80 research outputs found

    Piecewise-polynomial associated transform macromodeling algorithm for fast nonlinear circuit simulation

    Get PDF
    We present a piecewise-polynomial based associated transform algorithm (PWPAT) for macromodeling nonlinear circuits in system-level circuit design. The generated reduced model can provide both global and local accuracies with the most compact dimension. Numerical examples compare it with existing algorithms and verify its superior accuracy in higher order harmonics simulation over traditional Trajectory Piecewise-Linear (TPWL) approach. © 2013 IEEE.published_or_final_versio

    Addressing Computational Complexity of High Speed Distributed Circuits Using Model Order Reduction

    Get PDF
    Advanced in the fabrication technology of integrated circuits (ICs) over the last couple of years has resulted in an unparalleled expansion of the functionality of microelectronic systems. Today’s ICs feature complex deep-submicron mixed-signal designs and have found numerous applications in industry due to their lower manufacturing costs and higher performance levels. The tendency towards smaller feature sizes and increasing clock rates is placing higher demands on signal integrity design by highlighting previously negligible interconnect effects such as distortion, reflection, ringing, delay, and crosstalk. These effects if not predicted in the early stages of the design cycle can severely degrade circuit performance and reliability. The objective of this thesis is to develop new model order reduction (MOR) techniques to minimize the computational complexity of non-linear circuits and electronic systems that have delay elements. MOR techniques provide a mechanism to generate reduced order models from the detailed description of the original modified nodal analysis (MNA) formulation. The following contributions are made in this thesis: 1. The first project presents a methodology for reduction of Partial Element Equivalent Circuit (PEEC) models. PEEC method is widely used in electromagnetic compatibility and signal integrity problems in both the time and frequency domains. The PEEC model with retardation has been applied to 3-D analysis but often result in large and dense matrices, which are computationally expensive to solve. In this thesis, a new moment matching technique based on Multi-order Arnoldi is described to model PEEC networks with retardation. 2. The second project deals with developing an efficient model order reduction algorithm for simulating large interconnect networks with nonlinear elements. The proposed methodology is based on a multidimensional subspace method and uses constraint equations to link the nonlinear elements and biasing sources to the reduced order model. This approach significantly improves the simulation time of distributed nonlinear systems, since additional ports are not required to link the nonlinear elements to the reduced order model, yielding appreciable savings in the size of the reduced order model and computational time. 3. A parameterized reduction technique for nonlinear systems is presented. The proposed method uses multidimensional subspace and variational analysis to capture the variances of design parameters and approximates the weakly nonlinear functions as a Taylor series. An SVD approach is presented to address the efficiency of reduced order model. The proposed methodology significantly improves the simulation time of weakly nonlinear systems since the size of the reduced system is smaller than the original system and a new reduced model is not required each time a design parameter is changed

    Stochastic macromodeling for efficient and accurate variability analysis of modern high-speed circuits

    Get PDF

    Tensor Computation: A New Framework for High-Dimensional Problems in EDA

    Get PDF
    Many critical EDA problems suffer from the curse of dimensionality, i.e. the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g. 3-D field solvers discretizations and multi-rate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g. full-chip routing/placement and circuit sizing), or extensive process variations (e.g. variability/reliability analysis and design for manufacturability). The computational challenges generated by such high dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.Comment: 14 figures. Accepted by IEEE Trans. CAD of Integrated Circuits and System

    Delay Extraction based Macromodeling with Parallel Processing for Efficient Simulation of High Speed Distributed Networks

    Get PDF
    This thesis attempts to address the computational demands of accurate modeling of high speed distributed networks such as interconnect networks and power distribution networks. In order to do so, two different approaches towards modeling of high speed distributed networks are considered. One approach deals with cases where the physical characteristics of the network are not known and the network is characterized by its frequency domain tabulated data. Such examples include long interconnect networks described by their Y parameter data. For this class of problems, a novel delay extraction based IFFT algorithm has been developed for accurate transient response simulation. The other modeling approach is based on a detailed knowledge of the physical and electrical characteristics of the network and assuming a quasi transverse mode of propagation of the electromagnetic wave through the network. Such problems may include two dimensional (2D) and three dimensional (3D) power distribution networks with known geometry and materials. For this class of problem, a delay extraction based macromodeling approaches is proposed which has been found to be able to capture the distributed effects of the network resulting in more compact and accurate simulation compared to the state-of-the-art quasi-static lumped models. Furthermore, waveform relaxation based algorithms for parallel simulations of large interconnect networks and 2D power distribution networks is also presented. A key contribution of this body of work is the identification of naturally parallelizable and convergent iterative techniques that can divide the computational costs of solving such large macromodels over a multi-core hardware

    Layout-level Circuit Sizing and Design-for-manufacturability Methods for Embedded RF Passive Circuits

    Get PDF
    The emergence of multi-band communications standards, and the fast pace of the consumer electronics markets for wireless/cellular applications emphasize the need for fast design closure. In addition, there is a need for electronic product designers to collaborate with manufacturers, gain essential knowledge regarding the manufacturing facilities and the processes, and apply this knowledge during the design process. In this dissertation, efficient layout-level circuit sizing techniques, and methodologies for design-for-manufacturability have been investigated. For cost-effective fabrication of RF modules on emerging technologies, there is a clear need for design cycle time reduction of passive and active RF modules. This is important since new technologies lack extensive design libraries and layout-level electromagnetic (EM) optimization of RF circuits become the major bottleneck for reduced design time. In addition, the design of multi-band RF circuits requires precise control of design specifications that are partially satisfied due to manufacturing variations, resulting in yield loss. In this work, a broadband modeling and a layout-level sizing technique for embedded inductors/capacitors in multilayer substrate has been presented. The methodology employs artificial neural networks to develop a neuro-model for the embedded passives. Secondly, a layout-level sizing technique for RF passive circuits with quasi-lumped embedded inductors and capacitors has been demonstrated. The sizing technique is based on the circuit augmentation technique and a linear optimization framework. In addition, this dissertation presents a layout-level, multi-domain DFM methodology and yield optimization technique for RF circuits for SOP-based wireless applications. The proposed statistical analysis framework is based on layout segmentation, lumped element modeling, sensitivity analysis, and extraction of probability density functions using convolution methods. The statistical analysis takes into account the effect of thermo-mechanical stress and process variations that are incurred in batch fabrication. Yield enhancement and optimization methods based on joint probability functions and constraint-based convex programming has also been presented. The results in this work have been demonstrated to show good correlation with measurement data.Ph.D.Committee Chair: Swaminathan, Madhavan; Committee Member: Fathianathan, Mervyn; Committee Member: Lim, Sung Kyu; Committee Member: Peterson, Andrew; Committee Member: Tentzeris, Mano

    Parameterized macromodeling of passive and active dynamical systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Time-Domain Macromodeling of High Speed Distributed Networks

    Get PDF
    With the rapid growth in density, operating speeds and complexity of modern very-large-scale integration (VLSI) circuits, there is a growing demand on efficient and accurate modeling and simulation of high speed interconnects and packages in order to ensure the signal integrity, reliability and performance of electronic systems. Such models can be derived from the knowledge of the physical characteristics of the structure or based on the measured port-to-port response.In the first part of this thesis, a passive macromodeling technique based on Method of Characteristics (referred as Passive Method of Characteristics or PMoC) is described which is applicable for modeling of electrically long high-speed interconnect networks. This algorithm is based on extracting the propagation delay of the interconnect followed by a low order rational approximation to capture the attenuation effects. The key advantage of the algorithm is that the curve fitting to realize the macromodel depends only on per-unit-length (p.u.l.) parameters and not on the length of the transmission line. In this work, the PMoC is developed to model multiconductor transmission lines.Next, an efficient approach for time domain sensitivity analysis of lossy high speed interconnects in the presence of nonlinear terminations is presented based on PMoC. An important feature of the proposed method is that the sensitivities are obtained from the solution of the original network, leading to significant computational advantages. The sensitivity analysis is also used to optimize the physical parameters of the network to satisfy the required design constraints. A time-domain macromodel for lossy multiconductor transmission lines exposed to electromag¬netic interference is also described in this thesis based on PMoC. The algorithm provides an efficient mechanism to ensure the passivity of the macromodel for different line lengths. Numerical examples illustrate that when compared to other passive incident field coupling algorithms, the proposed method is efficient in modeling electrically long interconnects since delay extraction without segmentation is used to capture the frequency response.In addition, this thesis discusses macromodeling techniques for complex packaging structures based on the frequency-domain behavior of the system obtained from measurements or electromagnetic simulators. Such techniques approximate the transfer function of the interconnect network as a rational function which can be embedded with modern circuit simulators with integrated circuit emphasis (SPICE). One of the most popular tools for rational approximations of measured or simulated data is based on vector fitting (VF) algorithms. Nonetheless, the vector fitting algorithms usually suffer convergence issues and lack of accuracy when dealing with noisy measured data. As a part of this thesis, a methodology is presented to improve the convergence and accuracy issues of vector fitting algorithm based on instrumental variable technique. This methodology is based on obtaining the “instruments” in an iterative manner and do not increase the complexity of vector fitting to capture the frequency response and minimize the biasing
    corecore