general enough solution for nongrid based, irregular networks, as done in [74].

The KAIST laboratory developed a low-power NoC for heterogeneous SoCs [64].

This design uses a hierarchical star topology, as their study showed better energy

efficiency over various forms of meshes, buses, and flat star topologies. They also

use a number of low-power technologies: low-swing signaling, a MUX-tree based

round-robin scheduler, partial activation of the crossbar, and low-energy serial coding

on links was possible due to high data correlation in multimedia applications.

Æthereal offers guaranteed service through its time-division multiple-access

(TDMA) connections, and has a supporting framework targeting application-specific
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SoC design [41]. The major contribution is verifying that system constraints are

met using an analytical method instead of simulation. This is possible due to the

guaranteed service approach, and benefits the SoC designer by being able iterate

quickly between possible NoC designs.

Intel developed the Scalable Communications Core for wireless protocol baseband

processing. It relies on a NoC for communicating between heterogeneous cores [4].

The NoC is designed to be scalable and low-power, and is optimized based on the

streaming data flow between various cores. Compared to crossbar solutions, it offered

lower latency and power, and easily meets the minimum bandwidth requirements [46].

Application-specific optimization is discussed for the QNoC routers in [43]. It

focuses on mapping logical resources of a mesh-style topology, and does not address

physical concerns of the chip.

The topology synthesis problem has also been approached by decomposing a given

communication pattern into subpattern primitives that can be solved optimally [77].

Each primitive is characterized with an energy cost. The algorithms search the

original pattern for the combination of primitives with the lowest cost.

Certain embedded devices do multiple things, but only one at a time. Thus, the

idea of a reconfigurable NoC has arisen. A regularly-structured topology is modified

by adding a layer of physical circuit-switch “wrappers” around each packet-switched

router in [101]. This layer can be reconfigured to move packets past routers which

are known to always switch in a particular direction. A significant power savings was

demonstrated. Reconfiguration of a network has significant tradeoffs which need to

be considered. Algorithms and architectural changes are presented in [45], as well

as an analysis of run-time reconfiguration overhead. It shows that the tear-down

process in changing the “use case” can be unpredictable, and must be considered

by the application-layer scheduling policies. A reconfigurable source-synchronous

NoC and fabricated 801.11a receiver chip was presented in [114]. Bandwidths and

circuit-switched paths spanning multiple routers can be customized at runtime for a

particular application, and their design was optimized for low power.
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2.2 Asynchronous NoCs

Jens Sparsø, in a 2004 invited talk, predicted the future of networks-on-chip to

most likely be asynchronous [96]. Previous research on asynchronous interconnects is

rich, but these designs are either hand-designed for a particular application, or have a

general design, but possibly have over-provisioned resources for a power-constrained

SoC. All but one of these existing routers use quasi delay-insensitive encodings be-

tween routers, rather than bundled-data.

Fulcrum Microsystems created a large asynchronous crossbar to interconnect cores

of a SoC [66]. The commercial startup Silistix, based on earlier academic research [6],

sells EDA software and circuits that provide an customized asynchronous NoC, but

has no published methods for the optimization process.

The MANGO router and interfaces [16, 15] provide both best-effort and guaranteed-

service traffic, but did not focus on low area or low power design.

FAUST [62] is a platform-based SoC and fabricated chip used in 4G telephony

development, and uses an asynchronous mesh-based NoC [8]. The MAGALI chip

extends FAUST and offers an open platform for development of the multiple modes

of the LTE standards [23, 24, 22]. It uses an asynchronous NoC to support mode

reconfiguration as well as the datapath between heterogeneous blocks. Similar func-

tionality was implemented with homogeneous cores, and compared to MAGALI [52].

Although in the general case heterogeneous systems are more efficient, this particular

study showed that if functionality of multiple cores can be combined into a single

homogeneous core design, overall power can be reduced due to the reduction in

network adapters and interface logic.

The QNoC group has developed an asynchronous router that provides multiple

service levels and dynamically allocated virtual channels per level [30].

Low latency and energy-per-packet is achieved by using simple async routing

connected in a mesh-of-trees topology for a CMP [47]. It is similar this work,

primarily in its use of individually controlled buffering latches and bundled-data async

design. Results showed that compared to a similar synchronous network the async

routing component had 82% less energy-per-packet and 63% less area. The arbitration
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component had 91% and 84% less, respectively. Control of individually latches for

buffering is also done for clocked designs, including latch-to-latch flow control, with

the elastic buffer concept [71].

The insertion of link pipeline buffers in an async NoC was explored in [126]. It

compared the async network to a similarly-designed synchronous “elastic” network,

and showed the async network consumed 29% less power than the synchronous version

for the same latency. The addition of async pipeline buffers provided 35% less

aggregate packet latency for a 6.1% power increase.

A comparison between the asynchronous network ANOC, and the mesochronous

clocked network DSPIN, was performed in [81]. For both designs, a physical layout

and functional traffic simulation was done for analysis. While DSPIN had 33% less

area and 33% higher bandwidth than ANOC, ANOC had shorter packet latency

and at least 37% lower power consumption. DSPIN was also compared against its

asynchronous analog, ASPIN [92]. Average power, latency, and saturation threshold

are superior in ASPIN with similar die area. The main benefit of DSPIN is it allows

standard EDA tools to be used for design synthesis and place-and-route. ANOC and

many asynchronous designs require specialized tools and libraries.

Prior to NoC development, interchip networks connected many computing ele-

ments on the same board. The Post Office chip is an asynchronous co-processor,

with routing functionality. They are composed into a hexagonal mesh topology and

implement packetized data transfer between parallel processors [25].

2.3 Link Pipelining

There have been a number of NoC proposals for incorporating storage and/or

control logic within interrouter links. The work of iDEAL [60] showed that the

performance penalty of low-complexity routers with few input/output buffers can

be improved by putting storage elements on the links. For a traditional synchronous

NoC and mesh topology, moving storage to the links significantly reduced network

power at a very slight performance reduction. Link pipelining is described for the

Xpipes network components [5]. These are placed primarily to meet clock timing
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requirements. Error detecting link pipeline circuits were designed to achieve greater

NoC robustness while maintaining high throughput [107]. Elastic buffers, similar to

the asynchronous buffers used in this work, were used to reduce router complexity by

using the link as a distributed FIFO buffer [71]. Throughput per energy was improved

by 8% compared to the baseline architecture. Elastic and asynchronous link pipelining

was explored in [126], but with an ad hoc approach in determining where and when a

buffer should be inserted on a link. It also did not evaluate effects on large-message

latency. A number of energy-efficient proposals, including pipelined links shared

between multiple sources, is given by [57]. It uses a standard mesh topology and

homogeneous SoC for evaluation and does not address the optimization problem of

determining the number of buffers on each link. Link pipelining for a delay-insensitive

asynchronous NoC is described in [17], where multiple virtual channels can overlap

packet transmissions at the flit level to maintain high link utilization. The paper did

not describe the conditions or depth of the pipeline, nor was a system-level evaluation

of the proposal given.

2.4 Modeling and Simulation

Traffic modeling for NoCs is one of the major outstanding problems in the field [68].

NoC design space exploration is best performed early in a SoC’s development, and

this requires a model of expected traffic. Traditional CMP or multiprocessor bench-

marks are often not applicable for evaluation of embedded, heterogeneous SoCs at

the stage of development when the NoC is defined. A proposed CMP design is

often evaluated across a variety of benchmarks, such as the SPLASH and PARSEC

suites [121, 98, 13, 14] to show it can run many application types well. These

are focused on improving and evaluating computation rather than communication.

Some benchmark suites are designed for a specific task in mind, such as media

processing [63] and embedded computing [109], but they require compilation for

specific processors and execution on full processor models. Trace-driven simulations of

these benchmarks is an alternative, but it lacks flexibility should the SoC change, and

needs a full implementation to produce the traces. A NoC benchmark framework must
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be flexible enough to support a wide range of CPU architectures and communication

styles (message-passing, shared memory, or streaming). Its execution should be fast

enough to allow for multiple runs while changing various parameters, and include a

detailed measurement infrastructure to help locate problem areas within the NoC.

These are driving goals of a NoC benchmark specification under development by the

Open Core Protocol International Parternship Association, Inc. (OCP-IP) [87, 67].

The evaluation methods we use in this study is based on these standardization efforts.

The b-model [118] provides a simple method to produce and analyze the bursti-

ness of self-similar traffic with a single parameter. This is in contrast with other

bursty generators, which tend to be complex, or rely on the non-self-similar Poisson

distribution. Self-similarity is described in more depth in Section 5.2. The b-model

has been adapted to study burstiness effects in the Nostrum NoC [110].

Evidence of traffic self-similarity and burstiness in MPEG-2 video applications

has been shown [115, 18]. Several analytic models of network performance have

been developed for NoC design. A model has been developed to capture spatial and

temporal characteristics of traffic for regular, homogeneous NoCs [94].

The application-level communication requirements can be important to evaluate,

not just the point-to-point properties. Work by Qualcomm, Inc. has used these

application-level requirements to optimize a NoC [11]. In their work, timing in-

formation and simulation rely on the sequence of communication operations from

one IP block, to another, and to another, forming an application-level end-to-end

requirement. Optimization is done by simulated annealing of MxN mesh topologies,

and link bandwidth is tuned by changing flit widths. By considering end-to-end

constraints, router area is reduced by up to 40% and link area up to 49%. Additionally,

more than one virtual channel was seen to not be a area-effective solution.

A generalized analytic router model was developed in [78]. It provides detailed

statistics during expected traffic, and is applicable to heterogeneous, irregular net-

works, but relies on the Poisson arrival process and a synchronously-clocked router.

The Polaris tool [93] explores a large NoC solution space covering different traffic

patterns, design goals (e.g., energy or performance), forming a “roadmap” for pruning
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the number of possible NoC configurations. It does not generate any RTL or actual

network instances. It is for a multiprocessor-based SoC or CMP that can run a variety

of software, and will be built using a regular-structured NoC. The estimation routines

use general abstractions of common router configurations [117] rather than specific

circuit designs. Accuracy is quite good for the type of system it targets, but it does

not consider heterogeneous topologies or asynchronous routers.

Wire models are needed to quickly estimate energy and latency of an interconnect.

One of the latest is an analytic model incorporating process technology parameters

and user-provided power or latency optimal repeater sizing and spacing [21]. Valida-

tion was done for a variety of parameterizations (process tech, single-vs-double width,

etc.) against industry simulation tools (SoC Encounter to NanoRoute to Primetime

SI), and showed much better accuracy compared to other methods [7, 80]. Its wire

models were derived from those used in the Orion 2.0 NoC router models [55].

In [40], the authors developed a simulator that uses transaction level modeling

(TLM) with RTL descriptions of network components. TLM increased the simula-

tion speed so that they could explore network configurations using more accurate

RTL descriptions. Additionally, they demonstrated that physical place and route

constraints can alter the theoretical results. For their 16-core SoC, a 4-hypercube

required only 25% more wiring than a 2D mesh, which is far less than expected. This

is due to the small system size, the asymmetric dimensions of computation tiles, and

the particular wire constraints such as no over-cell routing.
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NOC DESIGN CONSIDERATIONS

This chapter describes the design space of a NoC, and introduces concepts used

in the novel NoC and optimization framework presented in later chapters. Many

NoC parameters need to be carefully chosen in order to meet the SoC’s design

goal. Parameter choices are complicated by their interrelated system effects, and the

difficulty of evaluating their quality. For example, network topology is influenced by

the chip floorplan, which itself is influenced by router radix and buffering size choices.

In order to determine if a particular topology improves NoC power consumption,

knowledge of the floorplan, router energy, and physical wire properties are needed.

The sections below describe general properties, trade-offs, and strategies that give a

starting point to NoC design.

3.1 Background

A NoC will provide communication for a range of many-core chip designs due to

the scaling limitations of traditional bus and point-to-point interconnect designs [28].

These designs include general-purpose chip-multiprocessors (CMPs) as well as em-

bedded, application-specific system-on-chips (SoCs). A NoC’s components are sim-

ilar to that of a macro-scale network. Network adapters provide an interface from

a communicating node to the network. Routers, or switches, allow physical link

resources to be shared between multiple node-to-node paths The design space of a

NoC includes many parameters and architectural choices such as topology definition

(mesh, torus, star, irregular, etc.), circuit switched or packet switched techniques,

link widths, synchronous clock frequency, and others. A NoC helps SoC development

by abstracting away the communication details, and provides a rapid integration of

IP hardware components. The IP interface is typically an industry standard, such
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as Open Core Protocol (OCP). The network adapter converts this protocol into one

specific to the NoC implementation.

End-to-end communication typically involves a set of abstraction layers, similar

to those in a macro network. Many options exist for the partitioning of layers, but a

typical NoC may have layers specified as the physical, link, network, and transaction.

The physical layer is typically a set of global wires between two routers. The link layer

defines the method to transfer flow-control units, or flits, between routers, and can

add reliability to the physical layer if needed through features such as error-correcting

codes. The network layer determines which links a packet uses to get from a source

network adapter to the destination. It further defines how to divide a packet into

flits. This is composed of routing and switching operations, where routing determines

what path of links and routers a packet should take, while switching is the method of

moving a packet from a router input to output port. The transaction layer interfaces

with a core using the core’s communication primitives. It converts the primitives into

packets, and reassembles them at the destination. An example layer partitioning is

shown in Figure 3.1.

3.1.1 Differences to Macro-scale Networks

Networks have been studied in depth for decades, such as those connecting proces-

sors of a supercomputer, the common Ethernet that connects PCs, and the Internet.

Transaction:
- memory access

- streaming connections

- bus protocols

Network:

- NoC packets

- routing

Physical:

- flits and phits

- link flow control

- wires

router receives packet, 

determines output port, 

and divides it into flits

network adapter converts 

transaction request into a 

series of packets

flits are sent, received, 

and buffered in routers 

and along links

large small

Data

Granularity

Figure 3.1: Communication layers, structures, and function.
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Much of the theory of these studies applies to NoCs, but there are key differences

that differentiate this field of research from others [53]. On-chip link widths can be

wider than with off-chip networks, but wires are constrained to be routed in only

two dimensions and on a limited number of metal layers. Wires need repeater logic

to traverse long distances which makes it difficult or impossible to route wires over

certain IP blocks, further limiting available wire area. Designs should make links as

short as possible to minimize energy usage that is used by these repeaters. It follows

that on-chip bandwidth is not cheap in terms of area and energy.

Power consumption is a concern for both networks types, but it is more constrained

for NoCs that share a chip-limited power budget with processing cores. The NoC for a

many-core chip consumes 35% of total chip power in one example [58], and in another,

28% of a core’s power is taken by it’s NoC components [48]. This can drive the NoC

design choices in a different direction than macro-scale networks. For example, the

topologically superior high-dimension networks are common for supercomputers, but

require crossbars and links that consume significant area and power, and not often

chosen for NoCs.

The application traffic in a SoC is generally more specific than that of an off-chip

network. This allows the NoC to be customized based on this information at design

time, and opens up unique optimization potential. For example, if two cores do not

need to communicate, the topology and switches an be simplified by removing that

route. Most off-chip networks are designed such that all nodes can communicate

to each other because it often must support a wide variety of software applications

unknown at design time.

In general, individual NoC components such as routers are simpler than their

macro-scale network counterparts regarding their set of features (e.g., adaptive rout-

ing), and silicon area. However, this simplicity does not necessarily make design

easier; it increases the importance of determining a NoC configuration that has the

desired qualities unique to each particular SoC.
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3.1.2 Globally-Asynchronous Locally-Synchronous SoCs

As process scaling continues, more complex designs that use many more transistors

can fit on a SoC. The design difficulty of SoCs is increasing with multiple clock

domains and a large variety of IP. For CMPs, chips are becoming so large with

respect to transistor count that a fully centralized and synchronized clock is more

and more difficult to implement and make low power. Additionally, heterogeneous

cores may become more common in a CMP. An answer to this problem is a concept

called globally asynchronous locally synchronous (GALS) communication. A GALS

architecture separates the clock domains of each core from other cores, and from the

network timing domain. Figure 1.1 shows this separation for synchronous IP blocks

and an asynchronous network domain, but the network could also operate with one or

more clocks. In each case, a synchronizer circuit is required at the interface between

timing domain crossings [9].

3.1.3 Application-specific SoCs

Embedded, energy-constrained SoC designs can be roughly separated into two

classes: platform-based and application-specific (also called fixed-function). The

former is concerned with performing a wide variety of tasks, many of which cannot be

foreseen at design time. The latter is targeted towards a particular function, or a few

functions, that have known properties. An application-specific design might consist

of a number of highly specialized cores and memories, and fewer general-purpose

processors. The network-on-chip (NoC) for both these classes should be optimized

for minimal energy usage while meeting the predicted performance requirements;

however, the application-specific NoC may be more specialized as it has a priori

knowledge of the communication patterns between cores. This is in contrast to

general-purpose interconnects that are often evaluated with traffic patterns such as

spatially-uniform, bit-transpose, hot spot, and others. The domain of this work is for

application-specific SoCs, rather than platform-based SoCs.
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3.1.4 Design Space

The design of a NoC requires consideration of many parameters, similar to macro

networks. Some of these are described here.

3.1.4.1 Switching and Flow-Control Granularity

The granularity of resource sharing, or switching, is partitioned into circuit-

switching and packet-switching methods. Circuit-switched networks implement flow

control at the granularity of a message, and reserve network resources dedicated to an

end-to-end route. Packet-switched networks divide a message into packets, where each

one is routed separately from source to destination with flow-control between routers.

Each type has its advantages and disadvantages; circuit switching can often be done

with fewer buffers and offers low guaranteed latency once a circuit is established, while

packet switching offers higher link utilization, bandwidth, and concurrency. Most

published NoCs use packet switching, with some providing guaranteed service and

traffic priority [16]. Circuit switching has been investigated for coherence mechanisms,

service guarantees, and long connection-oriented traffic [54, 120]. Virtual circuits are

often established through packet switching networks using various methods, including

time-division multiple-access mode (TDMA) [86, 42].

3.1.4.2 Data Division

Data is divided into successively smaller pieces in its traversal through the network.

Amessage, or transaction, refers to the largest granularity of communication for which

the network has information. For example, it may be a memory write operation for

a large many-word block, or a shorter interrupt signal. Messages are converted into

packets by the sending network adapter to be transported through the routers to

the receiving adapter. This exchange of messages is done at the transaction layer,

including breaking down these messages into a series of packets.

Packet size can have a large impact on network performance and power, with

small packets being advantageous in certain networks and for certain traffic, and large

packets in others. Common sizes range from 16 bytes to 256 bytes. A study of the

packetization process and packet size comparison for a many-core, general-purpose
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CMP is shown in [124]. Packet size can also be either fixed or variable in length.

Generally, fixed packets allow for simpler hardware, while variable length packets

give a higher network saturation bandwidth. These methods have been compared in

macro-scale fast packet switching network [91].

Flits, or flow control units, are a subdivision of a packet that are transferred over

a link. These flits have link-level flow control that allows the transfer to be paused

to prevent buffer overflow and lost flits. The size of a flit is generally fixed, and often

the same as the link’s width. In this case, one flit is transferred per clock or a link’s

cycle time. Sometimes a flit is further serialized into physical units, or phits. This

can be useful if the link is narrower than a flit. However, flow control does not apply

at this granularity, thus the receiver must have appropriate buffering available.

3.1.4.3 Routing and Switching Techniques

The path that a packet takes through the network is defined by the routing

method. The path can be determined at either the source (source-routed) or by each

router along the path (distributed routing or address-routed) based on the destination.

Source-based routing can allow for a simpler router implementation, as it does not

require address decoding or routing tables at each router. However, source-routing

does not scale as well for networks with many communicating pairs, as the route

table needed in the sending node may be excessively large. Another choice is static or

dynamic routing. Static routes are fixed and cannot change, while dynamic routing

allows packets for the same destination to take different paths. Dynamic routing

introduces more complexity such as out-of-order packet reception, but provides better

latency when the network operates near saturation.

Common switching techniques include store-and-forward (SF), virtual cut-through

(VCT), and wormhole. In SF, a receiving router stores all flits of an incoming packet

before switching that packet to an output port. It must have sufficient buffer space

at its input port for an entire packet. Once all flits are received, it makes a routing

decision, switches the packet, and puts it on the output port. VCT has the same

buffering requirement as SF, but a receiving router immediately routes, switches, and
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sends the flits of a packet before all are received. Wormhole reduces the buffering

requirement of an input port to, at minimum one flit, by stalling remaining flits at

the previous router. Wormhole is the most common technique for NoCs because it

allows faster and smaller routers due to fewer buffers. However, it is also the most

susceptible to long periods of contention because the “worm” of flits blocks other

packets in multiple routers along its path. One solution around this is to use virtual

channels [27]. These are divisions of the FIFO buffer connecting a physical channel

such that a division is associated with a particular type of traffic. This allows a

packet to switch through a router when it is destined for a different output of the

next router, or to support priority levels.

3.1.4.4 Topology

The topology selection of a NoC affects its bandwidth, latency, energy-consumption,

and physical layout. The topology is often constrained by available area for routers

and links, power budget, floorplan (if defined prior to the topology), and selection of

available router configurations, such as only radix-4 and radix-5 routers. A commonly

used property of a topology is bisection bandwidth which is the aggregate bandwidth

of links that divide the network into two equal halves. It is a measure of global

connectivity. Topologies with high bisection bandwidth, namely those with high-

dimensionality, are desirable to achieve high throughput. However, physical design

concerns of wiring, router delay, area, and power often prevent their use. The most

common topologies used in NoCs are a mesh (k-ary 2-cube), torus, ring, Clos, and

hierarchical star. The best topology is dependent on the details of the particular SoC

it is designed for. The silicon process technology, die size, traffic, and other concerns

all influence the choice. An example of this is an SoC with multiple voltage and

frequency islands, where that system detail affects topology choice [88].

3.2 Network Customization

Communication requirements between cores of a SoC dictate, in part, the optimal

choice of network parameters. The traffic of a general-purpose CMP may not be

known in detail at design time, as they run a wide variety of software applications
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such as web-servers, photo-realistic 3D graphics rendering, and scientific computing

applications. For these systems, a general-purpose and regularly structured NoC

will probably be the best choice. However, traffic properties of many SoCs can be

known at design time, and can be used to optimize the network. In many embedded

applications, maximizing peak performance (i.e., bandwidth or latency) is not the

optimization goal. Power, energy×delay, or monetary cost are more important as

long as the system can meet a minimum performance bound. This optimization

process is driven by one or more of these goals, as selected by the SoC engineer, and

the expected traffic patterns.

One major focus of customization is on the topology. For application-specific

SoCs, a custom-generated topology is of utmost importance, and yields better latency

and power metrics than a regular-pattern network [74]. A representative example

illustrating the difference between a regular mesh network and an irregular network

is shown in Figures 3.2a and 3.2b, respectively. Lightly shaded boxes represent

the IP blocks in an SoC’s floorplan. The circles show router locations, and the

small squares show network adapter locations within the cores. The dark lines show

link connectivity (the network’s topology), and a connection is implied between an

adjacent router and network adapter. The regular mesh has more total wirelength,

and even an unneeded router on the rightmost link. This illustrates the potential

inefficiency of regular, homogeneous topologies when used in a heterogeneous SoC.

Other network parameters that may be considered by the optimization process in-

clude buffer sizes, link lengths, link widths, routing methods, and switching methods.

Some of these will be constrained by the available network components, while others

may be specified. The choices of buffers and links is important, as they can consume

a large percentage of the total NoC power [99]. Physical placement on the floorplan

is also often considered at this stage of NoC design because wirelength is a primary

point of optimization to reduce power and meet timing requirements [74, 82, 89].

Design automation techniques and software tools are commonly used to generate

a NoC for a specific SoC design. These methods can decrease time of development in

commercial products or allow a researcher to explore a larger design space. The
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(a) Mesh (b) Irregular

Figure 3.2: Two topology options for connecting eight IP blocks.

NoC configuration is chosen based on a metric of quality, usually a function of

energy and performance. In the optimization process, potential solutions must be

evaluated to determine quality, and this often requires an abstracted model of the

SoC characteristics.

The SoC abstraction can be done at a variety of levels depending upon complete-

ness and availability of the SoC design and NoC components. Ideally, one could

simulate the exact functionality of the various IP blocks composing the design, and

the NoC would be fully implemented to model the communication. Unfortunately,

this method is labor and simulation-time intensive, and not a good choice for early-

exploration of the NoC design space. It is usually necessary to make tradeoffs in

the traffic modeling as function becomes more abstracted. Some properties that may

be lost, or made less precise, include: causal relationships between sender-receivers

traffic, exact sizes of communication messages, exact temporal and spatial distribution

of traffic, latency requirements of specific data segments, and effects of network

congestion on IP block behavior.

A commonly used abstraction in the literature is a core communication graph

(CCG). This is also known as a communication trace graph (CTG) [100] or simply a

core graph. A path describes pairs of source and destination cores, and the particular

links and routers a packet traverses. The CCG has a n-tuple of values per path that

describe its traffic properties. This tuple often includes average traffic rate per path

and sometimes a latency requirement of a packet. An example CCG of an MPEG4
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decoder is shown in Figure 3.3 that we use later in our evaluation. The value shown

on each edge is the average throughput required between its pair of communicating

cores.

3.3 Asynchronous Networks

An asynchronous circuit design style is one that does not use a periodic clock signal

to determine when data should be latched. Instead, a handshaking protocol performs

this function. A request and acknowledge signal are typically used to accomplish

this. The sender generates the request signal to indicate new data are available. The

receiver responds with the acknowledge signal, indicating data has been stored. An

asynchronous channel that transfers data from a sender to a receiver is shown in

Figure 3.4.

An asynchronous network-on-chip (ANoC) has potential advantages versus a clocked

network in a GALS-based chip. In a synchronous NoC, the clock tree for all routers

and pipeline buffers can consume significant power as shown in a heterogeneous

network [81], and in a large CMP (chip multiprocessor) 33% of router power [48].

Many SoC designs have quite bursty and “reactive” traffic. In this case, asynchronous

methods are beneficial in that they consume no dynamic power during periods of low

traffic without relying on clock gating techniques. When bandwidth requirements on

core-to-core paths vary considerably, the available bandwidth on each asynchronous

link can be independently set by router spacing, link pipeline depth, and physical

wire properties. This is in contrast to clocked networks which commonly use a single
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Figure 3.4: Signals of an asynchronous channel handshake.

frequency for all routers, which is wasteful to those paths not requiring the maximum

bandwidth. Alternatively, a clocked NoC can use discrete “islands” of differing clock

speeds to achieve a similar configuration, but in a much coarser-grained fashion.

The synchronizer circuits required between cores and the network may be simpler

and faster if the network is asynchronous, yielding lower message latency and buffer

requirements.

Asynchronous handshake protocols can be categorized into delay-insensitive (DI)

and bundled-data (BD). DI protocols operate with far fewer signal timing require-

ments than BD, and are thus much easier to work with using EDA tools, and

intrinsically tolerant of process variation. However, BD offers higher throughput

with less energy, especially with a wide datapath [104]. If BD protocols can, through

additional research, be made to work more easily with EDA tools, then these benefits

can be realized. Nearly all ANoCs use DI protocols between routers, so there is

significant potential for improving the current state-of-the-art.

However, ANoCs are not without their design challenges and disadvantages. Routers

and pipeline buffers typically require considerably more work to design and verify

because commercial EDA tools often do not work properly with asynchronous circuits,

although work has been done to improve this [95, 85, 123]. Handshake protocols

require at least one round-trip latency between sender and receiver compared with

one-way latency in a clocked environment. Thus, maximum throughput for the

async channel is lower. The additional circuit complexity required to implement

an asynchronous protocol can often increase the leakage and dynamic energy over a

similar synchronous circuit.



CHAPTER 4

NETWORK AND CIRCUIT DESIGN

The design of the router and link pipeline circuits, and their assembly into a

network, is based on simplicity and efficiency. This focus is based on the theory that

a logic function using a simple circuit is more energy-efficient and has lower latency

than a complex implementation. The cost of a simple design is that it potentially

sacrifices some performance and features, such as reduced throughput under traffic

congestion, quality-of-service guarantees, traffic priority, and reconfigurability. The

benefit, however, is a lower energy for a given traffic rate, which is highly valued

in many applications. If a Pareto front is considered with axes of functionality

vs. efficiency, this work aims at the high efficiency region, as shown in Figure 4.1.

Figure 4.1: Pareto front of NoC design styles, their applications, and example
implementations.
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4.1 Overview

This design has low area, latency and energy due to a number of implementation

choices. Individual latches are used for flit buffers instead of flip flops, making a more

area-efficient storage structure. Routers that use large crossbars consume significant

area and power, so simple two-to-one MUXs form the crossbar. Switch direction is

determined by the most significant of the source-route bits, where this bit controls

the data MUXs through an arbitration circuit. This avoids address decoding circuitry

and allows simple rotation (only wiring and no logic) of the routing bits on the output

packet. The packet format consists of a single flit that has data and source-routing

bits in parallel, on separate wires. A specific packet size used in Chapter 6 is 32 bits

of data and 8 routing bits. The switching and arbitration circuits are arranged with

bi-directional channels which results in a three-ported (radix-3) router. Routers are

connected into a tree topology, described in more detail in Chapter 5, as this requires

the minimum number of routers and logarithmically low number of routing bit wires.

However, other possible topologies include a ring or an irregular structure.

The number of required routing bits is determined by the maximum hop count

through a SoC’s specific network. The link’s data width is determined based on

required throughput, power, or area constraints. The packet format has the overhead

of separate routing bit wires on a link. However, it has a number of benefits. It

avoids the downside of multi-flit packets and wormhole switching that can cause

blocking at many routers through the network, especially in a topology with low path

diversity, such as a tree. This format takes advantage of temporal similarity between

a series of packets to reduce the number of wires that change state between packets,

thus reducing energy. An application-level transaction will often be composed of a

number of packets sent from a source to destination IP block in quick succession. If

the path through the network is not being shared with other transactions, the routing

bits will not change state for each packet.

The router design and packet format does not include specific signals for a par-

ticular transaction-layer protocol, such as addresses or command types. The network

adapter (NA) at each core implements the transaction and transport layer protocols
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such that this information is packaged within the data bits of multiple packets.

A unique NA is needed for a particular transaction protocol, such as OCP or a

message-passing interface, the choice of which depends on the how the SoC and IP

cores are designed. The specifics of this packetization process are not implemented

in this work, but the end-to-end latency of a large message is used in the evaluation

to capture transaction-level performance. The packet format is not fundamentally

different than that of the synchronous network used in comparison, which is also

fixed-length. Both networks, for example, would need the first packet that begins

a transaction to contain an identification code for operation type, such as memory

burst-read. This NoC design does not perform error detection and correction at the

link layer, so this function, if required, can be performed by the NA at its higher-level

protocols.

The router is implemented with three components: a switch module, merge

module, and a buffer. The switch module determines, based on the flit’s route

bits, which output port will latch the data available at the switch’s input. The

merge module arbitrates between two input channels to an output channel, granting

access to the first-to-arrive request signal. This effectively alternates between the two

input channels, assuming each provides the next packet within an output channel’s

cycle-time. A router is composed of three switch modules and three merge modules, as

shown in Figure 4.2. Each switch and merge module has one set of latches providing

1-flit buffers on each input and output port.

The link pipeline buffer uses a latch and controller circuitry similar to the router.

Its functionality is referred to as a linear controller or latch controller in async
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Figure 4.2: Architecture of the 3-port asynchronous router.



34

literature. Figure 4.3 shows the block diagram of the pipeline buffer. The async

handshaking signals from the previous stage and next stage enter and exit the latch

controller. A flit is stored in the bank of latches. The controller allows the previous

stage’s flit through the latch when the next stage is ready to receive. This handshaking

is done with the req and ack signals using a two-phase protocol [97].

4.2 Router and Link Buffer Circuit Design

Asynchronous protocols and their circuit implementations normally fall into two

categories: quasi delay-insensitive (QDI) and bundled-data (BD). Generally, QDI is

more robust to variations while BD allows simpler circuits. BD has a lower wire

count compared to QDI’s common encodings (e.g. 1-of-4 and dual-rail). This is

potentially more energy-efficient as it needs fewer wire repeaters, especially with wide

links [102]. The choice of four-phase or two-phase protocol impacts performance and

circuit complexity. The throughput across long links is limited by wire latency, thus

a two-phase protocol achieves almost twice the throughput as a four-phase protocol

(but it has half the bandwidth of a synchronous or source-synchronous link). However,

a four-phase, level-sensitive protocol typically allows more simple circuits. A more

detailed description of these protocols and encodings is given in [97]. Figure 4.4 shows

a comparison between common async styles. For a 5mm long link between sender

and receiver, bandwidth was increased by adding link pipeline stages. The energy

and latency of sending one data word across the link was measured, and the product

plotted on the y-axis. The BD protocols have much better efficiency and scalability

latch

bank

latch

controller

req_in
ack_out

Link from router, buffer, 

or network adapter

data bits

route bits

req_out
ack_in

Link to router, buffer, 

or network adapter

data bits

route bits

Figure 4.3: Block diagram of link pipeline buffer.
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Figure 4.4: Protocol and encoding comparison of the energy-delay product for
sending a data word across a link. Bandwidth is varied by the number of pipeline
stages on the link.

than 1-of-4 QDI, with four-phase BD being superior. Most asynchronous NoCs use

QDI for the link protocol, but the benefit of BD is very large, thus it was chosen for

this work.

With these properties in mind, the router was designed to internally operate using

a BD four-phase protocol and BD two-phase between routers. Within the router,

four-phase is more efficient, since it requires less logic than two-phase BD or QDI, and

works directly with the level-sensitive four-phase MUTEX element [90] that arbitrates

on a shared output channel. The BD two-phase protocol is used on links because

time-of-flight wire delay can be a limiting factor to bandwidth, and two-phase has

half the total delay as four-phase.

4.2.1 Router Specification and Implementation

The block diagrams for the router’s switch and merge modules are shown in

Figure 4.5. The two-to-four phase converter (2to4 phase conv) adapts the link pro-

tocol to the router protocol. The switch does this through signals left request (lr)

and left acknowledge (la), and similarly for the merge, right request (rr) and right

acknowledge (ra). The phase converter handshakes with a BD four-phase burst-mode

asynchronous controller (async. linear con) to pipeline the flit from the input port
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(a) switch (b) merge

Figure 4.5: Block diagrams of switch and merge modules.

latches to the output port latches (D L). The linear controller’s specification and

timing assumptions have been previously studied [105]. The request signal is directed

to one of the two output channels’s merge module (rr1 or rr2) based on the most

significant route bit. The route-bits are rotated and passed to the merge module.

The routing operation occurs concurrently with the handshake back to the input

channel. A detailed schematic of the switch module is shown in Figure 4.6a.

The merge module is composed of the arbiter (ar), data latches, and merge

controller shown in Figure 4.5b. The arbiter serializes requests to a shared output

channel from two input channels. If both input channels have a steady flow of

packets, it alternates between them in a round-robin fashion. The output of the

arbiter controls a MUX that selects the appropriate input flit to store in the output

latch. The arbiter uses a four-phase handshake signal to the merge controller via lr m

and la m. The MUTEX element is described in other work [97] in more detail, passes

only the first-to-arrive request signal to its associated output, until it is de-asserted.

The merge controller interfaces with a network link with a two-phase protocol via rr

and ra, as well as control the output data latch, D L. Figure 4.6 shows a detailed

schematic of the switch and merge modules.

All of the circuits were designed with the static, regular threshold voltage (Vth),

Artisan cell library on IBM’s 65nm 10sf process except the MUTEX element in the

merge module. The MUTEX was designed and characterized as a separate library

cell through manual layout and HSPICE simulation. The power and latency of the

switch and merge modules could be significantly improved by using domino or custom

dynamic gates, rather than a traditional static cell library. However, dynamic libraries
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(a) switch

(b) merge

Figure 4.6: Schematics of the switch and merge modules.

are rare and so this normally would require custom cells or layout. The chosen static

library implementation allows designers to use a commercial static gate cell library

and EDA flows for faster development time.

The methodology of this asynchronous circuit design used a CAD tool flow similar

to [106], and is shown in Figure 4.7.
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Figure 4.7: Asynchronous circuit design flow.

4.2.1.1 Specification

The process logic of Calculus of Communicating Systems (CCS) [72, 105] was used

to to make the specification of the circuit modules. The linear controller specification

is shown in Equation 4.1 and the merge controller in Equation 4.2.

LEFT = lr.’cl.’al.’c2.lr.’la. LEFT

RIGHT = c1.’rr. c2.ra.’rr.ra.RIGHT

LC = (LEFT|RIGHT)\{c1, c2} (4.1)

LEFT = lr.’c1.’la.’c2.lr.’la.LEFT

RIGHT = c1.’rr. c2.ra. RIGHT

MG CON = (LEFT|RIGHT)\{c1, c2} (4.2)

4.2.1.2 Implementation

Circuit implementation of async modules used the software tool Petrify [26], and

a manual design was done for the MUTEX and two-to-four phase converter circuits.

The input to Petrify is a Petri net, equivalent to the CCS specification above. These

are presented in Figures 4.8 and 4.9. Relative timing constraints (RTC) are shown as

dashed arrows. The consideration of RTCs in an async circuit enable better timing

optimization [105].
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4.2.1.3 Verification and RTC Generation

The implemented circuits are verified using the asynchronous formal verification

tool, Analyze [103]. Another tool, ARTIST generated the RTCs that allow the circuit

to be proven conformant to its specification, and thus operate correctly [123].

4.2.1.4 Timing-Driven Synthesis

The RTCs from ARTIST are converted into Synopsys Design Constraints (SDC)

format. With these, Synopsys Design Compiler was used to synthesize the individual

async modules, and then the full router.

4.2.1.5 Place and Route

The synthesized async router was physically placed and routed with Cadence SOC

Encounter.

4.2.1.6 Static Timing Analysis

The placed and routed designs were timing-verified by static timing analysis from

Synopsys PrimeTime. This guarantees the RTCs were met in the final layout.

4.2.1.7 Functional Validation

The router’s functionality and delay were validated with the Mentor Graphics

ModelSim tool using back annotated pre- and post-layout delays.

4.2.1.8 Energy Measurement

Energy is measured with Synopsys HSPICE through simulations of the router’s

spice netlist, including parasitic extraction from Mentor Graphics Calibre PEX.

4.2.2 Link Pipeline Buffer Specification and Implementation

The link pipeline buffer is similar to the linear controller and latch used in the

router switch module. A key difference is that the link buffer operates using a two-

phase protocol instead of the four-phase used within the router. The design process

followed that used for the router, with the CCS specification given by Equation 4.3.

The resulting circuit schematic is shown in Figure 4.10, where DL represents the data

latches for a flit.
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Figure 4.9: Petri net of merge controller.

LEFT = lr.cl.la. LEFT

RIGHT = c1.rr.ra.RIGHT

LC 2p = (LEFT|RIGHT)\{c1} (4.3)

4.3 Evaluation

The routers are characterized for area, energy-per-flit, and leakage power, for a

variety of flit widths. Dynamic energy is measured when one data word passes a

router from an input port to an output port. The results are shown in Table 4.1

for a switching activity of 50% of bits changing between flits. For the system-level
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Table 4.1: Router parameters for various flit widths (data+routing)

Flit Width 40 bits 72 bits 140 bits
Area (µm2) 2828 4564 8390
Dynamic Energy (pJ) 1.80 2.47 5.77
Leakage Power (mW) 0.009 0.015 0.028

evaluation in Chapter 6 the switching activity is changed to 25%, and the resulting

dynamic energy per flit for a width of 32 bits data and 8 bits routing was 1.03 pJ.

These are comparable to a similar async router design that uses 1.3 pJ/flit (scaled

for process technology and link width differences) [47], and a 2×2 Orion model that

uses 5 pJ/flit [55]. The area is dominated by the data latches and MUXs in the merge

modules. The controllers (linear controllers in switch modules and merge controllers

in merge modules) make a very small contribution to the total area. The area is also

comparable to the similar async router that is 2700µm2, the Orion model that is

11000µm2, and a guaranteed-service synchronous router [41] (again scaled for design

differences).

The maximum throughput of the router is 2.12Gflits/s, and is favorable compared

to a guaranteed-service synchronous router that has a 1.0 Gflits/s throughput (scaled

DLdl dr

lr

la

rst
ra

rr

Figure 4.10: Schematic of a two-phase protocol link pipeline buffer.
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for technology process differences) [41]. This was measured by providing data into the

input ports at a maximum rate and allowing the output port to communicate with

another router with no wire delay. The backward latency of a router is the delay from

a request on an incoming channel to the acknowledgment on that channel, completing

the handshake of the two-phase protocol. Fast backward latency is desirable because

it frees the previous router’s output port for another transaction. Forward latency

of a router is the delay from a request on an incoming channel of a router to the

associated request on an output channel, assuming no contention or stalling in the

arbitration circuit. This is determined by the delay to buffer the data, arbitrate

control, and switch to the outbound channel. The router has a 250 ps backward

latency and 460 ps forward latency.

The link pipeline buffer is a smaller circuit than the router, as its energy and

performance reflect. With a data width of 40 bits, it has energy per flit of 0.45 pJ,

leakage power of 1.21µW, a forward latency of 130 ps and a throughput of 4.1Gflits/s.

4.4 Summary

Our router’s low power and area are due to its simple architecture and the

use of latches, rather than flip-flops, for the storage elements. Since much of the

area and power of router architectures is from memory elements, this advantage

makes a significant difference. Furthermore, the simplicity of the control circuits also

contributes to high throughput and low energy. The router employs a bundled data

protocol rather than delay insensitive codes which results in fewer wires per channel

and efficient use of standard cell libraries. The cost of these choices is that the

circuit timing must be carefully specified and controlled to ensure correct operation.

System-level power and performance results of a network using this router are shown

in Chapter 6.



CHAPTER 5

DESIGN AUTOMATION FRAMEWORK

The goal of interconnect design for the embedded SoCs this work targets is to

specify the network parameters so that power is minimized while performance needs

are met. A challenging aspect is determining the optimal parameter choices when

they are interrelated and dependent on each other.

The search for optimal parameter values is often aided by design automation

software. We have developed such a tool that performs the following operations:

determines the network topology, places routers and pipeline buffers on the physical

chip floorplan, and generates an executable simulator suitable for detailed comparison

and analysis. This tool is composed of a number of components that form a framework

titled ANetGen. It has been used to compare the asynchronous network described

herein to a synchronous network in an initial study [37], and another study with an

improved comparison and more implementation details [39].

ANetGen is used in the domain of designing a SoC that performs a small set of

fixed functions in an energy-constrained environment. The SoC is assembled from a

variety of IP blocks in a GALS manner, where IP blocks may be hard (post-layout)

or soft (synthesizable RTL), each with a standardized socket interface (like OCP).

The contributions of this framework are:

• Novel method of determining the router locations on the floorplan

• Exploring topology options while considering physical properties and constraints

• Self-similar traffic generator, portable to other simulators

ANetGen assists the design engineer in constructing a network formed from the

components described in Chapter 4. The input and output interfaces of ANetGen

are shown in Figure 5.1.
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Input
• Communication properties between IP blocks
• Communication requirements between IP blocks
• Floorplan of IP blocks
• Process technology parameters
• Router and network properties
• Optimization algorithm tuning parameters
• Simulation parameters

Output
• Router locations on floorplan
• Network topology and routing (logical connectivity between routers and cores)
• Simulator executable and results

Figure 5.1: ANetGen input and output interface.

The input interface is now described. The communication properties between IP

blocks is specified by a set of values: source block ID, a destination block ID, average

throughput between source and destination, criticality, and a measure of self-similar

burstiness.

The requirements between IP blocks is also a set: source ID, destination ID,

average throughput, and maximum message latency. These parameter values are

determined by analyzing the SoC design implementation and its communication

by high-level simulation of the application. This type of analysis can be done on

many SoCs of known traffic such as a small MP3 decoder or a large design, such

as the Philips Nexperia [33]. Other research has developed methods to perform

this characterization [61], and it has been used in other NoC optimization work

[75, 74, 100, 49, 32]. This work assumes that the parameters have already been

extracted for a particular SoC. Each parameter value has a reference to a particular

source and destination IP block pair. The pair and associated parameter values are

together referred to as a flow, and in the context of a network, a path. The criticality

parameter indicates to the tool which paths require low contention, and can be used to

iteratively refine the network to meet a requirement. Burstiness, as described in [118],

uses a single value to represent the self-similar nature of traffic that does not follow

a Poisson arrival process. The average throughput of a flow is the volume of traffic
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(bytes) sent over a large interval of time (seconds). Maximum message latency is a

measure of required bandwidth over shorter time intervals. This parameter consists

of two parts: a message size (bytes) and a deadline (seconds) by which the message

must be received.

A floorplan for the IP blocks, without the network components, is determined

prior to running ANetGen by a separate floorplanning tool. For the experiments

in this work, Parquet is used [1]. Parquet uses simulated-annealing to minimize a

combination of die area and weighted point-to-point wirelength between IP blocks,

where a link’s weight is derived from the average throughput between the cores it

connects.

The process technology parameters are used by the wire model to estimate link

energy and delay. The router and network properties include router forward and

backward latency, energy per flit, leakage power, number of routing bits, number of

data bits, and cycle rate of a network adapter. The optimization algorithm parameters

are described in detail in the following sections, as are the simulation parameters.

The output floorplan consists of the same IP block locations as the input floorplan,

but with the added locations for routers, link pipeline buffers, and each IP block’s

network adapter. ANetGen can be configured to assume hard- or soft-IP blocks,

where in the latter case, routers and network adapters can be placed anywhere on die

due to their small size. For hard-IP, routers and link buffers are placed between cores,

and the network adapters located on the edges. The placements for these components

can be provided as constraints or hints to the final place-and-route software later in

the design flow, but this work does not investigate this task.

The network topology output is specified by a set of links connecting a router or

network adapter. In this work the topology is limited to a tree, and there is only

one path from any source to destination. Thus, there is only one possible routing

solution, and this is stored in a routing table for use by other tools.

The executable simulator produced a network is based on the SystemC library. It

models the delays and energy of each component in the system: network adapters,

routers, wire delay, channel protocol, and link pipeline buffers. The use of SystemC
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gives a programmatic interface, and possible extension for different network compo-

nents. For example, more accurate back-annotated Verilog RTL router models could

be used without extensive modification, and co-simulated with ModelSim.

The use of ANetGen from the user’s perspective is shown in Figure 5.2. The

inputs are the SoC design specification, NoC component models, and configuration

for the tool. The first step is the topology and placement generation which optimizes

for energy and throughput. The objective function, from a top-level perspective, is

to minimize wirelength and router hop counts, especially for those paths that carry

the most traffic. It does this with a combination of simulated annealing (SA) and

force-directed movement techniques.

The output is a SoC floorplan with the routers and pipeline buffers placed, and

the simulator executable. The results produced by the simulator are examined by

ANetGen’s user to determine if the requirements have been met. If so, the network

solution can be used in the SoC design. If a requirement is not met, the user must

adjust the input configuration or try different NoC components with greater data

topology
and

placement
generation

SoC
design
spec.

user-
provided
config.

NoC
component
models

generate
simulator
executable

floorplan
w/NoC

energy/latency
results

user-
analysis
of results

requirements
met?

user adjusts
input

parameters

end

yes

no

Figure 5.2: ANetGen flow from a user’s perspective.
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capacity, depending on the nature of the failure. For example, if a few paths had

message latencies longer than the limit, their criticality parameter can be increased.

If many paths failed to meet average throughput needs, the flit width can be increased

and the circuit models changed accordingly. With changes made, the ANetGen flow

is repeated. Details of the parameters that can be changed are explained in following

sections.

5.1 Topology and Placement

The problem of determining a customized topology and floorplan of routers is

framed as a multi-objective optimization problem with respect to minimizing power

and delay. The challenges of this include:
• Exploring the very large problem spaces of topologies and placements

• Inefficient integer programming methods

• Accurate quantification a network instance’s quality (fitness).

The topologies this tool generates are trees, assembled from the three-ported

routers in Chapter 4. The consideration of only tree topologies is not a fundamental

limitation of the framework, but is from a desire to explore the concept of simple

asynchronous networks. A tree has the minimal number of three-ported routers (N−2

routers for N number of IP blocks), simple routing, and guarantees deadlock-freedom

for packets because there are no possible routing cycles. The problem of finding the

optimal tree topology is similar to the NP-hard quadratic assignment problem of

mapping cores to a mesh topology [49]. For this, we utilized a simulated annealing

framework, the ParadisEO C++ library [20]. The range of tree-type topologies offers

room for exploration by the tool; it can be more balanced or more “linear,” and core

mapping to leaves within a given topology can change. Some example topologies are

shown in Figure 5.3.

The quality of a topology can be represented by a function of the number of router

hops on each path, and the volume of traffic flowing through each. These traits

contribute to determining network energy, latency, and bandwidth saturation. IP

blocks should be arranged in the topology such that this quality metric is maximized.

The details of this optimization are described below.
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Figure 5.3: Examples of possible tree topologies. Routers are shown as circles, IP
blocks as squares.

The physical placement of routers and link pipeline buffers on the floorplan de-

termines the lengths of links, which in turn affects power consumption, bandwidth,

and latency. Link energy usage can be significant [83] and grows, relatively, with

shrinking process technology. Link power (Pl) is due to to leakage and dynamic

switching energy (Erep) of the wire’s repeaters. Link length (l) dictates the size and

number of these repeaters. Dynamic power (Pdyn) is a function of activity factor (α)

on the link, and thus links that will carry more traffic have a greater influence on

power. Plink = Pleak + Pdyn and Pdyn ∝ Erep · l · α

Latency and bandwidth of an asynchronous channel are partially determined by

wirelength between sender and receiver. A shorter channel will have less latency

and increased bandwidth compared to a longer channel. This is in contrast to a

synchronous channel that is governed solely by clock periods; short wires show no

performance advantage to long wires, assuming the latency is within one clock period.

Short wires are also beneficial to end-to-end latency through a series of routers. For

example, consider three closely-placed routers. If they are a common synchronous

design, a flit’s latency will be at least six cycles (one for each router and wire segment).

However, if they are asynchronous, the delays of the wires are minimal and thus only

three hops of logic delay is required.

The placement of the network components, due to its influence on energy and

latency, should be determined such that wirelength is minimized, especially on paths

carrying high traffic. The details of this optimization is presented in a subsection

below.
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5.1.1 Optimization Flow

The process of topology and router placement at the top level is shown in Fig-

ure 5.4. The following input is read by the tool: the core floorplan, communication

properties, process technology, router and network properties, and optimization pa-

rameter values. It generates an initial topology of a balanced tree and places the

routers. The topology is iteratively perturbed by swapping the links of two routers or

cores topologically near each other. The quality, or “fitness” of the new solution is at

this point titled partial fitness, because it does not factor in the physical placement of

the routers. If the partial fitness improves, the the routers are placed on the floorplan,

and a full fitness is calculated and recorded. After a number of iterations, the system

is determined to be “cooled” and the best solution is saved.

5.1.2 Simulated Annealing Topology Exploration

A topology is found through an exploration process using the heuristic opti-

mization method, simulated annealing (SA). SA was chosen because it can handle

high-dimensional problems (in this case, the logical connectivity of every router), can

explore the solution space past local minima, and has been used successfully in other

topology optimization work [11, 111, 2, 112, 19]. The overlying SA framework is the

ParadisEO C++ library for evolutionary optimization methods [20], and the core of

this algorithm is based on the original SA method [59]. Central to a SA algorithm are

the following procedures: state definition, neighbor state selection, state evaluation,

and cooling schedule. These are defined later in this section. The high-level flow of

the algorithm is shown in Figure 5.4, where the basic iteration loop is: evaluate a

neighbor state, change the current state to the neighbor state if fitness is better or

probabilistically accepted, and repeat these steps for a particular iteration count.

Figure 5.4: Topology and placement exploration.
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5.1.2.1 State Definition

A possible solution, or state, is represented by the topology and router placement

on the floorplan. The initial state is generated using an algorithm that constructs a

balanced binary tree topology, and then physically places the routers. This process

puts frequently communicating cores topologically near each other, with a worst-case

hop count (and thus number of required routing bits) of O(log2 n), where n is the

number of cores. Cores, or groups of cores, are recursively paired, so that those paths

with a high average throughput contain as few routers as possible in order to reduce

power and contention delay. Figure 5.5 outlines the process of determining the initial

solution, and its data structures and terminology include:

• Group: a single IP block, or two groups joined by a router.

• Topology Graph T (Vt, Et), where each vi ∈ Vt is a group and each ek = {vi, vj} ∈

Et is a physical network link between groups. Note that as this graph is being

built, it may not be a connected graph.

• Core Communication Graph C(Vc, Ec), where each vi ∈ Vc is initially an IP

block and each ek = {vi, vj} ∈ Ec shows communication between vi and vj. As

the algorithm progresses, two vertices combine to form a new vertex in C and

a corresponding group in T containing the same IP blocks.

• Map of edge weights, W [e → w]. For every ek ∈ Ec, wk is the path weight.

5.1.2.2 Fitness Representation

The fitness of a network instance is based on two properties: power and a rep-

resentation of router contention. It is necessary to quantify an instance’s fitness so

that it can be compared with others during the simulated-annealing process. Power is

estimated from the flit throughput of each router, and with the circuit-level energy/flit

value ER, and the throughput over each link using the Orion 2.0 wire models which

are part of a synchronous router model package [55]. For a router, R, the flits it

switches per time period (its throughput, TR) is

TR =
∑

path p using R

T avep
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Initialize T with vertices of Vc and no edges.
while Vc contains two or more vertices (groups) do
Unmark all vi ∈ Vc to indicate ungrouped.
while two or more vi ∈ Vc marked grouped do
Find (vi, vj) ∈ Vc connected with the highest weighted edge, emax, that are not
marked. An edge of weight 0 is implied between a vertex pair with no incident
edge.
Create a new router vtnew in T . Connect vtnew to vertices in Vt corresponding
to vi and vj in Vc.
Group vi and vj of emax to form new vc.
Mark vc to grouped.
Combine edges incident to both vc and any one vi ∈ Vc by making a single
edge from vc to vi with weight equal to the sum of the separate edge weights.

end while
end while
Remove unneeded “root” router from T , connecting its children groups directly.
T contains the generated topology.

Figure 5.5: Balanced tree topology generation by connecting IP blocks together
with routers.

where a path p from source to destination uses the router Rk, and T avep is the average

throughput, in flits/sec, of p. For a link, ℓ, its dynamic power is

Pdynℓ =
∑

path p using ℓ

T avepEflitℓ

where Eflitℓ is the energy per flit traversal, with a default fraction of switching bits.

The Orion wire model estimates this energy. Total router leakage power, PleakR is the

sum of leakage from all routers. This work has one router type, and thus it is simply

the number of routers multiplied by the leakage of one, found from circuit-level design.

Total wire leakage power, Pleakℓ, is the sum leakage from all link segments. The

Orion wire model estimates this, using provided process technology data. Therefore,

the total power of the network is as shown in Equation 5.1.

Pnet =
∑

foreach R

(TRER) +
∑

foreach ℓ

Pdynℓ + PleakR + Pleakℓ (5.1)

Router contention within a network instance is represented as a unitless value,

calculated as follows. It is useful in comparing different topology options for the same
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traffic patterns, but is not relevant for comparing across different traffic patterns of

various SoCs. The definition of contention is shown in Equation 5.2.

Contn =
∑

path p

(

(HOPSp)
k × (T avep + CRITp)

)

(5.2)

where k is an exponent giving geometrically worse (higher) fitness to solutions with

many-hop paths. The effect of a higher k value is a more balanced tree topology

which requires fewer routing bits. A value of 1.5 is used for these studies, and was

arrived at after experimenting with several values. This parameter should be adjusted

for a particular design if the number of routing bits required is excessive. CRIT

is the measure of path criticality, provided as input to ANetGen, that adjusts a

path’s impact on fitness, independent of its average throughput T avep is the average

throughput of path p.

The partial fitness of a network instance is simply the contention metric defined

above:

Fitpart = Contn

This is computationally less demanding than finding a router placement for a par-

ticular topology, and is used to evaluate quality of a new topology candidate. The

contention metric is also proportional to router power because each varies linearly with

traffic volume, and thus partial fitness also factors in router power. Full fitness, with

which network instances are ultimately compared, is the value of a single aggregate

objective function. This function is a weighted sum of total power and contention as

shown in Equation 5.3, where the user must specify the relative influence of each based

on network design goals. In this way, a single-objective optimization can be used,

but at the sacrifice of multiple Pareto-optimal solutions being found in one run [29,

Chapter 2.3]. However, true multi-objective methods would require more solution

evaluations, which may be limiting given the computational costs of evaluating fitness.

Fitfull = w · Pnet + (1− w) · Contn ·N (5.3)

where w is the user-specified weight in [0, 1], and N is a normalization factor to

adjust the magnitude of the unitless contention to be similar to power. N is set at

the beginning of optimization for the initial solution such that Contn ·N = Pnet.
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5.1.2.3 Neighbor-state Selection

The neighbor-state selection is done by slightly changing the topology, but keeping

it in a tree form with no cycles allowed. The selection function is described as follows.

Select a router R1 at random. It is connected to three other components which are

either routers or cores. From the set of connected routers, select R2 at random. There

are two other elements k1, k2 connected to R1 and two others j1, j2 connected to R2.

Randomly select kx from k1, k2 and jx from j1, j2. Finally, exchange the links to kx

and jx. This is illustrated in Figure 5.6. A proposed extension to this method is to

use a heuristic that concentrates moves in areas of the topology estimated to have

the most potential for improvement. However, the more random method works as

needed and is used for all results in this study.

5.1.2.4 Cooling Schedule and State Fitness

The cooling schedule is a standard one for SA routines: a geometrically-reducing

temperature that reduces the frequency of next-state acceptances if it has a worse

fitness. The geometric ratio is set to 0.98. SA is quite sensitive to the relationship

between initial temperature and magnitude of change in the fitness between states.

The fitness values are scaled such that approximately 60% of worse states are initially

accepted. This scaling is needed in order to automatically handle SoC designs of

different sizes or units. This is done by comparing the fitness between the initial

state and a sample neighbor state. The difference between these two states must be

multiplied by a scaling factor, k, such that the following equation is satisfied.

R1 R2

k 1

k 2

j 1

j 2

(a) Router and vertex selection.

R1 R2

k 1

k 2

j 1

j 2

(b) Exchanged links to k1 and j1.

Figure 5.6: Neighbor state generation.
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0.6 = e

(

−|k ·∆Fitness|

T0

)

where T0 is a given initial temperature of the system. State fitnesses for the rest of

the SA operation are multiplied by this scaling factor.

We made a modification to the classical SA method: a state “reset” that after a

certain number of cooling steps, returns the state to that with the best fitness thus

far. The reasoning behind this is that often a random acceptance of a worse state

will not recover to a fruitful region of the solution space. Resetting the state back to

one of known good quality helps prevent this.

5.1.3 Router Placement

When a full fitness is needed for a particular state, the router locations need to

be determined for accurate wirelength, and thus energy information. We developed

a novel approach based on force-directed movement to place the routers on the

floorplan. Force directed movement has been used in many research areas; the seminal

work related to placement of components on a printed circuit board [84], and other

popular uses include chip floorplanning [35] and graph visualization [34]. The initial

description of our algorithm was previously published [36], but it has been modified,

and is described later in this chapter.

The process is iterative, where each iteration a router moves a distance based on

the sum of its force vectors. Force vectors are applied to routers each iteration that

are proportional to: (a) average throughput of paths using each router, (b) distance

from a router to IP blocks that use it to communicate, and (c) wirelengths of a

router’s connected links. The purpose of (a) and (b) is to decrease total distances

on high-traffic paths to reduce wire power, while (c) spaces routers evenly along long

links to maximize throughput. After some time, movement halts and the placement

is complete. If hard IP blocks are used in the design, the tool performs a de-overlap

of the routers that moves those placed within the bounds of an IP block to outside

of it. The algorithms are described in detail below. The input to this algorithm is a

CCG, statically-routed network topology, and IP block floorplan.
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The description of the force application uses similar terminology and definitions

for the CCG, topology, and edge weights as defined in Section 5.1.2. The CCG edge

weights are the average throughputs between cores. These weights cause force to be

asserted on certain routers along the topological path between source and destination.

The goal is to move them such that the physical end-to-end path length is shortened.

A force is only applied to a router if that router is considered critical to a path. A

router that is not critical, given a path and axis, means that movement along that axis

does not yield a shorter path distance. This property arises due to the Manhattan

wire routing used in VLSI chip design, requiring distances in force-directed placement

to be a summation of x and y axes’ length. In more detail, a critical router for an edge

in Ec on either the x or y axis is a router on the path from vci to vcj in the topology

graph that has the following property. Its incident edges connect two vertices on

that path with distances on the given axis of the same sign or zero. In other words,

given a router R with coordinates (xR, yR), edges to vertices vt1 = (xv1, yv1) and

vt2 = (xv2, yv2) on the path, and axis a (either x or y): R is a critical router if d1

and d2 do not have opposite signs, where: d1 = aR − av1 and d2 = aR − av2. An

example is shown in Figure 5.7a, where R2 is critical and R1 is not critical along

the path from IP block A to B, on the y-axis. For R2, d1 and d2 are both negative

because its y-coordinate is less than both R1 and R3. R1 is not critical because it its

y-coordinate is less than A and greater than R2.

The algorithm starts by placing all routers in initial positions. Each router is

placed at the midpoint between its connected edges. This is done first for those

A
B

R1

R2

R3

(a) Starting locations

A
B

R1 R2
R3

(b) Near stopping locations

Figure 5.7: Router movement to reduce path length from A to B.
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routers connecting to two IP blocks, and repeated for the next level of routers using

the midpoint between the previously placed routers, and so forth until all are placed.

The next step is to run the algorithm described in Figure 5.8, which moves the routers

until a stopping condition is met. The stopping condition is simply a maximum

number of iterations, i. The desired convergence time and accuracy determine the

values of i and a design-specific scaling factor, c, that is set such that vertex movement

is not excessively large. c is also lowered as time advances so as to “freeze” the system.

This helps prevent oscillations of the vertices.

A simple example is shown in Figure 5.7. Assume IP blocks A and B have a

CCG edge with a large value indicating there is a high average throughput between

them. Traffic on this path flows through the routers R1, R2, and R3. As previously

discussed, in the first iteration R2 is considered critical on the Y axis because it

connects to R1 and R3 which are both in the positive Y direction. Force is assigned

to R2 (and in later iterations, R1 as well) such that the the path from A to B decreases

in length.

The AssignForce subroutine in Figure 5.9 determines the magnitude and direction

of a force vector applied to a router. This vector is derived from two component

vectors, ~F1R and ~F2R. ~F1R is based on the end-to-end path requirements and

distances to the IP blocks. Its length is proportional to two factors: the path’s

CCG weight and the ratio of its shortest path distance on axis a to the total distance

repeat
for each edge ek = (vi, vj) in the CRG, C(Vc, Ec) do
for each router R along the path vi to vj in the topology graph T (Vt, Et) do
Call AssignForce(R,ek)

end for
end for
for each router do
Sum all force vectors on router, yielding ~FR. Move router in the direction of
~FR, and distance proportional to the length of ~FR and a scalar c.

end for
until Stopping Condition

Figure 5.8: Algorithm for router placement.
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AssignForce(R,ec): returning force vector ~FR

for each axis ~a in {~x, ~y} do
if R is a critical router then
Assign a force vector ~F1R to R on axis ~a as follows:
Find the shortest distance, d~a, on ~a comparing:
R to incident vt1 added to vt1 to vc1 and
R to incident vt2 added to vt2 to vc2
where vc1 and vc2 are endpoints of ec, and vt1 and vt2 in Vt are incident to R
along paths to vc1 and vc2.

~F1Rlength =
d~a

d~a + d~a′

· wij

where wij is the weight of the CCG edge ec = (vc1, vc1), and d~a′ is the distance
between vc1 and vc2 along the opposite axis a′.
~F1Rdir is positive if the location on ~a of vt1 or vt2 is greater than R. Otherwise,
~F1Rdir is negative.

end if
end for
for each link lk connecting R to vertex vk do
set length lk as the Manhattan distance from R to vk
get unit vector, ~vk, from R to vertex vk
set link force vector ~F lk = ~vk · lk · wij

end for
set force vector ~F2R =

∑

∀k

~F lk

return ~FR = ~F1R · s+ ~F2R · (1− s)
where s is a user-provided scalar [0,1]

Figure 5.9: AssignForce subroutine.

on both axes. Highly weighted, i.e., important, paths will enact proportionally higher

forces. The distance factor is a ratio of both axis distances so that those paths with

a significant fraction of total length on a have more influence than those with a small

fraction. ~F2R is based on the wirelengths of the links that connect a router to other

routers or IP blocks, and the total throughput those links carry. It is the sum of

vectors calculated for each link individually (lk). Each of these is directed towards

its connected vertex with a magnitude of the CCG edge’s weight multiplied by the

Manhattan length of the link. The final force applied to the router is the weighted

addition of ~F1R and ~F2R. The user specifies this weighting, where larger values

of s will make end-to-end path lengths shorter, saving power, but perhaps at the
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expense of longer links that may reduce bandwidth. Likewise, smaller values of s will

evenly space out routers based solely on the throughput needs of each individual link,

perhaps making some end-to-end paths longer, and use more power.

Two additional placement options are available to ANetGen’s user depending on

the use of hard or soft IP blocks. The first enables an IP block’s network adapter to

be moved and placed along the edge of its border. This is useful with soft IP so that

shorter links are possible, versus predefined locations in the corner of an IP block.

For this placement, network adapters are treated similar to routers, but limited to the

boundary of their block. The second option is for use with hard IP to remove routers

from the interior of the IP, and is called a de-overlap. This is done after a normal

placement of routers, and operates as follows. Routers are put in ascending order by

the total throughput that each carries. In order, they are moved (expelled) to the

nearest block edge, and the placement is run again but without allowing the expelled

router to enter any block. This repeats for each router that remains inside a block.

Unfortunately, this is very computationally expensive, and thus it is recommended

not to enable it during topology exploration with SA. Instead, a final de-overlap can

be done to the floorplan after SA.

5.2 Self-similar Traffic Generator

In order to explore the performance characteristics of the network as realistically as

possible, we moved away from the commonly used Poisson traffic models and decided

instead to use a self-similar model. Self-similarity is a property of an object, data,

or mathematical expression whereby parts of itself appear similar to other parts.

This similarity can be observed between different regions of the data at the same

granularity/resolution, or between different granularities. Geometric fractals exhibit

this property, as do certain natural features such as coastlines.

Self-similar traffic has been seen in NoCs and is a suggested model for research [115,

18] The self-similar model implementation created for ANetGen is based on the b-

model traffic generator [118], recommended as a key feature in future NoC benchmark

sets [67]. The traffic generator outputs chunks of data called messages, that simulate
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the requests from software to the transaction layer of SoC communication. The

self-similar behavior is seen in the times these messages are generated, not necessarily

the times the individual packets enter the network, which is dependent upon network

bandwidth, contention, and other characteristics. A message is broken down into

contiguous packets to be sent over the network as fast as it will allow. Message

generation cannot be stalled by the network, but message latency through the network

to a destination IP core is delayed by the bandwidth of the network and transient

effects of packet contention with other paths. The operational flow and structural

partitioning is shown in Figure 5.10. The self-similarity is not dependent on details

of how a message is formed into packets, nor the link-level protocol, and can be used

with various network implementations. This design has a SystemC transaction level

model (TLM) for its interface, and thus it is portable and relatively easy to integrate

with other network models. Our software is available to other researchers, and at

least one group has expressed interest in using it, and has been given the source code.

The model is parameterizable with the following inputs:

• Source and destination cores.

• A bias b-value in the range [0.5, 1.0) indicating burstiness.

• Simulation duration.

• Average bandwidth, i.e., desired total traffic volume.

• The smallest time-resolution of the burstiness.

• Message size, e.g., 256 bytes.

Self-similar traffic is generated recursively with an algorithm closely following the

original [118]. A known volume of traffic to be sent during a known simulation
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duration is divided into two parts, each part weighted by the bias, b. Each of

these is then split, and the process continues for each subdivision of time, until the

desired time resolution is reached. Steps of the this process are shown in Figure 5.11.

There are, however, a number of interesting details to note. The b-model determines

the total volume of data to send in each window determined by the specified time

resolution (e.g., 128 ns). Within a window, a message is probabilistically sent each

cycle such that over the time window the proper amount of data is generated. Greater

b-values for paths that share network resources lead to worse network congestion if

those paths have overlapping “high-volume” periods.

It may be the case that the traffic volume required to be sent per window exceeds

the capacity of the link or output buffer, or the previous window has not finished

sending its data yet. In these cases the packets are queued up in an “infinite” buffer

in the network adapter. Therefore, the self-similar model’s output is the ideal desired

data transmissions, but the actual packet-level data distribution is subject to network

limitations as is expected.

5.3 Simulator

Our requirements for async NoC simulation include modeling details at both a

high-level and a low-level. At a high-level, it must allow easy design space exploration

such as buffer sizes, message lengths, router radix, and provide statistical reporting

in human-readable format. At a low-level, it must model wire delays between routers,

Figure 5.11: Generation of a self-similar traffic volume distribution over a simula-
tion’s duration.
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logic delays within routers, energy consumption of links and routers, and be relatively

easy to automate network setup, simulator execution, and results analysis. Addition-

ally, the ability to substitute an RTL router model for a functional C++ model is

important for a more accurate post circuit design energy and latency evaluation.

With these considerations in mind we built an async network simulator using

the SystemC library. The following modules were developed: an arbiter, an inport

to the router, an outport from the router, and input and output port FIFOs, and

a self-similar traffic generator. The SystemC Transaction Level Modeling (TLM)

library is used for inter-router links and traffic generation. We chose this method to

allow easier extensibility of the channels if needed, and TLM provides a convenient

way to model link and protocol delays. It also allows more abstraction than standard

SystemC signals. Channel abstraction is desired so that other protocols can be studied

(e.g., two-phase vs. four-phase handshaking) without changing the interface of the

software modules.

The traffic generator and router ports use a simple socket to receive a generic

payload transaction object that contains packet and routing information. When a

TLM object is received by the inport ’s socket, a wait is performed to model the wire

delay. The wire delay model can come from a variety of sources. For our studies

we used an interpolation of HSPICE simulations of various wirelengths in IBM’s

65nm technology with nearly delay-optimal repeater sizing and spacing [65]. Another

possibility is to incorporate an analytical wire model [21] for more flexibility. The

wire energy per transfer is calculated using the Orion 2.0 model [55]. The router

waits an additional time period to model forward logic delay. The flit is written

to the FIFO, which triggers the arbiter. Another wait models the acknowledgment

delay to the sender. It should be noted that these channel delays are specific to the

asynchronous protocol used, e.g. two-phase or four-phase, and are easily changed.

The router circuits used a two-phase asynchronous protocol on inter-router links.

Within the arbiter, a doSwitching SC METHOD is called whenever a packet is

received by an input FIFO or acknowledged by an output FIFO. The arbitration

mechanism is that described in Chapter 4, and it results in round-robin arbitration
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between the two input ports if they both have streams of packets arriving. Appro-

priate energy is logged at each switching operation. This energy was measured from

transistor-level router simulations shown in Chapter 4.

Each outport operates in its own thread, waiting for a packet to be passed to it

by the arbiter, or for a TLM response indicating that the channel is free. When there

is data in the FIFO and the channel is free, it sends a new TLM generic payload.

The outport also records wire energy of the transmitting link. The fraction of data

bits that switch every flit is assumed to be constant. Our studies use either 0.5 or

0.25. For the source-routing bits, the actual number of switching bits is used, rather

than an assumed fraction. For example, if a series of packets arrives to a router from

the same source and to the same destination, they will not cause any of the routing

wires to change state using switching energy. This modeling detail is needed to allow

exploration of the energy trade-offs in using separate wires for a packet’s routing bits

vs. using a header in a multi-flit packet.

5.4 Link Pipelining

A link of a NoC can be pipelined using latch or register-based buffers when its

wire delay is a limiting factor in throughput. This often occurs with long links,

small process technology, and relatively fast clock speeds. Another benefit is reduced

network congestion leading to improved throughput from the additional buffering

space it provides, assuming a compatible link-level flow-control. This section describes

two strategies for determining which links should be pipelined, and to what depth.

In an asynchronous channel, the goal of pipelining a link is to reduce the cycle-time

created by wire delay by inserting a buffer between sender and receiver. Throughput

along a link is improved, at the expense of single-flit forward latency and a slight power

increase over only wire repeaters. This organization is illustrated in Figure 5.12, where

a buffer is placed between a router and network adapter. Our asynchronous pipeline

buffer is composed of a bank of latches (rather than flip flops) and a handshake

controller. This arrangement is called a linear controller. The use of latches saves

almost half the area, and potentially power, compared to a traditional synchronous
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Figure 5.12: Organization of a NoC link and pipeline buffer, showing detail for a
router’s output channel, and the equivalent link buffer (L.B.) for its input channel.

flip-flop design. Note, the pipeline buffer does not negate the need for wire repeaters

(large inverters). We assume the buffers for the separate input and output channels

are located in the same proximity, but this is not required. We use the term link

buffer to describe the collection of latches and controllers for both channel directions,

in the context of link pipelining.

We have studied two strategies to determine under what conditions a link pipeline

buffer should be inserted [38]. The first, path-specific buffer insertion, pipelines links

that require a throughput greater than a fraction, k, of the link’s available bandwidth

(ABW). The intuition behind this is that high-traffic links will benefit from additional

buffering to reduce contention in the preceding routers, and also to decrease latency

from a receiving router’s ack signal (indicating the next flit may be sent) to a sending

buffer’s req signal (indicating the next flit is ready).

This strategy is termed path-specific because the required throughput (Treq) is

derived from the source-to-destination paths that utilize the link; it is the sum of

average throughput of each of these paths (Tp). The number of buffers, ℵ, to insert

on link ℓ is shown in Equation 5.4.

ℵℓ =

⌊

Treq

(ABWℓ × k)

⌋

(5.4)

where Treq =
∑

path p using ℓ

Tp
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The value of k is a user-parameter that varies the number of buffers to insert

based on the percentage of link utilization. The required throughput is an input

to ANetGen. The ABW is based on link wirelength, as shorter links have faster

cycle-time.

The second strategy adds pipeline buffers to links with an ABW less than the

throughput of the network adapters. These are called core-throughput matching

buffers (CTMBs). For example, if a network adapter had a maximum throughput of

2Gflits/s (yielding 64Gbits/s with 32-bit flits), and a long link had a handshake delay

of 700 ps (yielding 46Gbits/s), the link would need one CTMB. This is analogous to

wire pipelining for clocked networks when a link fails to meet the timing requirement

derived from the clock period. For async systems, however, this is optional; links

can be slower than the sending or receiving component and don’t have to meet the

“clock period.” The intuition driving this strategy is to make sure cores are never

slowed down by a wire delay in sending or receiving a flit. Even paths with low

average bandwidth will send a series of flits one after another, and benefit from the

increased link bandwidth. This advantage may or may not be worth the additional

power overhead of the buffers, depending on system requirements and communication

properties.

These strategies are incorporated into the topology and placement methodology. If

these options are enabled during simulated annealing, buffers are added to a topology

that has a better partial fitness than the current topology, prior to placement and full

fitness evaluation. For every link, CTMBs are first inserted if its wire delay reduces

throughput to less than that of a network adapter’s. The path-specific buffers are

inserted next if the CTMBs did not already add sufficient pipeline stages. This

requires the weight (wij) for each link based on average throughput, as calculated

by the AssignForce routine, and the available bandwidth of the link. The location

of the buffers is set to evenly divide the link’s length between its endpoints. During

placement, however, buffers are treated in the same manner as routers in that they

can move based on forces applied in AssignForce. If buffers fall within the boundary

of an IP block, and hard IP is used, the same de-overlap process applies as for routers,
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but buffers are the last to be expelled from the IP blocks, after all routers.



CHAPTER 6

EVALUATION

This chapter presents an evaluation of our novel network and ANetGen tools. A

comparison is made against a baseline synchronous network generated by another

optimization software tool. The network produced by ANetGen uses less energy and

area, and offers comparable message latency. An important aspect of this research is

that it incorporates traffic burstiness into its simulation, demonstrating how bursty

traffic can increase network latency. The link pipelining strategies increase network

throughput at a relatively minor energy cost, where the most efficient configuration

is a combination of the two strategies.

6.1 Methods and Experiment Setup

6.1.1 Baseline Networks

The baseline network used for comparison purposes is generated by a research tool

called COSI 2.0, a source-code release that incorporates much of the functionality of

COSI-NoC (v.1.2) [82]. In a manner similar to ANetGen, COSI’s input is a SoC

design abstraction consisting of core dimensions or area, and a set of communication

constraints between those cores, called flows. A set of flows is similar to the CCG

introduced in Chapter 3, but COSI can also consider temporal properties between

flows, such as mutual exclusion when generating the network.

Given these flows, its optimization algorithms try to find the network and floorplan

that meets the constraints while minimizing power, based on router and wire models.

As output, COSI produces a floorplan, topology, and a SystemC-based simulator.

Included with the software release are algorithms for generating a mesh and a min-cut

partitioning method (hierarchical star) similar to that of [74]. We modified COSI to

incorporate the Orion 2.0 router and wire models, and also made a number of other
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changes to COSI to improve its operation and result reporting. The SystemC simu-

lator produced by COSI was modified to use our bursty traffic generator previously

described.

Both the COSI and ANetGen SystemCmodels do not consider details of a transaction-

layer implementation at the network adapters. The COSI routers, same as the async

routers, have a fixed packet size with no specific bits allocated for fields such as

address, burst size, or interrupt. For both models we assume the network adapter

and transaction-level protocol use the data field of a packet to transfer this control

information and serialize transaction-layer data over multiple packets if necessary.

The end-to-end protocol and network adapter may use, for example, request and grant

packets to establish a cache line sized memory transfer in an atomic fashion. Our

evaluation methodology does not include the network adapter and protocol overhead,

but we assume it to be similar for both the synchronous and asynchronous networks

if transactions are greater than a COSI-sized packet (or are small enough to fit in

the async packet). We have changed the COSI models to use an 8-bit field in the

first flit, instead of a full 32-bit flit, for routing a packet and the rest of the packet

designated the data field. This reduces its routing overhead to be more comparable

to the asynchronous design. A comparison between asynchronous and synchronous

networks with identical packet formats and similar circuit properties is shown in [126].

Another network we compared against is a manually generated, hand optimized,

async network topology for the ADSTB SoC benchmark described below. This was

based on the topology generated by COSI where its radix-4 and radix-5 routers were

maually replaced with a construction of our radix-3 asynchronous routers as shown in

Figure 6.1. The paths carrying the most traffic were mapped to ports with the least

number of routers between them, such as ports A and B. This construction is not a

true radix-N switch, as it can have internal contention (e.g., A → C contends with

B → D). The physical router placement on the floorplan was based on the COSI

floorplan. The group of async routers that replaced each synchronous router were

manually located in the same proximity.



68

�

�

�

�

(a) Radix-4

�

�

�

�

�

(b) Radix-5

Figure 6.1: Constructions of radix-3 async routers that replace those of higher radix.
External ports are labeled with letters.

6.1.2 SoC Design Benchmarks

We used a number of SoC design abstractions as benchmarks for evaluating the

network. One is an MPEG4 decoder SoC, originally described by [113] but its

throughput was changed to that shown in Figure 3.3. This benchmark has been used

in other NoC research projects [74, 82]. Another is titled ADSTB and is available

in the public COSI 2.0 distribution. It’s average bandwidth between IP blocks is

shown in Table 6.1. The last is based on data given by Texas Instruments and is

labeled TI-SoC. In contrast to the others, it has many more IP blocks (35) and

communication paths (423 source-to-destination). The only flow property available

from these designs is the average throughput between IP blocks, and this is an input

to ANetGen and COSI. We set the burstiness parameter to the same for all paths,

but vary it over the course of several simulations.

A process technology of 65 nm was chosen, with design parameters set accordingly,

for comparisons between the async network and the synchronous, COSI-derived net-

work. The MPEG4 and ADSTB benchmarks have 78.7mm2 and 35.7mm2 die areas

respectively. The TI-SoC design is 90mm2, and the ANetGen’s flit size was raised to

64 bits/flit to meet its higher aggregate traffic. For the link pipelining experiment,

we changed the TI-SoC to use 32 nm parameters in order to study the effectiveness of

link pipelining at smaller technologies. Traffic was increased from the 65 nm version,

and the latency and energy of the routers and wires are adjusted accordingly.

A network topology, floorplan, and simulator was generated for each design using

the COSI and ANetGen tools. COSI was configured to produce a hierarchical star

network that was chosen over a mesh topology based on its lower energy and area,
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Table 6.1: Average path bandwidths for the ADSTB design.

Sender Receiver MBytes/s Sender Receiver MBytes/s
CPU AudioDec 1 CPU DDR 3
CPU Demux 1 CPU MPEG2 1
DDR CPU 3 DDR HDTVEnc 314
DDR MPEG2 593 Dem1 Demux 31
Dem2 Demux 31 Demux AudioDec 5
Demux MPEG2 7 HDTVEnc DDR 148
MPEG2 DDR 424

as found by simulation. The floorplanner was constrained to a square aspect ratio

outline, and the resulting floorplan was used for both COSI and ANetGen. The

ADSTB topologies generated by COSI and ANetGen are shown in Figure 6.2, along

with the manually generated async topology based on COSI’s.

Floorplans for the TI-SoC design are shown in Figure 6.3. Due to the diminutive

size of the routers, it is assumed they are placed between IP blocks, and the blocks’

locations adjusted slightly to accommodate. Routers are shown as dark squares, and

IP blocks are lighter-shaded boxes. Connectivity between a core and router or two

routers is shown with a line. Actual wire routing is Manhattan, as is link length

calculation.

(a) COSI-generated (b) ANetGen-generated
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(c) Manually-generated async.

Figure 6.2: Topologies of the ADSTB benchmark.
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(a) COSI (b) ANetGen

Figure 6.3: Floorplans of the TI-SoC benchmark.

6.1.3 Simulation Parameters

We instrumented the SystemC router and wire models from COSI and ANetGen

to record energy usage, packet latency, and message latency over the course of a

simulation. Orion 2.0 is used for the wire energy model in both frameworks, and also

for the COSI router’s leakage power and energy models. Leakage power of routers

and wires is calculated using parameters from the 65 nm IBM process as used in

the async circuit evaluation, rather than Orion’s default 65 nm values for the normal

voltage threshold library. The energy model of the asynchronous routers comes from

low-level circuit simulation described in Chapter 4. We set the router and wire models

such that 25% of data bits switch per flit. For the async models the actual route bit

values were used to capture the energy effect of separate route and data bit wires.

Additionally, we modified the Orion link model to more accurately estimate the size

of the repeater (a large inverter) that drives the initial wire segment prior to a larger

repeater.

We chose parameters for the Orion router model to be comparable to our async

configuration. These are shown in Table 6.2. Clock tree power estimation was
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Table 6.2: Orion 2.0 model parameters used in COSI.

Router Freq. 2 GHz Router I/O buff’s 2 / 1 flit
Tech. Library 65 nm NVT Crossbar Multitree
Voltage 1.0 v Flit width 32 bits

excluded from these models. A 32-bit flit width provided adequate bandwidth while

keeping power and area low. This was especially important in the synchronous net-

work that uses larger buffers and crossbars. A packet size of four-flits was empirically

chosen over two- and eight-flit packets based on the maximum latency of messages

over paths. Table 6.3 shows the effect of packet size on message latency for the

MPEG4 benchmark at a burstiness of 0.8. The message latency values are the mean

of all path-specific median and maximum. Message latency, and path-specific latency

are defined and presented in Section 6.3. The power shown is the sum of dynamic

router and wire power, which reduces as packet size increases due to less routing

overhead. We considered using a router input buffer size of four-flits, enough for a

full packet, but it greatly increased energy while not showing large improvements to

message latency. Two-flit buffers were chosen as a compromise between energy and

latency.

For simulation, the IP block’s network adapter for the async network was set to

operate at 1Gflits/s for the ADSTB and MPEG4 benchmarks, and 2Gflits/s for the

TI-SoC. The link widths (data+route) for ADSTB and MPEG4 was 40 bits, and for

the TI-SoC it was 76 bits. The synchronous network adapter and router models use a

2GHz frequency for the ADSTB and MPEG4 benchmarks, and an 8GHz frequency

for the TI-SoC, all of which use 32-bit wide links. The higher synchronous frequency

(2×) compensates for the inefficient link-level flow control protocol the COSI models

use. The frequency for the TI-SoC is increased an additional 2× over the async

network because it uses links half as wide.

We changed the COSI SystemC router models from their default behavior. COSI

configures its router models to use weighted arbitration based on expected traffic

volume per path. While in some circumstances this may be desirable, it caused
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Table 6.3: Latency and power for various COSI packet sizes.

Packet Size
2-flit 4-flit 8-flit

Mean of path medians (ns) 231 223 219
Mean of path maximums (ns) 475 472 485
Dynamic power (mW) 31.4 29.7 28.1

extremely long latencies for certain traffic flows, as can be seen in some previous

results [37]. For the results presented here, we changed the switch arbitration such

that the incoming packet that has waited the longest is chosen for output from

among the other contending input packets. This improved latency on many paths

and drastically reduced maximum latency.

6.1.4 Link Pipeline Buffer Insertion

The link pipelining proposals described in Section 5.4 were evaluated using the

MPEG4 and TI-SoC benchmarks. ANetGen was configured to produce a topology

and placement of the routers and pipeline buffers for various values of the path-specific

k-threshold parameter. This was done for two sets of link pipeline configurations; with

path-specific buffers only, and with both path-specific and CTMBs. This is done to

networks that are already optimized by ANetGen for topology and router placement.

Simulations were run for each of the sets, where the k-parameter was varied to

change the threshold of where path-specific buffers are inserted. For the MPEG4 set,

k values of 1.0, 0.05, 0.03, and 0.02 resulted in the number of path-specific buffers of

0, 1, 3, and 7, respectively. Due to the details of this SoC’s specific traffic properties

and floorplan, there was only one link where path-specific buffers were inserted –

the link connecting the sram2 IP block to a router. When CTMBs are added, seven

more buffers in total are inserted on the longest links. For the TI-SoC, k values of 1.0,

0.10, 0.05, 0.03 resulted in path-specific buffer counts of 0, 4, 18, and 42 respectively,

spread throughout all the links. A total of 25 CMTBs are added, but some of these

are on the same links that have path-specific buffers. The total link buffer counts,

including both types, are 25, 27, 33, and 56.
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For the MPEG4 benchmark we set the bias b-value to be 0.7 on each CCG path,

a simulated time of 34ms, and a 256-byte message size. The TI-SoC used a b-value

of 0.5 and simulation duration of 8.3ms. In this study, the Orion wire model was

changed to reflect the IBM process used in the async circuit evaluation. With its

default 65 nm library, it estimated repeater power to be five to seven times greater

than that for the IBM library.

The MPEG4 floorplan of the MPEG4 benchmark with three path-specific buffers

on the sram2 link is shown in Figure 6.4a, and that with both path-specific and

CTMBs is shown in Figure 6.4b. IP blocks are labeled with their names, routers

are dark circles, and pipeline buffers are dark squares. Logical connectivity between

components is shown with black lines, and note that this does not show actual wire

routing. Network adapters are located where a link is attached to a core. Notice that

buffers are equally spaced across a link. The longest, from au to the link’s connected

router, has three pipeline buffers.

6.2 Metrics

Several metrics of network quality are used to evaluate the network: message

latency through network, packet latency through network adapter’s output buffer,

and total network power. For clarification, network power as measured in these

experiments, is the energy used to send a specific volume of traffic over a specific
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Figure 6.4: Floorplans showing link pipeline buffer insertion.
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time period. Thus, a power advantage for one configuration is not merely caused by

a lower average communication rate.

Message latency is a performance metric that represents the time it takes to move

a chunk of data, a message, out of a network adapter and through the network. This

is a measure of both latency and throughput if a message size, such as 256 bytes, is

considered along with its latency. A message is composed of a number of packets,

and is typically managed by the transaction layer protocol. An OCP burst-write is

an example of this. Message latency is defined as from the time the first packet of the

message leaves the sending network adapter’s output buffer and enters the network, to

the time the tail packet exits the network and enters the destination network adapter.

This metric models the delay that would be seen by a IP block when it initiates a

message transaction to another IP block, if the network adapter has an output buffer

the size of a message.

Packet latency through the network adapter’s output buffer is a measure of the

system’s maximum throughput capacity, much like a common chart that shows la-

tency vs. offered load rising to infinity as load increases. Similarly, this delay

is measured assuming an infinite buffer at the output. It is useful as a relative

comparison between networks, but does not reflect the actual communication delays

in a device. This metric can increase rapidly when burstiness increases because the

message generator can insert data faster than the link interface is capable of. These

metrics are illustrated in Figure 6.5.

All experiments in this work used a message size of 256 data bytes. We assume

that packets are not dropped, and that the destination cores do not stall, causing a

blocked input port.

The message and packet latency metrics are measured in multiple ways. Message

latency is recorded during simulation as a histogram for all messages sent by all IP

blocks. From the histogram, we consider the latency bound of which 95% of the

messages arrive before. The remaining “tail” of long message delays is represented

by the maximum latency. Output buffer latency is measured by the median of all

packets and all sending IP blocks, as well as the maximum latency.
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Figure 6.5: Structural partitioning of traffic generation.

Measurement for each latency type is also done per-path. For this metric, median

and maximum latency values are recorded for every pair of sending and receiving IP

blocks. This allows a more detailed communication analysis, especially for heteroge-

neous, application-specific SoCs.

Network power is found over the course of a simulation of set duration. Each

model (link, router, and link pipeline buffer) increments its dynamic energy usage log

for every flit that traverses it. The total network power is the sum of this dynamic

energy divided by the simulation time, added to the leakage power, which is constant

for each router and link instance.

6.3 Results – Comparison To Baseline Network

6.3.1 Power Consumption and Area

Power consumption of the whole network over the course of the simulation is

shown in Table 6.4, broken down into the following areas: dynamic power of routers,

leakage power of routers, dynamic power of wires, and leakage power of wires. The

simulator recorded dynamic energy during operation, and these power values are the

total energy divided by the simulation time. The same amount of data is sent for each

network, and the simulation times are equal, thus energy and power are effectively

the same for comparing efficiency. These measurements do not include the power of

clock distribution, and assume ideal clock gating at the router. These conditions are

very conservative on our part; based on other designs that have been taken to layout,

clock power can be approximately 30% of the total NoC power [3]. The wire power is
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Table 6.4: Power consumption (mW) of all routers and wires during simulation

Rtr dyn Rtr leak Wire dyn Wire leak TOTAL
ADSTB

sync 3.05 0.66 4.69 0.64 9.04
ANetGen 0.54 0.06 3.93 0.69 5.22

Manual async 0.55 0.08 6.82 1.59 9.04
MPEG4

sync 6.75 1.21 12.72 1.85 22.53
ANetGen 1.39 0.10 11.32 2.07 14.87
TI-SoC

sync 143.97 6.23 267.58 8.45 426.23
ANetGen 44.78 0.64 126.60 9.29 181.31

from the large repeaters (inverters) needed to drive a signal over long wire, and can

be significant.

In all benchmarks, the power of the asynchronous routers is significantly lower

than the synchronous routers. The total network power for the ANetGen solution is

about 50% of the synchronous solution. The leakage power of the async routers is

much smaller compared to the ORION models due to their very low area. Total router

areas are 15630µm2 (ANetGen) vs. 99704µm2 (COSI) for ADSTB, and 26050µm2

(ANetGen) vs. 138822µm2 (COSI) for MPEG4. Wire leakage power is higher

for the async networks because they have the overhead of parallel route bits, thus

more total wires. However, the ANetGen’s dynamic wire power is less than COSI’s,

indicating that high-throughput paths have shorter wirelength. The optimization

benefit from ANetGen is seen by comparing it and the manual async network. The

manual asynchronous network has a large increase in wire power, especially leakage.

The router placement of ANetGen saves significant power in the wires. In addition,

extra links are needed to connect the cluster of three-port routers together, as they

replace a larger radix synchronous router. A disadvantageous configuration for both

async networks is that they use bi-directional ports, with links instantiated in both

directions. COSI, meanwhile, uses customized uni-directional router ports, and may

produce a solution with fewer links by not connecting links on paths that have no
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traffic. The problem with COSI’s arrangement is that there is no possibility for

communication back to a sending node, which may be required for implementing an

end-to-end network protocol.

Another comparison is the energy-per-flit that each type of router uses, and is

shown in Figure 6.6. The ANetGen router has airity between a 2×2 and 3×3 Orion

router, as it has three inputs and three outputs, but only two output possibilities

for each input. The energy value of the ANetGen asynchronous router includes the

routing bits, while the Orion energy values do not consider the packet’s required

header flit energy overhead. The energy-per-flit is much lower for our design than

what the Orion models predict for traditional synchronous routers. However, Orion’s

process technology estimates do not match well to the IBM process used in the async

router evaluation, as described in Section 6.1.4. More investigation is needed to

more accurately quantify the energy advantage of this async design. However, other

research suggests it is indeed significant. A router, very similar to the one presented

here, has 82% less energy-per-packet than a comparable synchrounous router, based

on a circuit-level evaluation of each [47].

In summary, the significant energy reduction of the async network comes from

both router and wire improvements. However, these results indicate further power

improvements should come from more efficient interrouter channel implementations,

as the wiring resources consume the majority of the power. Wirelength minimization,

especially when very low-energy routers are used, is critical. As such, with our async

Figure 6.6: Energy-per-flit for ANetGen and Orion routers of various radix.



78

design, there is little benefit to be gained from further router energy optimization,

and future work should concentrate on wire resources and performance.

6.3.2 Message Latency Distribution

The latency of sending each message was recorded over the course of a simulation.

An increase in traffic burstiness causes longer periods of contention in switch and link

resources. The resulting rising latency is seen in Table 6.5 for each benchmark and

network. Two types of latency values are shown: the maximum over the course of the

simulation, and a latency bound of which 95% of messages arrive earlier than. The

two latency types are shown for each benchmark, with a number of burstiness values.

The TI-SoC does not have results for high burstiness values because of a software

problem in the COSI network’s simulation.

The async networks send most messages in less time than the COSI-derived

network under all measured conditions, except for the TI-SoC. However, under bursty

traffic, the higher hop-count and low path diversity of the ANetGen network take their

toll; the COSI network has lower maximum message latency with both ADSTB and

MPEG4 benchmarks. This may be a deciding property between the networks if the

SoC needs tighter latency bounds on particular paths. The manually-generated async

network for ADSTB has less variation across traffic burstiness than either COSI or

ANetGen. It has more latency than ANetGen when burstiness is low, but slightly

less when burstiness is high. The difference is not great, however, considering that it

has higher power consumption that ANetGen.

The much larger and more complex TI-SoC has better latency when using the

synchronous network due to it’s greater path diversity and bisection bandwidth. A

useful metric used to compare the networks’ quality is defined as: the product of the

95% latency value from Table 6.5 and the total power from Table 6.4. The COSI-

generated synchronous network is 15% worse than the ANetGen network, indicating

the async NoC is more energy-efficient even for this complex SoC design.
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Table 6.5: Message latencies (ns); absolute maximum and 95% interval.

Network Burstiness
95% less than 0.5 0.65 0.8

ADSTB COSI sync. 167 250 264
ANetGen 78 140 152

Manual async 128 129 133
MPEG4 COSI sync. 215 323 514

ANetGen 144 171 322
TI-SoC COSI sync. 63 - -

ANetGen 129 - -
Maximum

ADSTB COSI sync. 262 373 373
ANetGen 195 389 454

Manual async 184 260 454
MPEG4 COSI sync. 573 873 1039

ANetGen 286 1170 2607
TI-SoC COSI sync. 271 - -

ANetGen 561 - -

6.3.3 Per-path Message Latency

A detailed understanding of latency and congestion within the network cannot

be seen from the overall delay alone. Due to the heterogeneity and diverse path

properties in an application-specific SoC, it is beneficial to analyze each path through

the network separately.

For each path, or pair of communicating cores, Figure 6.7 shows the maximum

latency seen on each path during simulation. The first sub-figure indicates that

traffic burstiness significantly increaes the maximum latency on many paths. This

value doubles between b=0.5 and b=0.8 for some paths. Others do not show a

change because they do not have enough contention to cause increased delay. The

second sub-figure compares the maximum latencies of the synchronous network to

the ANetGen-generated network at a burstiness of 0.65 with the MPEG4 benchmark.

These results are mixed; each network provides lower latency on some paths, but

higher on others. This is due to the differences in topology, available bandwidth,

and packet format between the two networks. The async topology is better for paths
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(a) Message latency with increasing traffic burstiness in the ANetGen network.

(b) Comparing Synchronous and ANetGen networks at b=0.65

Figure 6.7: Message latency for each source-to-destination path.

that pass through only one or two routers, because the async routers have higher

throughput. However, paths that traverse a large number of async routers more often

contend with others. The fewer-hop synchronous design provides lower latency on

those paths. The async network can take advantage of short links between some

routers, and avoid delaying a flit an entire clock cycle to traverse the link. A long

async link, however, may have less throughput than a synchronous link. The variation

in latency between paths within the same network is due to differences in topological

proximity of sender and receiver, where some paths have fewer hops than others.

Both COSI and ANetGen make paths that carry more traffic have fewer router hops.
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6.3.4 Output Buffer Delay

Another metric of measuring the network performance is the output buffer delay,

which is defined as the time from when a message from the traffic generator is formed

into packets and placed in the output buffer, to the time a packet exits the network

adapter and enters the network. The buffer entry time is set for each packet by the

traffic generator when it pushes an entire message to the buffer at once. Therefore, the

last packet of a 64-packet message would have a minimum delay of 64 sender-cycles.

The traffic generator operates detached from the network flow control so an infinite

buffer is needed to accept its traffic at any time. The network then empties that

buffer as quickly as possible. As burstiness increases, the additional delay comes not

only from contention within the network, but also from the local traffic generator’s

attempt to send more data in a shorter time period, possibly exceeding the network’s

maximum bandwidth. This grows the buffer more rapidly, increasing delay, even if

the network was uncongested. The results in Table 6.6 show that the async networks

consistently have a lower delay for both median and maximum values. This is provided

by the higher available bandwidth within the async network.

Table 6.6: Output buffer packet delay (ns).

Network Burstiness
Median 0.5 0.65 0.8

ADSTB COSI sync. 58 170 127367
ANetGen 38 55 33388

Manual async 62 149 158584
MPEG4 COSI sync. 53.5 108 99176

ANetGen 43 62 25789
Maximum

ADSTB COSI sync. 689 142066 945523
ANetGen 313 34513 430515

Manual async 1174 231168 1.2e6
MPEG4 COSI sync. 821 135506 889027

ANetGen 433 32298 416332
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6.3.5 Period-specific Bandwidth

Ameasure of network performance related to message latency is termed period spe-

cific bandwidth (PSB), which is the bandwidth available to a path within a particular

period of time. This is in contrast to the average bandwidth that an application

requires over its entire execution duration. We define a PSB requirement for a

source-to-destination path with two values: {V, T}, where V is in bytes and T is

in seconds. These values are determined by the SoC application developer. This

concept can help in validating an interconnect of, for example, a real-time speech

recognition SoC, where 18MBytes must be processed in 0.1 s [69].

For clarification, consider the maximum synchronous network message latency

between the vu and sdram cores of the MPEG4 was 1033 ns at 0.65 burstiness.

Suppose this path had a PSB requirement of {256 bytes, 500ns} (equating to 512

MBytes/s). This network would be a poor choice because the application would

occasionally not receive enough communication bandwidth, despite the fact that the

network does support its average bandwidth of only 64 MBytes/s.

6.4 Results – Link Pipelining

This section evaluates the two link pipelining strategies presented in Chapter 5.4.

Networks are generated for the MPEG4 and TI-SoC benchmarks with various link

pipeline configurations, simulated, and compared.

6.4.1 Power and Latency

A succinct metric to determine the benefit of adding link pipeline buffers is power-

latency product (PLP) of the network. This is similar to the energy-delay product

metric commonly used in CPU architecture or VLSI comparisons. The power term is

the sum of dynamic and leakage power of the routers, wires, and wire pipeline buffers.

The delay term is the mean packet latency through a network adapter’s output buffer,

added to the mean message latency (for 256 bytes) through the network. Delays were

normalized to give equal weight to network and output buffer latencies. Figure 6.8

shows this metric on the Y-axis, with the X-axis showing the total number of buffers

inserted on all links, including both CTMBs and path-specific. Data is given in two



83

Figure 6.8: Power-latency product for various numbers of path-specific buffers, and
with and without core-throughput matching buffers.

series, with and without additional core-throughput matching buffers.

For the MPEG4 benchmark, the addition of one path-specific buffer greatly lowers

(improves) PLP from the no-buffer, default configuration, which has the worst PLP.

A slight additional improvement is seen with the addition of a few more path-specific

buffers, but PLP gets worse after this. This trend is similar when CTMBs are also

used, indicated by the darker line data. This chart is also useful in comparing the

benefit of using the CTMBs. With just CTMBs and no path-specific buffers, the PLP

is improved, but only very slightly from the initial solution. The best solution in the

chart is with three path-specific buffers combined with CTMBs (10 total network

buffers), for a 10% PLP improvement. PLP worsens with more path-specific buffers
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(14 total buffers), but is better than if CTMBs were not used (7 total buffers).

For the TI-SoC benchmark, the results are similar. The worst PLP is the default

configuration of no-buffers, and the best is with 56 buffers from a combination of

path-specific and CTMBs that yields a 25% improvement. An interesting point is

that only four path-specific buffers yield a 13% improvement in PLP. This is better

than CTMBs alone, which add 25 buffers. Therefore, path-specific buffering is a

better method to increase performance, especially if the design’s power budget will

allow only a slight increase.

Power consumption of various network configurations is shown in Table 6.7. The

MPEG4’s power increases by 6.8% in the most efficient buffer configuration that

provides a 10% efficiency improvement. The TI-SoC’s power increases by 22% with

an efficiency improvement of 25%. Another configuration of four path-specific buffers

only costs 2.6% in additional power for a 13% efficiency improvement.

For these experiments the topology and placement are constant, with only the

number of buffers varying. Therefore, the power of the routers and wires is constant

because the same traffic is sent in each trial and the total wirelength is the same.

Table 6.7: Power (mW) of various buffer configurations.

Power values common to all configs
Rtrs dyn Rtrs leak Wire dyn Wire leak

MPEG4 1.34 0.29 3.28 0.84
TI-SoC 47.8 1.63 34.6 16.70

path-specific k threshold
MPEG4 1 0.5 0.3 0.2

Without CTMBs
Link Buffers 0 0.12 0.36 0.85
Total 5.76 5.88 6.13 6.61

With CTMBs
Link Buffers 0.06 0.18 0.42 0.90
Total 5.82 5.94 6.18 6.66
TI-SoC 1 0.1 0.5 0.3

Without CTMBs
Link Buffers 0 2.61 9.01 20.72
Total 100.7 103.3 109.7 121.5

With CTMBs
Link Buffers 3.37 5.27 9.78 21.67
Total 104.1 106.0 110.5 122.4
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The dynamic and leakage power of routers and wires, common to all configurations,

is shown at the top of Table 6.7. Configurations are organized in sets, separated by

benchmark (MPEG4 and TI-SoC) and by buffer insertion type (only path-specific

buffers and both path-specific and CTMBs). A lower value of k-threshold represents

an increased number of path-specific buffers, with a value of 1 having none. For

each of these, the buffer power (sum of dynamic and leakage) is shown, along with

the total network power. The greater power consumption of the TI-SoC is due to

it sending far more aggregate traffic. The total power consumption rises slightly in

both benchmarks with the addition of more link buffers, as expected.

Mean latencies are shown in Table 6.8 for packets through the network adapter’s

output buffer for messages through the network. Both of these metrics generally

improve when more path-specific buffers are used. The MPEG4 benchmark has a

7.2% lower message latency and a 26% lower output buffer latency in its most efficient

configuration compared to the no-buffer baseline. The TI-SoC’s latency lowers by 47%

for the network and 28% for the output buffer. The large output buffer latency in the

MPEG4 benchmark is an effect of lack of backpressure to the traffic generator; it is a

useful relative comparison, but does not reflect latencies expected in an actual system.

The network message latency is more representative of actual system behavior.

Table 6.8: Mean latency (ns) of buffer configurations.

Measurement Location path-specific k threshold
MPEG4 1 0.5 0.3 0.2

Without CTMBs
Core’s Output Buffer 15281 12257 11430 11644
Network 55.74 54.58 52.92 53.58

With CTMBs
Core’s Output Buffer 15332 12400 11248 10693
Network 54.92 53.78 51.72 51.59
TI-SoC 1 0.1 0.5 0.3

Without CTMBs
Core’s Output Buffer 11.8 9.7 8.4 6.5
Network 21.9 19.4 17.8 16.2

With CTMBs
Core’s Output Buffer 10.1 8.6 8.2 6.2
Network 19.1 17.9 17.3 15.7
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6.4.2 Message Latency per Path

A picture of performance is seen by looking at the message latencies for each

source-to-destination path in the SoC, instead of the overall mean message latency

previously presented. For example, the MPEG4 path from source core sram2 to

destination core risccpu has a median latency of 65 ns with no link buffering, as

seen in Figure 6.9 with the path-ID 21. These values are from the time a 256-byte

message has begun its exit of a core until it completely enters a receiving core. This

is a measure of available bandwidth on a path, while considering dynamic effects of

contention with other paths.

The addition of link buffering improves median latency significantly on some paths,

notably 20,21,22 which carry high traffic from sram2. Latency rises slightly with

the addition of more buffers. Buffers were added to the link connecting the sram2

core to a router, which explains the benefit on those paths. Other paths do not

benefit from these added buffers. The effects on maximum message latency is not

conclusive, although a few paths seem to benefit slightly, such as 0 (au→sdram) and

18 (sram1→rast). This is from reduced contention, a side-effect of the improved

connection to sram2.

The effects on per-path message latency by adding CTMBs is shown in Figure 6.10,

for the MPEG4 benchmark. All values on the chart are normalized to the configura-

tion with only path-specific buffers (no CTMBs) inserted with the same k-threshold.

The data series represent various k-thresholds and thus different numbers of path-

specific buffers. Paths that showed little difference with the addition of CTMBs were

removed from the figure. Median latency is improved on many paths, and is an

indication of increased throughput when the network is uncongested. Note that the

paths improved with CTMBs are different than those improved with path-specific

buffers; paths 20,21,22 did not show much change. Also interesting is that even

though many paths have a median latency reduction, the mean latency considering

all paths, previously shown in Table 6.8 was not improved much with the addition

of CTMBs. This is because paths carrying the greatest traffic already have buffers

of the path-specific type. The other paths do see an improvement, but it does not
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Figure 6.9: Median and maximum message latencies of the MPEG4 network for
each source-to-destination path. Data series are for various numbers of path-specific
buffers, where a lower k-threshold indicates more buffers. No CTMBs are used.

greatly impact mean network latency, as measured over all paths, since they have a

low traffic rate relative to the total aggregate.

Maximum latency improvements were mixed, with some drastically worse paths,

and many slightly improved ones. The paths showing worse maximum latency are

the topologically longest, and thus have the highest probability for contention and

delay. The addition of CTMBs increases the rate messages can enter the network, but

not necessarily provide beneficial throughput increases “downstream.” The effect is,

in the worst case, longer waiting times within the network rather than in the core’s

output buffer. The benefit of path-specific buffers to maximum latency seems to

apply less broadly than median delay benefit. However, some paths do benefit from

an increasing number of buffers such as path 21 in 65 nm, connecting sram2→risccpu.
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Figure 6.10: Change in network message latency with the addition of CTMBs for
the MPEG4 benchmark. Latency is normalized to that of the configuration with only
path-specific buffers. Only those paths exhibiting change are shown.

The per-path message latency evaluation for the TI-SoC benchmark is done in a

different manner than for the MPEG4 since it has many more paths. A histogram

shows the number of paths that improve for various buffer configurations, compared

to the baseline network with no buffers. Figure 6.11 shows this histogram for two

sets: path-specific buffers only and both path-specific and CTMBs. Paths with a

latency less than one indicate better performance compared to the baseline. In other

words, a configuration is better than another if it has more area under it’s line to

the left. The addition of more path-specific buffers reduces latency on more paths,

both with and without CTMBs. A few paths have worse latency by 5-10% when

many buffers are used (k = 0.03), but many more paths showed improvement by

10-50% less latency. The benefit of CTMBs alone, without path-specific buffers, is
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seen in 6.11b with the 1.0 k-threshold series. Many paths improve with just CTMBs,

but path-specific buffers benefit additional paths when they are added.

(a) insertion of various numbers of path-specific buffers, and no CTMBs

(b) CTMBs added, with increasing numbers of path-specific buffers

Figure 6.11: Histograms showing the number of paths with various latency improve-
ments for the TI-SoC benchmark with link pipelining. Latencies are normalized to
the baseline configuration with no link buffers. The series of decreasing k-thresholds
represent increased path-specific buffers.

These results show that link pipeline buffers can improve performance, as mea-

sured by message latency, at a greater margin than it costs in additional power. The

optimal insertion parameters are design-specific, and the space should be explored

by the SoC designer. In both benchmarks, the most benefit came from path-specific

buffers, but CTMBs were also needed to achieve the most efficient PLP configuration.

CTMBs seem to improve the median latency a larger number of paths than solely

path-specific buffers, but worsen the maximum latency on more paths. If a design’s

power budget does not allow for a large number of link buffers, path-specific buffers
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alone may be a good choice for performance improvements at a low power cost. The

use of CTMBs offer decreased median and maximum message latency for many paths,

at the expense of increased maximum latency on some.

6.5 Results – Path Criticality

ANetGen has a mechanism to allow a design-engineer or automation tool decrease

the latency of specific paths. This is used, for example, when two IP blocks only

occasionally communicate, but require low latency when they do. This parameter is

titled a criticality weight, and is factored into NoC optimization. It is a unitless value

relative in magnitude to average bandwidth. The effect of critical-path weighting is

shown in Figure 6.12. Path ID 1 is from core babcalc to sdram, with an average

traffic rate of 11 MBytes/s which is relatively low in this design. The criticality of

this path is set to 1 (the default), 100 and 1000, and a topology and placement are

generated with the ANetGen tool for each configuration. The benefit is an improved

worst-case message latency on this path, but it comes at a cost of worse latency on

others and approximately a 4.2% dynamic power increase at the crit=1000 point.

6.6 Tool Run Time

All software tools were run on machines with an Intel Core i5 or i7 series processor,

and the resulting run time is provided here.

Simulator run time for the MPEG4 benchmark with a COSI-produced network

was 10 minutes while that of the asynchronous network was 2 minutes, for a simulated

time of 8389µs. The simulation speed difference is likely due to the asynchronous sim-

Figure 6.12: Maximum message latency as criticality on Path 1 is increased.
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ulator’s use of transaction-level-modeling for the links, rather than using a SystemC

signal for each physical wire. The much more complex TI-SoC simulation completed

in approximately one hour for both networks with the same simulated time.

The duration of topology and placement generation is dependent on the given

parameters, and desired quality of solution. For the results presented here, run times

were between fifteen minutes for the smaller benchmarks to two hours for the TI-SoC.

6.7 Summary

The results presented in this chapter highlight the benefit of the proposed NoC

design. The network power is significantly less, by 40 to 50%, for this simplified

async NoC than for the standard synchronous NoC. Most of this difference is due to

a dramatic reduction in the routers’ dynamic power consumption, but there was

also a reduction in the dynamic power of the wires. Additional reductions, not

quantitatively evaluated here, come from the removal of a synchronous global clock

tree needed for all synchronous routers.

The async network’s message latency was competitive to the synchronous design

for the ADSTB and MPEG4 SoC benchmarks. With low traffic burstiness, the async

NoC had between 33% and 53% better latency for most messages, and was 26%

and 50% better considering the message with the worst latency over the course of

simulation. As burstiness increases, the worst-case latency of the async network

grows beyond that of the standard NoC by 18% for ADSTB and 60% for MPEG4, at

the highest burstiness. However, most messages still have significantly lower latency

in the async NoC at high burstiness. The async network’s latency improvement is

due to its higher bandwidth, about twice that of the COSI router models and its link

protocol. The variation in latency between paths was greater in the async network due

to its topology. The paths with the most router hops suffered as burstiness increased,

while shorter paths, carrying the most traffic, did not worsen nearly as much.

Link pipelining has shown to be a complexity-effective method to decrease message

latency at a small increase in power. An advantage of an async network is that

specific links can be targeted for buffering and thus increased bandwidth, as guided
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by expected traffic over the links. This is in contrast to a classic synchronous

NoC (not including source-synchronous methods) that must change frequency on the

whole network, or use additional synchronizers between clock domains of different

frequencies. Both strategies presented are beneficial, but a SoC design may be more

sensitive to one type or the other. Generally, the most efficient configuration is

with a combination of path-specific buffers and CTMBs. However, path-specific

buffers alone provide a significant message latency reduction at a very low power

cost. These strategies offer the NoC engineer another knob to turn for specifying the

power–performance point in the design.



CHAPTER 7

CONCLUSIONS

This work has brought improvements to energy-constrained on-chip communi-

cation design for embedded devices, which is a growing concern as communication

requires an increasing amount of energy and time compared with computation re-

quirements. This is the first academic research that studies an energy-efficient, async

NoC that is customized for a particular heterogeneous SoC with automation tools.

Contributions of this work to the field are as follows.

7.1 Router Circuit Design and Architecture

A unique NoC architecture and circuit design was presented brings increased

NoC energy-efficiency. It does this through simple operation and simple structure.

These design choices reduce the size of the most power-consuming elements of a

NoC, specifically the crossbar and buffers. Properties inherent to asynchronous

communication provide a significant benefit, namely the ability for link pipelining

on specific links, perfect “clock gating,” and lack of a clock tree. This architecture

was published in the NOCS 2010 conference [37].

7.2 Optimization and Simulation Tools

Several optimization methods, tailored for this NoC design concept and aiming to

reduce power and latency, were developed and implemented in a software framework

titled ANetGen. ANetGen is used as a tool to aid a NoC engineer in evaluating

possible network configurations. It automates topology specification, router floorplan

placement, and simulation of the optimized network. This can be a key part of a

generalized SoC design tool, but more importantly it is an enabling technology for

other studies. ANetGen has recently been used to aid in another’s research [125], and
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its SystemC self-similar traffic models were shared with a researcher, Jonas Diemer,

at Technische Universität Braunschweig. Optimization methods were published in

the TCAD IEEE journal [39] and FMGALS workshop [36].

7.3 Link Pipelining Strategies

This work compared several strategies for pipelining links of an async NoC for

an improved energy×latency metric in a complexity-effective manner. The strategies

were integrated into ANetGen for rapid evaluation. The idea of pipelining specific

links for this network was first noted in the FMGALS 2007 workshop proceedings [36].

Link pipelining in a comparison between this async and a similarly-designed clocked

network was shown in the ICCD 2010 conference [126]. A pipelining strategy com-

parison using ANetGen was published at the NOCS 2011 conference [38].

7.4 Validation of this Novel NoC Design

A primary contribution of this research is that it validates its unconventional and

novel NoC, while providing the groundwork for additional advancements in the field

based on its concepts. The energy savings is significant, and performance comparable

to traditional NoCs, indicating its design style is worthy of further investigation. To

this end, care has been taken to perform an evaluation that is based on methods set

forth by the NoC research community. This includes end-to-end measurements of

large messages, rather than single packets, and traffic generation using a self-similar

model, rather than the more common, but less realistic, Poisson distribution. These

results, including a comparison to a traditional synchronous NoC, are published in

the NOCS 2010 conference [37] and TCAD journal [39].

7.5 Lessons

This study has provided a number of interesting lessons that will be helpful to the

research community:

• Traditional network research indicates which topologies are theoretically unde-

sirable. However, these “bad” topologies can be acceptable or advantageous

when considering a SoC’s physical properties and requirements. In this case, a
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binary tree has low bisection bandwidth and no path diversity, yet due to an

implementation with fast and efficient circuits, it yields enough throughput to

be a viable choice, and achieves the primary aim of high energy-efficiency.

• Link pipelining on async channels is an efficient way to improve overall through-

put by increasing network buffering and decreasing cycle-time between con-

trollers. The choices of which links to pipeline and by how much are dependent

upon the traffic of a particular SoC. Generally, pipelining links with a path-

specific strategy, or those with the most traffic compared to their bandwidths

– will improve message latency in an energy-efficient manner.

• Traffic burstiness is an important characteristic to consider during evaluation,

but is often not used in other NoC research. The difference in message latency

between low and high burstiness can be dramatic, and design choices should take

this into account, along with the commonly used metric of average throughput.

• Analysis of a NoC, especially for heterogeneous SoCs, should consider traffic

properties on a per-path basis, and not solely the results of all paths in aggregate.

Some paths may have dramatically higher latencies, beyond what the average

across all paths indicates.

• The algorithm choices and their implementation (simulated annealing and force-

directed placement) produced acceptable results, and they are easily adaptable

to other topologies. They may not, however, scale to large numbers of IP blocks

and communication paths. For larger SoCs, other optimization methods may

be considered.

7.6 Limitations

The network design and methods described in this dissertation provide results

and lessons general enough to be applied to the field as a whole. However, several

limitations should be noted:

• The tree topology used for this work allows the async network to be comparable

to a synchronous NoC, even one with greater path diversity. This was due to the

particular SoC traffic patterns and circuit properties. However, the theoretical
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weakness of the tree may limit its scalability in chips with hundreds of cores,

unless traffic locality is very high. It may also not work well in a CMP design

that has general, unspecified traffic patterns.

• The source-routing method of parallel route and data bits on a link requires

many wires if the number if IP blocks is high. The width will also increase

if more path-diverse topologies are constructed from the radix-3 routers. This

may require a prohibitive amount of wiring in large SoC designs, and limit the

scope of this specific NoC architecture’s application.

• The algorithms and their implementation are computationally demanding. Larger

designs may require excessive time for topology and placement optimization.

• Reconfigurable platform-based SoCs are able to support a number of specific

functions, and ideally use a network that also supports reconfiguration for more

efficient operation. The application-specific topology and placement optimiza-

tions described in this work are not ideal in such a SoC.

• Certain SoCs require network-provided guaranteed service requirements as spec-

ified by the software application (i.e., configurable at runtime). The described

network does not support such functionality, except with a calculation of worst-

case packet latency [125].

• Like many asynchronous designs, commercial acceptance will be difficult with-

out compatible interaction with existing EDA design tools and flows. This is a

task addressed by other research but currently limits the commercial viability

of this NoC.

7.7 Future Work

This dissertation lays the foundation for design and evaluation of a NoC consisting

of efficient circuits and a simple architecture. In doing so, it spawns a number

of needed research goals to better characterize and improve upon its simple async

network concept. Some useful directions are described here.

The comparison performed in this work between synchronous and async NoC

models relies on parameterized, analytical models for the synchronous routers and
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wires. More insight can be gained through an evaluation of both NoCs after layout

that would include more accurate clock tree, wire repeater, and router power analysis.

The network adapter is a key component of a NoC that provides easy interfacing

to various IP blocks. Future work should develop and evaluate network adapters for a

variety of core interface protocols, such as OCP or AMBA AXI. The transaction-level

protocol for the network needs to be defined and implemented. This will provide a

quantification of protocol overhead in this network and how it is affected by packet

size.

A benefit to using SystemC as the basis for simulation is the potential to co-

simulate the network with the RTL router models while maintaining SystemC traffic

generators and wire models. This can be done by placing SystemC “wrappers”

around the router RTL that interfaces with a link’s TLM model, back-annotate

with circuit delay from layout timing analysis, and by using the ModelSim software

product by Mentor Graphics, Inc. The purpose of such a simulation is to determine

more accurate latency and throughput measurements than what the current SystemC

models provide.

The idea of network simplicity should be studied for many other parameter-

izations, such as different router radix, multi-flit packets, routing methods, and

topologies. These other options may lend themselves to different applications, such

as a reconfigurable network or CMP.

This network may be ideal for constructing a subnetwork within a hierarchical

interconnect, rather than the sole network in a SoC. For example, it may work

well for connecting the components of a fixed-function MPEG4 encoder that itself

is integrated into a general-purpose platform SoC that uses another network.
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