4,713 research outputs found

    A Minimalist Approach to Type-Agnostic Detection of Quadrics in Point Clouds

    Get PDF
    This paper proposes a segmentation-free, automatic and efficient procedure to detect general geometric quadric forms in point clouds, where clutter and occlusions are inevitable. Our everyday world is dominated by man-made objects which are designed using 3D primitives (such as planes, cones, spheres, cylinders, etc.). These objects are also omnipresent in industrial environments. This gives rise to the possibility of abstracting 3D scenes through primitives, thereby positions these geometric forms as an integral part of perception and high level 3D scene understanding. As opposed to state-of-the-art, where a tailored algorithm treats each primitive type separately, we propose to encapsulate all types in a single robust detection procedure. At the center of our approach lies a closed form 3D quadric fit, operating in both primal & dual spaces and requiring as low as 4 oriented-points. Around this fit, we design a novel, local null-space voting strategy to reduce the 4-point case to 3. Voting is coupled with the famous RANSAC and makes our algorithm orders of magnitude faster than its conventional counterparts. This is the first method capable of performing a generic cross-type multi-object primitive detection in difficult scenes. Results on synthetic and real datasets support the validity of our method.Comment: Accepted for publication at CVPR 201

    Point to Pipe: Automatic Reconstruction and Classification of Pipes Using Lasergrammetry and Thermogrammetry for Building Information Modeling (BIM)

    Get PDF
    Existing buildings account for 40% of global energy consumption, and two-thirds of them will be still be operational in 2050. As most of these buildings lack the needed documentation for energy upgrades, it is essential to understand and represent the current conditions of their envelopes and mechanical systems. This project proposed a skeleton-based application for reconstructing and classifying pipes in existing buildings using point clouds from laser scanners and thermal images for Building Information Modeling (BIM) applications. MATLAB and Dynamo were used to process and model this information in Revit. Initial results indicate that the application is robust to identifying pipes and connections, and that thermal images can be used to create sematic-rich models. These results can contribute to improving the capabilities of some of the commercially available software for pipe reconstruction in BIM and to expediting the digital reconstruction processes in existing buildings

    Cylinders extraction in non-oriented point clouds as a clustering problem

    Get PDF
    Finding geometric primitives in 3D point clouds is a fundamental task in many engineering applications such as robotics, autonomous-vehicles and automated industrial inspection. Among all solid shapes, cylinders are frequently found in a variety of scenes, comprising natural or man-made objects. Despite their ubiquitous presence, automated extraction and fitting can become challenging if performed ”in-the-wild”, when the number of primitives is unknown or the point cloud is noisy and not oriented. In this paper we pose the problem of extracting multiple cylinders in a scene by means of a Game-Theoretic inlier selection process exploiting the geometrical relations between pairs of axis candidates. First, we formulate the similarity between two possible cylinders considering the rigid motion aligning the two axes to the same line. This motion is represented with a unitary dual-quaternion so that the distance between two cylinders is induced by the length of the shortest geodesic path in SE(3). Then, a Game-Theoretical process exploits such similarity function to extract sets of primitives maximizing their inner mutual consensus. The outcome of the evolutionary process consists in a probability distribution over the sets of candidates (ie axes), which in turn is used to directly estimate the final cylinder parameters. An extensive experimental section shows that the proposed algorithm offers a high resilience to noise, since the process inherently discards inconsistent data. Compared to other methods, it does not need point normals and does not require a fine tuning of multiple parameters

    State-of-practice on as-is modelling of industrial facilities

    Get PDF
    90% of the time needed for the conversion from point clouds to 3D models of industrial facilities is spent on geometric modelling due to the sheer number of Industrial Objects (IOs) of each plant. Hence, cost reduction is only possible by automating modelling. Our previous work has successfully identified the most frequent industrial objects which are in descending order: electrical conduit, straight pipes, circular hollow sections, elbows, channels, solid bars, I-beams, angles, flanges and valves. We modelled those on a state-of-theart software, EdgeWise and then evaluated the performance of this software for pipeline and structural modelling. The modelling of pipelines is summarized in three basic steps: (a) automated extraction of cylinders, (b) their semantic classification and (c) manual extraction and editing of pipes. The results showed that cylinders are modelled with 75 % recall and 62 % precision on average. We discovered that pipes, electrical conduit and circular hollow sections require 80 % of the Total Modelling Hours (TMH) of the 10 most frequent IOs to build the plant model. TMH was then compared to modelling hours in Revit and showed that 67 % of pipe modelling time is saved by EdgeWise. This paper is the first to evaluate state-of-the-art industrial modelling software. These findings help in better understanding the problem and serve as the foundation for researchers who are interested in solving i

    Desarrollo de geotecnologías aplicadas a la inspección y monitorización de entornos industriales

    Get PDF
    Tesis por compendio de publicaciones[ES]El desarrollo tecnológico de las últimas dos décadas ha supuesto un cambio radical que está llevando a un nuevo paradigma en el que se entremezclan el mundo físico y el digital. Estos cambios han influido enormemente en la sociedad, modificando las formas de comunicación, acceso a información, ocio, trabajo, etc. Asimismo, la industria ha adoptado estas tecnologías disruptivas, las cuales están contribuyendo a lograr un mayor control y automatización del proceso productivo. En el ámbito industrial, las tareas de mantenimiento son críticas para garantizar el correcto funcionamiento de una planta o instalación, ya que influyen directamente en la productividad y pueden suponer un elevado costo adicional. Las nuevas tecnologías están posibilitando la monitorización continua y a la inspección automatizada, proporcionando herramientas auxiliares a los inspectores que mejoran la detección de fallos y permiten anticipar y optimizar la planificación de las tareas de mantenimiento. Con el objetivo de desarrollar herramientas que aporten mejoras en las tareas de mantenimiento en industria, la presente tesis doctoral se basa en el estudio de como las geotecnologías pueden aportar soluciones óptimas en la monitorización e inspección. Debido a la gran variedad de entornos industriales, las herramientas de apoyo al mantenimiento deben adaptarse a cada caso en concreto. En este aspecto, y con el fin de demostrar la adaptabilidad de la geomática y las geotecnologías, se han estudiado instalaciones industriales de ámbitos muy diversos, como una sala de máquinas (escenario interior), plantas fotovoltaicas (escenario exterior) y soldaduras (interior y exterior). La escala de los escenarios objeto de estudio ha sido muy variada, desde las escalas más pequeñas, para el estudio de las soldaduras y la sala de máquinas, a las escalas más grandes, en los estudios de evolución de la vegetación y presencia de masas de agua en plantas fotovoltaicas. Las geotecnologías demuestran su versatilidad para trabajar a distintas escalas, con soluciones que permiten un gran detalle y precisión, como la fotogrametría de rango cercano y el sistema de escaneado portátil (Portable Mobile Mapping System - PMMS), y otras que pueden abarcar zonas más amplias del territorio, como es el caso de la teledetección o la fotogrametría con drones. Según lo expuesto anteriormente, el enfoque de la tesis ha sido el estudio de elementos o instalaciones industriales a diferentes escalas. En el primer caso se desarrolló una herramienta para el control de calidad externo de soldaduras utilizando fotogrametría de rango cercano y algoritmos para la detección automática de defectos. En el segundo caso se propuso el uso de un PMMS para optimizar la toma de datos en las tareas de inspección en instalaciones fluidomecánicas. En el tercer caso se utilizó la fotogrametría con drones y la combinación de imágenes RGB y térmicas con algoritmos de visión computacional para la detección de patologías en paneles fotovoltaicos. Finalmente, para la monitorización de la vegetación y la detección de masas de agua en el entorno de plantas fotovoltaicas, se empleó la teledetección mediante el cálculo de índices espectrales. [EN]The technological development of the last two decades has brought about a radical change that is leading to a new paradigm in which the physical and digital worlds are intertwined. These changes have had a great impact on society, modifying communication methods, access to information, leisure, work, etc. In addition, the industry has adopted these disruptive technologies, which are contributing to achieving greater control and automation of the production process. In the industrial sector, maintenance tasks are critical to ensuring the proper operation of a plant or facility, as they directly influence productivity and can involve high additional costs. New technologies are making continuous monitoring and automated inspection possible, providing auxiliary tools to inspectors that improve fault detection and allow for the anticipation and optimization of maintenance task planning. With the aim of developing tools that provide improvements in maintenance tasks in industry, this doctoral thesis is based on the study of how geotechnologies can provide optimal solutions in monitoring and inspection. Due to the great variety of industrial environments, maintenance support tools must adapt to each specific case. In this regard, and in order to demonstrate the adaptability of geomatics and geotechnologies, industrial installations from very diverse areas have been studied, such as a machine room (indoor scenario), photovoltaic plants (outdoor scenario), and welding (indoor and outdoor scenarios). The scale of the studied scenarios has been very varied, ranging from smaller scales for the study of welds and machine rooms, to larger scales in the studies of vegetation evolution and the presence of bodies of water in photovoltaic plants. Geotechnologies demonstrate their versatility to work at different scales, with solutions that allow for great detail and precision, such as close-range photogrammetry and the Portable Mobile Mapping System (PMMS), as well as others that can cover larger areas of the territory, such as remote sensing or photogrammetry with drones. The focus of the thesis has been the study of industrial elements or installations at different scales. In the first case, a tool was developed for external quality control of welding, using close-range photogrammetry and algorithms for automatic defect detection. In the second case, the use of a PMMS is proposed to optimize data collection in fluid-mechanical installation inspection tasks. In the third case, drone photogrammetry and the combination of RGB and thermal images with computer vision algorithms were used for the detection of pathologies in photovoltaic panels. Finally, for the monitoring of vegetation and the detection of water masses in the environment of photovoltaic plants, remote sensing was employed through the calculation of spectral indices

    Automated segmentation, detection and fitting of piping elements from terrestrial LIDAR data

    Get PDF
    Since the invention of light detection and ranging (LIDAR) in the early 1960s, it has been adopted for use in numerous applications, from topographical mapping with airborne LIDAR platforms to surveying of urban sites with terrestrial LIDAR systems. Static terrestrial LIDAR has become an especially effective tool for surveying, in some cases replacing traditional techniques such as electronic total stations and GPS methods. Current state-of-the-art LIDAR scanners have very fine spatial resolution, generating precise 3D point cloud data with millimeter accuracy. Therefore, LIDAR data can provide 3D details of a scene with an unprecedented level of details. However, automated exploitation of LIDAR data is challenging, due to the non-uniform spatial sampling of the point clouds as well as to the massive volumes of data, which may range from a few million points to hundreds of millions of points depending on the size and complexity of the scene being scanned. ^ This dissertation focuses on addressing these challenges to automatically exploit large LIDAR point clouds of piping systems in industrial sites, such as chemical plants, oil refineries, and steel mills. A complete processing chain is proposed in this work, using raw LIDAR point clouds as input and generating cylinder parameter estimates for pipe segments as the output, which could then be used to produce computer aided design (CAD) models of pipes. The processing chain consists of three stages: (1) segmentation of LIDAR point clouds, (2) detection and identification of piping elements, and (3) cylinder fitting and parameter estimation. The final output of the cylinder fitting stage gives the estimated orientation, position, and radius of each detected pipe element. ^ A robust octree-based split and merge segmentation algorithm is proposed in this dissertation that can efficiently process LIDAR data. Following octree decomposition of the point cloud, graph theory analysis is used during the splitting process to separate points within each octant into components based on spatial connectivity. A series of connectivity criteria (proximity, orientation, and curvature) are developed for the merging process, which exploits contextual information to effectively merge cylindrical segments into complete pipes and planar segments into complete walls. Furthermore, by conducting surface fitting of segments and analyzing their principal curvatures, the proposed segmentation approach is capable of detecting and identifying the piping segments. ^ A novel cylinder fitting technique is proposed to accurately estimate the cylinder parameters for each detected piping segment from the terrestrial LIDAR point cloud. Specifically, the orientation, radius, and position of each piping element must be robustly estimated in the presence of noise. An original formulation has been developed to estimate the cylinder axis orientation using gradient descent optimization of an angular distance cost function. The cost function is based on the concept that surface normals of points in a cylinder point cloud are perpendicular to the cylinder axis. The key contribution of this algorithm is its capability to accurately estimate the cylinder orientation in the presence of noise without requiring a good initial starting point. After estimation of the cylinder\u27s axis orientation, the radius and position are then estimated in the 2D space formed from the projection of the 3D cylinder point cloud onto the plane perpendicular to the cylinder\u27s axis. With these high quality approximations, a least squares estimation in 3D is made for the final cylinder parameters. ^ Following cylinder fitting, the estimated parameters of each detected piping segment are used to generate a CAD model of the piping system. The algorithms and techniques in this dissertation form a complete processing chain that can automatically exploit large LIDAR point cloud of piping systems and generate CAD models

    C-blox: A Scalable and Consistent TSDF-based Dense Mapping Approach

    Full text link
    In many applications, maintaining a consistent dense map of the environment is key to enabling robotic platforms to perform higher level decision making. Several works have addressed the challenge of creating precise dense 3D maps from visual sensors providing depth information. However, during operation over longer missions, reconstructions can easily become inconsistent due to accumulated camera tracking error and delayed loop closure. Without explicitly addressing the problem of map consistency, recovery from such distortions tends to be difficult. We present a novel system for dense 3D mapping which addresses the challenge of building consistent maps while dealing with scalability. Central to our approach is the representation of the environment as a collection of overlapping TSDF subvolumes. These subvolumes are localized through feature-based camera tracking and bundle adjustment. Our main contribution is a pipeline for identifying stable regions in the map, and to fuse the contributing subvolumes. This approach allows us to reduce map growth while still maintaining consistency. We demonstrate the proposed system on a publicly available dataset and simulation engine, and demonstrate the efficacy of the proposed approach for building consistent and scalable maps. Finally we demonstrate our approach running in real-time on-board a lightweight MAV.Comment: 8 pages, 5 figures, conferenc
    corecore