238 research outputs found

    Large System Analysis of Power Normalization Techniques in Massive MIMO

    Get PDF
    Linear precoding has been widely studied in the context of Massive multiple-input-multiple-output (MIMO) together with two common power normalization techniques, namely, matrix normalization (MN) and vector normalization (VN). Despite this, their effect on the performance of Massive MIMO systems has not been thoroughly studied yet. The aim of this paper is to fulfill this gap by using large system analysis. Considering a system model that accounts for channel estimation, pilot contamination, arbitrary pathloss, and per-user channel correlation, we compute tight approximations for the signal-to-interference-plus-noise ratio and the rate of each user equipment in the system while employing maximum ratio transmission (MRT), zero forcing (ZF), and regularized ZF precoding under both MN and VN techniques. Such approximations are used to analytically reveal how the choice of power normalization affects the performance of MRT and ZF under uncorrelated fading channels. It turns out that ZF with VN resembles a sum rate maximizer while it provides a notion of fairness under MN. Numerical results are used to validate the accuracy of the asymptotic analysis and to show that in Massive MIMO, non-coherent interference and noise, rather than pilot contamination, are often the major limiting factors of the considered precoding schemes.Comment: 12 pages, 3 figures, Accepted for publication in the IEEE Transactions on Vehicular Technolog

    Asymptotic Analysis of Multicell Massive MIMO over Rician Fading Channels

    Get PDF
    This work considers the downlink of a multicell massive MIMO system in which LL base stations (BSs) of NN antennas each communicate with KK single-antenna user equipments randomly positioned in the coverage area. Within this setting, we are interested in evaluating the sum rate of the system when MRT and RZF are employed under the assumption that each intracell link forms a MIMO Rician fading channel. The analysis is conducted assuming that NN and KK grow large with a non-trivial ratio N/KN/K under the assumption that the data transmission in each cell is affected by channel estimation errors, pilot contamination, and an arbitrary large scale attenuation. Numerical results are used to validate the asymptotic analysis in the finite system regime and to evaluate the network performance under different settings. The asymptotic results are also instrumental to get insights into the interplay among system parameters.Comment: 7 pages, 2 figures, submitted to GLOBECOM16, Washington, DC USA. arXiv admin note: text overlap with arXiv:1601.0702

    Jamming Resistant Receivers for Massive MIMO

    Full text link
    We design jamming resistant receivers to enhance the robustness of a massive MIMO uplink channel against jamming. In the pilot phase, we estimate not only the desired channel, but also the jamming channel by exploiting purposely unused pilot sequences. The jamming channel estimate is used to construct the linear receive filter to reduce impact that jamming has on the achievable rates. The performance of the proposed scheme is analytically and numerically evaluated. These results show that the proposed scheme greatly improves the rates, as compared to conventional receivers. Moreover, the proposed schemes still work well with stronger jamming power.Comment: Accepted in the 42nd IEEE Int. Conf. Acoust., Speech, and Signal Process. (ICASSP2017

    Massive MIMO has Unlimited Capacity

    Full text link
    The capacity of cellular networks can be improved by the unprecedented array gain and spatial multiplexing offered by Massive MIMO. Since its inception, the coherent interference caused by pilot contamination has been believed to create a finite capacity limit, as the number of antennas goes to infinity. In this paper, we prove that this is incorrect and an artifact from using simplistic channel models and suboptimal precoding/combining schemes. We show that with multicell MMSE precoding/combining and a tiny amount of spatial channel correlation or large-scale fading variations over the array, the capacity increases without bound as the number of antennas increases, even under pilot contamination. More precisely, the result holds when the channel covariance matrices of the contaminating users are asymptotically linearly independent, which is generally the case. If also the diagonals of the covariance matrices are linearly independent, it is sufficient to know these diagonals (and not the full covariance matrices) to achieve an unlimited asymptotic capacity.Comment: To appear in IEEE Transactions on Wireless Communications, 17 pages, 7 figure
    corecore