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Abstract. 90% of the time needed for the conversion from point clouds to 3D 
models of industrial facilities is spent on geometric modelling due to the sheer 
number of Industrial Objects (IOs) of each plant. Hence, cost reduction is only 
possible by automating modelling. Our previous work has successfully identi-
fied the most frequent industrial objects which are in descending order: electri-
cal conduit, straight pipes, circular hollow sections, elbows, channels, solid 
bars, I-beams, angles, flanges and valves. We modelled those on a state-of-the-
art software, EdgeWise and then evaluated the performance of this software for 
pipeline and structural modelling. The modelling of pipelines is summarized in 
three basic steps: (a) automated extraction of cylinders, (b) their semantic clas-
sification and (c) manual extraction and editing of pipes. The results showed 
that cylinders are modelled with 75 % recall and 62 % precision on average. We 
discovered that pipes, electrical conduit and circular hollow sections require 80 
% of the Total Modelling Hours (TMH) of the 10 most frequent IOs to build the 
plant model. TMH was then compared to modelling hours in Revit and showed 
that 67 % of pipe modelling time is saved by EdgeWise. This paper is the first 
to evaluate state-of-the-art industrial modelling software. These findings help in 
better understanding the problem and serve as the foundation for researchers 
who are interested in solving it. 

Keywords: Industrial Facilities, Facility Management, Building Information 
Modelling. 

1   Introduction 

“As-Is” Building Information Models (AI-BIMs) are the 3D digital representation of 
the existing condition of facilities and encompass geometric definitions at different 
levels of aggregation and parametric rules [1]. The clear majority of large refineries 
were built before the advent of CAD in 1977: as-is models, therefore,  do not exist to 
assist their maintenance operations [2, 3]. AI-BIMs of industrial plants have substan-
tial impact in various applications. Some of these include maintenance, strategic plan-
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ning of their operations, revamping purposes, retrofitting of old sites and preparation 
for dismantling [4–7]. 

Inexistence of AI-BIMs will result in time lags for these operations. This is crucial 
for industrial managers, since without detailed planning, productivity will be substan-
tially affected, and the agreed budget and timeline expectations will not be met. 
Moreover, there are thresholds on the acceptable shut down duration that will not 
impede production, and those limits cannot be violated without incurring extra costs. 
For instance, [8] reported that 40 % of the total 3D modelling cost of retrofitting a 
Chevron plant was spent on data-processing labor and the shut-down time was limited 
to 72 hours to avoid additional costs. Every modelling hour saved can prevent critical 
failures or unexpected accidents, thus continuous production flow of these assets is 
achieved. This work aims to assist the tedious current practice in this regard. 

Modelers use the following four main steps to manually process AI-BIMs: (a) data 
collection, (b) point cloud registration, (c) geometric modelling and (d) addition of 
accompanying information. Initially, data is collected using laser scanners and photo-
grammetry, which are represented by their cartesian or polar coordinates, the point 
cloud, and in some cases by their color data (RGB). The scans need to be registered in 
a consistent coordinate system by calculating inter-scan rigid body transformations 
and the registered point cloud represents the complete measured data. Then this data 
needs to be geometrically modelled. 

Geometric modelling entails (a) primitive shape detection, (b) semantic classifica-
tion of detected shapes and (c) fitting. Firstly, primitive shapes are detected (e.g., 
cylinders, tori, planes) and labelled (e.g., pipes, elbows, I-beams). Afterwards, the 
primitives are fitted to known solid shapes to obtain their geometric parameters. Their 
relationships to other objects need to be obtained in order to produce a complete AI-
BIM in the Industry Foundation Schema (IFC) format. IFC is a data format that al-
lows geometric, material and other construction related information to coexist in a 
single model. 

Geometric modelling is the “bottleneck” during the Scan-to-BIM process of any 
industrial facility given how costly and time consuming it is. Recent studies have 
reported that geometric processing takes 90 % of the modelling time [9, 10]. [10] 
reported that 10 operators were needed to process 1084 scans of a nuclear reactor and 
model its objects in around 6 months using Dassault Systems SolidWorks and Trim-
ble Realworks. In contrast, laser scanning of the plant was completed in only 35 days. 
This significant time required to model the vast number of industrial objects impedes 
adoption of as-is 3D modelling for these plants. 

The research presented in this paper is exploratory in nature, not causal. It does not 
seek to solve the problem of automating the modelling of industrial facilities. It rather 
seeks to improve our understanding of the problem and the extent to which it has been 
resolved so far and provide a foundation for future researchers interested in solving it. 
This is why the main objective of this paper is to identify how laborious industrial 
objects are for modelling, as well as to measure the performance of existing tools in 
modelling these particular object types. The authors used the most frequent objects 
based on a statistical analysis of 3D modelled industrial objects in a variety of indus-
trial plants as explained in [11]. An overview of the state-of-the-art tools available for 

2 EG-ICE2018, 012, v4 (final): ’State-of-practice on As-Is Modelling of Industrial Facilities’



3 

as-is modelling is given to select the most advanced tool for evaluation. The most 
frequent objects were modelled in the state-of-the-art, semi-automated modelling 
software, EdgeWise, and their average modelling time was measured. The level of 
automation of EdgeWise is also measured for the most frequent industrial object 
types. This analysis will substantially assist automated modelling efforts to efficiently 
reduce modelling time and facilitate facility management. 

2   Background 

Industrial plants can be divided into ten main categories [12]: (a) onshore and (b) 
offshore oil platforms, (c) chemical, (d) mining, (e) pharmaceutical plants, (f) power 
plants, (g) water and wastewater treatment facilities, (h) natural gas processing and 
biochemical plants, (i) refineries, (j) food processing factories, (k) defense facilities, 
(l) metal production facilities, (m) nuclear plants, (n) research facilities and (o) ware-
houses and silos. The object types of industrial facilities belong to the main object 
categories: (a) structural elements, (b) piping system, (c) electrical, (d) safety and (e) 
general equipment, (f) architectural elements, (g) instrumentation, (h) Heating, Venti-
lation and Air Conditioning (HVAC) and (i) civil elements.  

The most frequent object categories being around 90 % of all objects in these facil-
ities are: structural elements (33 %), the piping system (28 %) and electrical equip-
ment (27 %) based on our previous work [11]. The most frequent object types of these 
categories are in descending order: electrical conduit (24 %), straight pipes (15 %), 
circular hollow sections (6.5 %), elbows (5.4 %), channels (5 %), solid bars (4.5 %), 
I-beams (4.4 %), angles (4 %), flanges (3.3 %) and valves (2 %) as presented in the 
same work.  

 
2.1   Automated industrial plant modelling 

State-of-the-art software 

Almost all available modelling tools of industrial objects depend on human inter-
vention for most of the modelling tasks. Leading 3D CAD software (Autodesk, Bent-
ley, AVEVA and FARO) have developed programs containing a variety of functions 
that enable 3D plant modelling and visualization from 3D point clouds. For example, 
AutoCAD Plant 3D accompanied with FARO’s PointSense Plant add-in enables 
semi-automated pipe modelling from Point Clouds. PointSense Plant provides several 
functions and a large standard library with a variety of piping and structural compo-
nents available for the detection of pipelines from 3D point clouds. Moreover, fitting 
template objects to scanned 3D objects is performed automatically and constraints can 
be applied to fix potential errors of fitting. PointSense Plant 17.5 has integrated a pre-
calculation tool that detects cylinders in the point cloud of a specific area and has the 
ability to colorize the Point Cloud by deviation from reference geometry [13]. How-
ever, the users still manually model the as-is pipelines by finding the insertion points 
for fitting CAD objects to the segmented 3D point clouds and fitting errors of the 
extracted cylinders are not provided. The “Walk the Run” feature is rather a sugges-
tion for pipe insertion points than an automated pipe modelling tool. 
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EdgeWise is another semi-automated platform that is extensively used. The main 
difference of Pointsense and EdgeWise is that a modeler using the former should 
extract the desired boundaries of an object manually and afterwards the software will 
automatically extract the correct dimensions and location. However, this procedure is 
automatically performed by EdgeWise, that is why it was chosen as the most suitable 
tool for evaluation of the most frequent industrial object types that will be presented 
in the next section. Structural sections are modelled manually in all available software 
packages. Fitting of user-selected primitives (e.g., cylinders, cuboids, tori etc) is per-
formed automatically by both EdgeWise and PointSense Plant. To date, no one has 
provided viable assessments of state-of-the-art tools. 

The details behind the algorithmic development of software are commercially pro-
tected (trade secrets), so we can evaluate only the outcomes and not the algorithms 
that are used to reach those outcomes. 

State-of-research 

State-of-the-art research work on pipe detection has partially solved the problem 
and not to a greater extent compared to commercially available software like Edge-
Wise [14, 15]. For instance, [14] only detect pipes in orthogonal directions. A recent 
study completed by [15] is dependent on threshold values for radius and normal esti-
mation. The pipe radius range is 0.0254 m – 0.762 m and the normal deviation is 5°. 
Therefore, [15] cannot be generalized for pipe detection. Their updated Hough Trans-
form based on [4] study detects pipes in two sample datasets with 60 % recall and 89 
% precision. 

Prior knowledge of industrial scenes has assisted researchers to detect industrial 
objects. [16] used prior knowledge (Piping and Instrumentation Diagram, P&ID) to 
detect Mechanical, Electrical and Plumbing equipment (MEP). However, as-is P&IDs 
are often not available as prior knowledge in industrial plants, thus they do not reflect 
the modifications a plant undergoes through its life. For this reason, prior knowledge 
cannot rely on P&IDs. [17] used topological information to extract semantic labels for 
four object classes: pipes, planes, elbows and valves. They detect cylinders with 86% 
precision and 92% recall. However, their semantic labels consider that all cylindrical 
objects are pipes, without investigating other potential object classes with the same 
shape. 

2.2   Gaps in knowledge and research questions 

 
Considering the state of practice and body of research reviewed above, existing 

studies for as-is modelling of industrial plants have focused on automated detection of 
cylindrical objects and no scientific and viable evaluation of existing state-of-the-art 
software tools is provided. It is therefore still unclear (1) how much time it takes to 
model those in state of the art software and (2) the level of automation achieved with 
state of the art software. 
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The aim of this work is to solve the gaps in knowledge by answering the following 
research questions: 

a)   What is the time required for modelling the most frequent object types in state-
of-the-art software? 

b)   How can state-of-the-art as-is modelling tools be assessed in terms of auto-
mated detection of objects achieved? 

3   Research Methodology Framework 

The research conducted in this paper is exploratory in nature. The most frequent ob-
ject types as derived in [11] are modelled in EdgeWise to measure the modelling time 
of each type and the performance of the software is evaluated. The time required for 
manual modelling of cylindrical objects was then compared with that measured in 
EdgeWise. Research efforts on automated cylinder extraction are then investigated to 
compare the evaluation results from EdgeWise and set the ground for future research 
towards minimizing the modelling time of these assets. 

3.1   Data Collection and Assumptions 

Four case studies of laser scanned industrial facilities were examined to have a repre-
sentative sample of industrial objects in different facilities. Two case studies are 
rooms of an industrial plant, one was a water treatment facility in Cambridge and the 
fourth was a room of a petrochemical plant. The industrial and petrochemical plant 
are anonymized since rights are reserved by AVEVA Group Plc. The scanner setup 
and scan frequency of these facilities is not available, since data was collected by 
industrial partners. The water treatment facility in Cambridge was laser scanned by 
the authors. We used a Faro Focus 3D X330 laser scanner to collect 6 laser scans with 
resolution of at least 1 point/cm2 and ranging error ±2 mm.  

The average frequencies of industrial objects used in this paper were taken from 
the results of [11] and represent the average frequency of appearance of 3D modelled 
datasets investigated. Solid bars are not modelled separately in EdgeWise since they 
cannot be distinguished from circular hollow sections in a laser survey. 

3.2   EdgeWise evaluation for pipeline modelling 

Four sample point cloud datasets were used to evaluate the capabilities of EdgeWise 
and obtain modelling times for the most frequent object types. Fig. 1 shows the sam-
ple datasets that were used for this evaluation.  

Pipeline modelling is significantly assisted by the automated extraction of cylin-
ders that EdgeWise provides. The scans were processed on a desktop computer with 
CPU Intel® CoreTM i7-4790K at 4.00GHz, 32 GB RAM and Windows 10 64-bit op-
erating system. The average processing time for this operation using the above-
mentioned operating system for the sample datasets is 3.3*10-3 min/ (cylinder*points 
in the point cloud), as shown in Table 3. The average number of points of all datasets 
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used is 258 million and the number of points of each dataset is presented in Table 1. 
The average diameter of cylinders and pipes is presented for evaluation purposes in 
Table 2.  

 

 

Fig. 1. Sample datasets for evaluation. (a), (b) Two rooms of a typical industrial facility, (c) a 
water treatment facility and (d) a room of a petrochemical plant 

Table 1. Total number of points in the point cloud datasets and total number of cylinders and 
pipes in each case study 

 Typical 

facility 

Room 1 

Typical 

facility 

Room 2 

Water 

Facility 
Petrochem-

ical plant 

 Total number 

Points (millions) 129 105 122 675 
Automatically detected cylinders 551 86 44 358 
Manually detected cylinders 166 79 48 265 

 
We set the parameters used for cylinder extraction to a minimum of 80 points, in 

order to detect a pipe and provide a distance tolerance to 0.7*10-3 m. The minimum 
threshold of the software is 50 points to identify pipelines, however if we give a very 
low value, the automated extraction tool will identify noisy and erroneous features as 
pipes. The distance tolerance is a parameter that determines how far away from the 
cylinder a 3D point can be, so that it is not excluded from the extraction algorithms. 
The default value of 0.7*10-3 m is used here, which was obtained from a scanner with 
a high level of accuracy and low noise [18]. 

After the automated extraction step, the cylinders were inspected and approved de-
pending on the modeler’s discretion (classification). For cases where it was difficult 
to identify the object, pictures taken from the laser scanner were used to assist the 
inspection process. A user friendly “Smart Sheet” was produced, which contains in-
formation such as the length, diameter, Root Mean Square Error (RMSE) and cover-
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age (%) of each pipe spool. The results show that although cylinders are automatically 
extracted, no contextual information is provided. Henceforth, electrical conduit, hand-
rails, cylindrical pipe supports, vessels and other object types were modelled as 
straight pipes. 

Table 2. Average diameter of cylinders and pipes for each dataset 

 Typical 

facility 

Room 1 

Typical 

facility 

Room 2 

Water 

Facility 
Petrochem-

ical plant 

 Average diameter (m) 

Cylinder 0.067 0.076 0.315 0.095 
Pipe 0.114 0.106 0.617 0.081 

 
The next step in the evaluation process was to edit the pipes and to manually add 

missing ones. Using the “Easy Connect” tool pipe spools were connected, and tees 
and elbows were added in the piping network. Then, labels were manually assigned 
for each cylinder that was automatically extracted by the software and metrics were 
used to evaluate the software’s performance. 

An additional step of cleaning the pipes and merging the connecting spools togeth-
er was performed to complete the pipeline system. This step was completed automati-
cally by the software. Then, standard catalogues were used to get standardized pipe 
dimensions. We chose the American Society of Mechanical Engineers’ (ASME) spec-
ifications and pressure rating of 150 psi for our datasets. After this step, fittings, such 
as flanges and valves, were applied on the standardized pipes. There are different 
types of standard fittings that the user can select from available standard libraries. 

The modelling of pipelines is summarized in three basic steps: (a) automated ex-
traction of cylinders, (b) semantic classification of cylinders and (c) manual extraction 
and editing of pipes. Fitting is performed automatically during manual or automated 
extraction: therefore, it is not a separate step of the procedure. The steps of the proce-
dure for pipeline modelling in EdgeWise are presented in Fig. 2. 

The average processing time per cylinder or pipe for each step is computed in Ta-
ble 3 and calculated as following: 

 Time/cylinder.point = TAE/AC*P (1) 

Where TAE is the time for automated extraction of cylinders, AC is the number of 
automatically detected cylinders and P is the number of points in the dataset 

 Time/pipe = TME/TP (2) 

Where TME is the time for manual extraction and editing of pipes and TP is the to-
tal number of pipes 

 Time/cylinder = TC/AC (3) 

Where TC is the time for semantic classification of cylinders and AC is the number 
of automatically detected cylinders. 
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The number of automatically detected cylinders and the total number of pipes is 
shown in Table 1 for each case study. The latter is the sum of automatically and man-
ually detected pipes in each dataset. These normalizations are used to compare the 
modelling times for each case study, since the number of points and cylinders pro-
cessed are different for each dataset. 

 

 

Fig. 2. Workflow of pipeline detection, classification and editing steps in EdgeWise 

Table 3. Modelling time needed for each modelling task for each dataset and average time per 
object (min/object) 

 Typical 

facility 

Room 1 

Typical 

facility 

Room 2 

Water 

Facility 
Petro-

chemical 

plant 

 

Modelling Task Time (min) 

Average 

time 

(min) 

Automated extraction 

of cylinders
a 

1.5*10-3 1.5*10-3 7.1*10-3 1.4*10-3 
3.3*10

-3 

Semantic classification 

of cylinders
b 

0.20 0.47 0.17 0.12 0.24 

Manual extraction & 

editing of pipes
c
 

0.69 2.37 2.43 1.22 1.68 

a per cylinder*point, b per cylinder, c per pipe 
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The time for semantic classification was 0.24 minutes per cylinder on average. 

Manual extraction and editing of pipes was the most time-intensive step, since we 
needed 1.68 minutes per pipe on average to manually add missing pipes and edit the 
existing ones. The observations show that the manual effort to classify and extract 
pipes was 1.92 minutes per cylinder on average, which is the summation of two sub-
sequent steps, semantic classification of cylinders and manual extraction and editing 
of pipes. This is almost three times the time needed for automated extraction of cylin-
ders by the software. 

A variation of the time needed for automated extraction of cylinders between the 
water facility and the other datasets is observed. This discrepancy is attributed to the 
fact that the water facility is an outdoor facility, requiring the most processing time 
compared to the other datasets. Technically, outdoor scenes are inherently more oc-
cluded and incomplete exhibiting extreme variations in point density [19]. These ef-
fects are mitigated by the limited size and constrained shape of rooms. The two rooms 
of the typical industrial facility were processed at the same time in our operating sys-
tem, for this reason the time required for automated extraction is the same as shown in 
Table 3. Manual modelling of the second room of this facility required the most mod-
elling time compared to the first room. This is due to cluttered pipelines, which re-
sulted in the largest Room Mean Square Error (RMSE) of the cylinder diameters, as 
shown in Table 4. This clutter is attributed to the reflective surface of pipelines. Man-
ual extraction and editing of pipes in the water facility is another modelling time out-
lier. Highly occluded pipelines are the primary reason for this outlier, since they have 
the lowest average coverage (26.5 %), compared to the other projects. The diameter 
of pipelines in the water facility was significantly larger, since most pipes are used for 
sewage purposes. These observations show that manually detected pipes have larger 
average diameter (0.617 m) compared to automatically extracted cylinders (0.315 m) 
for the same dataset. This means that it is difficult for the software to identify cylin-
ders with large diameters. 

Table 4. Root Mean Square Error (RMSE) of the radius and coverage (%) of automatically 
detected cylinders in each dataset and average values 

Automatically detected 

cylinders in: 

RMSE of the cylinder radius (m) Coverage (%) 

Typical facility – Room 1 1.7*10-3 32.5 

Typical facility – Room 2 6.7*10-3 30.2 

Water facility 1.9*10-3 26.5 

Petrochemical plant 4.2*10-3 27.6 

Average 3.6*10-3 29.2 

 
RMSE and coverage percentages for each extracted cylinder are calculated in 

the “SmartSheet”, provided in EdgeWise. Table 4 summarizes their average values for 
all case studies. The results show that the first room of the typical industrial facility 
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has the lowest RMSE, meaning that the extracted cylinders fit well the corresponding 
points of the cylinders. The average coverage area of cylinders in all case studies is 
around a quarter of the cylinder (29.20 %), which is the reason that many cylinders 
are not automatically extracted. 

The performance of the software is evaluated based on the two-following met-
rics, precision and recall [20],  

 Precision = TP/(TP + FP) (4) 

 Recall = TP/(TP+FN) (5) 

Where TP are the number of objects that are automatically detected as pipes and 
were correctly inspected as pipes, FP are the number of objects that are detected as 
pipes, but we classified them as other cylindrical objects (for instance handrails, cir-
cular hollow steel sections to name a few) and FN are the number of objects that are 
pipes but were not automatically detected as pipes. Those pipes were manually ex-
tracted and added to the model. 

The performance metrics obtained from our four sample datasets are given in Table 
5.  

Table 5. Average performance metrics of pipe and cylinder detection 

 Pipe detection metrics Cylinder detection metrics 

Dataset 
Recall (%) 

Precision 

(%) 
Recall (%) 

Precision 

(%) 

Typical facility Room 1 80.1 27.9 69.3 48.2 

Typical facility Room 2 59.5 54.6 100.0 22.0 

Water facility 33.3 36.4 87.3 86.4 

Petrochemical plant 59.6 69.3 45.7 91.9 

Average 58.1 47.0 75.6 62.1 

 
According to precision, out of all the automatically detected cylinders only an av-

erage of 47 % in all case studies correspond to pipes, whereas the rest were other 
cylindrical objects. The average recall was 58.1 %, meaning that only 58.1 % of all 
pipes existing in a typical facility will be automatically detected.  The results show 
that the water treatment facility, which is an outdoors facility, has the lowest recall, 
being 33.3 %. The low performance metrics of this dataset, compared to the other 
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ones, can be attributed to increased noise. The low precision of pipes in the first room 
of the typical facility (27.9 %) is attributed to a larger number of FPs (roof tiles), 
which were wrongly detected as pipes. 

The same metrics were measured for cylinders. The only difference in the metrics 
used is that precision is defined as the number of automatically detected cylinders out 
of all the detected cylinders, whereas recall is the number of automatically detected 
cylinders out of all other automatically detected non-cylindrical shapes. The recall of 
cylinders is high for all datasets except the petrochemical plant (45.7 %), which is 
attributed to low scan completeness of this dataset and increased clutter. The average 
recall for the four datasets is 75.6 % indicating the advantage of the software to ex-
tract this primitive shape. The precision of cylinders is also 15 % higher compared to 
that of pipes, since the software is designed to detect cylindrical shapes. The lowest 
precision (22 %) is observed for the second room of the typical industrial facility, 
which is attributed to corrugated shapes in the roof that were incorrectly modelled as 
cylinders. The same trend (low precision of about 48 %) is observed for the first room 
of the facility for the same reason.  

Representative 3D models obtained from the room of the petrochemical plant, two 
rooms of a typical industrial facility and the water treatment plant are presented in 
Fig. 3, Fig. 4, Fig. 5 and Fig. 6. The initial point cloud, the automated pipeline extrac-
tion output and the final 3D model that was obtained after manual modelling of the 
most frequent pipeline elements, structural sections and electrical conduit are present-
ed in the same Figures. These 3D models are not the complete 3D models of the facil-
ities, but the subsets used for the evaluation purposes of this paper. 

3.3   EdgeWise evaluation for modelling of structural components 

Software packages used for extraction of structural elements have been developed by 
ClearEdge3D (2017). EdgeWise Structural is used for our evaluation in this work. 
The most frequent structural elements that were identified in our previous work [11] 
(circular hollow sections, channels, solid bars, I-beams) are modelled in the four case 
studies.  

The user selects the I-beam, Channel and RoundTubing tools to manually extract 
the respective elements. The user can also create custom standards for shapes that do 
not exist on the standards list. The “Pattern Extract” tools extract groups on repeata-
ble elements of the same object type. The extracted sections are then inspected for 
accuracy in the “SmartSheet”. The workflow of the manually modelled structural 
sections is summarized in Fig. 7. 

The standards that were used for this evaluation were taken from the American In-
stitue of Steel Construction (AISC) manuals. The authors also used the “Autofit” tool 
to extract the correct size of the specified section automatically. Precision and recall 
metrics were not used herein, since the procedure is manual. 
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Fig. 3. Input point cloud, (b) automated cylinder extraction in EdgeWise Plant/MEP and (c) 3D 
model after manual modelling of pipes, structural elements and electrical conduit for a room of 
a petrochemical plant (dataset provided by AVEVA Group Plc.).  
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Fig. 4. Input point cloud, (b) automated cylinder extraction in EdgeWise Plant/MEP and (c) 3D 
model after pipe, structural and electrical conduit extraction for the first room of an industrial 
facility (dataset provided by AVEVA Group Plc.) 
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Fig. 5. Input point cloud, (b) automated cylinder extraction in EdgeWise Plant/MEP and (c) 3D 
model after pipe, structural and electrical conduit extraction for the second room of an industri-
al facility (dataset provided by AVEVA Group Plc.) 
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Fig. 6. Input point cloud, (b) automated cylinder extraction in EdgeWise Point/MEP and (c) 3D 
model after pipe, structural and electrical conduit extraction for a water treatment facility in 
Cambridge (dataset acquired by the authors)  
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Fig. 7. Workflow of the manual modelling of structural elements in EdgeWise Structural.  

3.4   Overall performance of state-of-the-art modelling software 

The performance of state-of-the-art modelling software is summarized in Table 6. 
This Table shows that fitting of the most frequent object types has been solved by 
commercial software like EdgeWise, since known geometric shapes are automatically 
fitted to the selected point clusters. Automated primitive shape detection of cylinders 
has partially been solved since the results showed 75 % recall and 62 % precision in 
EdgeWise. Non-cylindrical shapes are manually extracted, and classification of all 
object types has not been achieved. 

Table 6. Performance of state-of-the-art software packages on each modelling step for the most 
frequent object types 

Industrial object 

type 

Primitive shape 

extraction 

Semantic labelling 

(classification) 

Fitting 

Straight pipe Partially solved Not solved Solved 
CHSa Partially solved Not solved Solved 
Channel Not solved Not solved Solved 
Conduit Partially solved Not solved Solved 
I-beam Not solved Not solved Solved 
Valve Not solved Not solved Solved 
Elbow Not solved Not solved Solved 
Flange Not solved Not solved Solved 
Angle Not solved Not solved Solved 
a Circular Hollow Section (CHS) 

Manually'extract'structural'sections Select'the'standard'size'&'type'for'

the'extracted'section

Inspect'&'edit'extracted'sections

Step'1 Step'2

Step'3

`
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The 3D models can be exported to Revit, in order to obtain IFC models for in-
teroperability purposes between different software packages. However, we observed 
that reducers, valves, flanges, angles and some channels (C3 and C4 according to the 
American Institute of Steel Construction standards - AISC) cannot be exported in 
Revit. Models containing straight elements with length less than 4 mm cannot also be 
transferred to Revit. 

Pipes, conduit and Circular Hollow Sections (CHSs) were also modelled manually 
in Revit to compare the man-hours needed for their shape extraction through this 
manual process. 30 objects were modelled in each category and their average model-
ling times were measured. The workflow of manual modelling in a software such as 
Revit entails three steps: (a) manual segmentation of the desired object in a point 
cloud visualization software such as CloudCompare, (b) export of the points in Auto-
desk Recap to obtain the appropriate format and then (c) modelling in Revit. Revit 
2017 was used for this evaluation. The parameters of the cylinders (radius and length) 
are chosen based on the modeler’s discretion. Non-cylindrical objecs were not mod-
elled in Revit since their extraction in EdgeWise is manual, thus a comparison with 
Revit is redundant. 

3.5   Results 

The time needed to model the above-mentioned object types is measured in the same 
operating system as stated above for pipeline, structural and electrical object types. 
The average modelling time per object for the most frequent object types is calculat-
ed. The manual modelling time of cylindrical objects is broken down to the two steps 
investigated above; shape extraction and semantic classification. Knowing the aver-
age number of objects of a specific type in a typical facility, we calculate the average 
modelling time for each object type and each modelling step where applicable. Fig. 8 
shows the modelling time/object in minutes and Fig. 9 the estimated total man-hours 
for modelling of the same object types in a typical industrial facility in hours. 

Fig. 8 shows that manual extraction of straight pipes in EdgeWise is the most time-
intensive task compared to semantic classification for pipes and requires 1.68 
min/straight pipe. Manual extraction of channels is also a laborious task compared to 
the manual extraction of all other object types, requiring 1.78 min/channel due to the 
complexity of their shape. Although some of the CHSs are automatically extracted, it 
is difficult to identify them manually, since they are usually pipe supports and hand-
rails, which are significantly occluded. For instance, pipe supports are occluded due to 
pipelines that run on top of them. This is the reason for intensive modelling time (0.93 
min/CHS). Semantic classification of cylinders is not a time-intensive step, requiring 
less than 0.5 min/cylinder on average. 

Given the average frequencies of objects in each type obtained in [11] for a sample 
facility of 100,000 objects, Fig. 9 shows that pipes require the most modelling time on 
average (around 800 hours) for this sample facility of 25,183 pipes. It is important to 
note that, although automated extraction of cylinders has been partially achieved by 
EdgeWise Plant/MEP, modelling of pipelines takes still substantial amount of time. 
The cylindrical shape is the most frequent geometric shape, thus the modelers’ effort 
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to distinguish electrical conduit, CHSs, handrails and other cylindrical objects from 
straight pipes is significant. 

 

Fig. 8. Average modelling labor time per object (min/object) for the most frequent object types 

Although electrical conduit is the most prevalent object type in industrial plants 
(24.3 % in a typical plant, [11]), it takes less man-hours to model it compared to a 
straight pipe. This is attributed to the design of electrical conduit that places many 
cylinders closely to each other. This makes it easier for the modeler to identify them, 
thus the modelling time is reduced. 

Flanges and elbows do not require substantial time (0.28 and 0.39 min/object re-
spectively) as shown in Fig. 8, although the user manually adds them in the pipeline 
model. We observe that once the piping network is identified, the addition of fittings 
is a quick task that does not necessarily need to be automatically modelled. Angles 
require the least amount of time, being less than 0.25 min/angle, which is attributed to 
their simple geometry compared to I-beams or channels. 

The total labor hours for manual modelling of an example industrial facility with 
100,000 objects of the above categories are estimated to be 12 person-months. This 
finding is based on the following assumptions: (a) one trained modeler for all case 
studies, (b) the working hours are assumed to be 8 hrs/day, 5 days/week and (c) the 
operating system is as specified above. The same metric for cylinder extraction and 
classification is 8.5 person-months using EdgeWise as explained above. The confi-

18 EG-ICE2018, 012, v4 (final): ’State-of-practice on As-Is Modelling of Industrial Facilities’



19 

dence intervals for the average manual modelling time of pipes, conduit and CHSs are 
calculated since the selection of parameters depends on the modeler’s discretion. 
Pipes were manually modelled in Revit in 5.8 ± 1 minutes with 99 % confidence lev-
el. Conduit and CHSs were modelled in 1.3 ± 0.75 and 3.6 ± 0.4 minutes respectively. 
This means that the modelling time does not change substantially for any of these 
object categories. 

The modeller was trained to model MEP and structural objects before starting the 
modelling task. 100 instances of each object type were modelled as a training exercise 
before the modeller started to perform this task. The theoretical example of 100,000 
objects was chosen, given that the average total number of these object types is 
191,991 as obtained from the case studies investigated in [11].   

We observe that 64 % of the man-hours needed for manual modelling of cylinders 
are saved by using the state-of-the-art software, EdgeWise, compared to conventional 
manual modelling platforms such as Revit. The results also show that 67 % of manual 
modelling time is saved for pipe modelling in EdgeWise. The case study of 100,000 
objects shows that 2,400 labor hours are saved when modelling cylinders in Edge-
Wise. This is crucial especially for these facilities, since the time required to take 
decisions for maintenance and refurbishment is limited due to continuous production 
flow. 

 

Fig. 9. Average modelling labor hours per object type for the most frequent objects of an ex-
ample facility with shown numbers of objects 
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4   Conclusions 

The modelling time and shape extraction of the ten most frequent industrial object 
types are evaluated in the semi-automated, state-of-the-art software, EdgeWise. The 
results showed that cylindrical objects (straight pipes, electrical conduit and circular 
hollow sections) require 80 % of the Total Modelling Hours (TMH) of the ten most 
frequent object types in EdgeWise.  

 The results of this paper show that current practice has achieved primitive shape 
extraction for straight pipes, elbows and conduit semi-automatically. However, se-
mantic labelling of each object type is not performed in the state-of-the-art modelling 
packages. EdgeWise has substantially facilitated 3D modelling of industrial plants 
according to the findings discussed above. However, it has some limitations, which 
can be summarized as follows:  

1.  The modeler should identify the structural elements manually or define the location 
of an object roughly in the point cloud to fit it. 

2.  Detection of cylinders has only been partially solved, since cylinders are detected 
with 75 % recall and 62 % precision. The same metrics for pipes are 58 % and 47 
% respectively. 

3.  EdgeWise and all other 3D modelling software platforms do not enrich the 3D ge-
ometric primitives with semantic labels and topological relationships. Engineers 
are required to manually implement the semantic labels of the components of the 
3D model.  

4.  Data inconsistency between different software platforms impedes modelers from 
exchanging data between different AI-BIM platforms. These software packages are 
not designed to provide a final output in an open and generic schema.  

The contribution of this paper is the measurement of the performance of state-of-
the-art software and more specifically EdgeWise. This uncovered (a) the substantial 
performance of this software in detecting cylinders, (b) the inability of this software 
to (i) further classify cylinders into electrical conduit, pipes or CHSs and (ii) detect 
and further classify I-beams, channels, elbows, flanges, valves and angles in spite of 
their high frequency in an industrial facility.  

Direct implications of modelling the most frequent industrial objects of [11] are as-
sessed based on modelling time. The results of the evaluation of EdgeWise showed 
that semi-automatically modelling cylinders will reduce man-hours needed for model-
ling those by 64 %. This can have a direct impact for industrial facility managers, 
since every hour of as-is modelling time is crucial for the operation of the plant in 
unprecedented circumstances (failures of critical objects, retrofitting operations and 
plant expansion).  

Indirect implications of prioritizing object types are reductions of the modelling 
cost, since man-hours of modelers will be reduced. Although there is no way to calcu-
late the exact cost of overestimated severity of industrial inspections and mainte-
nance, it is reasonable to predict that maintenance of industrial plants will be substan-
tially facilitated once AI-BIMs are easy to develop and the costs do not counteract the 
benefits of their creation. Poor maintenance of these assets does not always affect the 
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asset’s territory but also impacts nearby regions and puts lives of the public living 
close by at serious risk.  

The presented research has room for improvement and some limitations of this 
study can direct future research. This study focused on the industrial objects that are 
important to model, however methods on how to automatically model those were not 
investigated. Current research efforts were compared with commercial tools like 
EdgeWise showing no significant advances in terms of automated detection of cylin-
ders. Future work involves implementation of automated machine learning algorithms 
for all the most frequent object types to minimize the modelling time. Application of 
these algorithms for hundreds of classes of different objects is a difficult multi-
classification problem, that will be substantially benefited from the results of this 
exploratory research for the most frequent objects to model in these complex envi-
ronments. Overall, a training library of the object classes that are critical for industrial 
facility operations, frequent in industrial environments and laborious to model can be 
established to assist further research aimed at automated detection of these classes. 
Application of the findings of this paper will guide researchers on investigating meth-
ods for automatically modelling these objects. 
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