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Abstract 

With the increase in signal speeds in VLSI systems, distributed effects arising in passive 

components such as high speed interconnects and power distribution networks are the main 

contributors of signal and power degradation at chip, package and board levels. As a result, 

computer aided design strategies targeting modeling and simulation of such high speed 

systems at the early design stages are critical requirements for VLSI designers. However, the 

computational demand of accurately capturing the distributed nature of such components is a 

major bottleneck facing traditional circuit solvers.  

This thesis deals with two different approaches towards modeling of high speed distributed 

networks. One approach deals with cases where the physical characteristics of the network 

are not available and the network is characterized by its frequency domain, multiport 

tabulated data. The other approach is based on a detailed knowledge of the physical and 

electrical characteristics of the network and assuming a quasi transverse mode of propagation 

of the electromagnetic wave through the network. 

In the first part of the thesis, a delay extraction based IFFT algorithm is described for the 

accurate macromodeling of electrically long interconnect networks characterized by its 

frequency domain, multiport Y parameter data. An important feature of this work is the 

ability to extract the higher order delays and the associated attenuation losses embedded in 

the data via time-frequency decompositions. The effect of including the higher order delays 

have been shown to lead to greater accuracy over existing direct IFFT or even single delay 

extraction based IFFT techniques for transient simulation. 
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The next part of this thesis deals with developing accurate broadband macromodels for 

package/board level power distribution networks (PDNs) where prior knowledge of the 

physical and electrical characteristics of the network is readily available. The proposed 

macromodeling technique is based on a delay extraction feature and has been readily applied 

to two dimensional (2D) and three dimensional (3D) PDNs with irregular geometries. The 

key advantage of the algorithm is that through explicit delay extraction, the distributed nature 

of the PDNs can be accurately captured, leading to more compact and more accurate 

broadband simulation of the network as compared to traditional lumped modeling 

approaches. 

Finally, waveform relaxation (WR) based algorithms for parallel simulations of large 

multiconductor interconnect networks and 2D PDNs are presented.  A key contribution of 

this body of work is the identification of naturally parallelizable and convergent iterative 

techniques that can divide the computational costs of solving such large macromodels over a 

multi-core hardware. Additional techniques to accelerate convergence, reduce the simulation 

cost per iteration as well as communication overheads among the cores have been described. 

Numerical examples are provided to illustrate the superior scalability of the proposed 

algorithm with respect to the size of the network and available parallel processors when 

compared to conventional sequential modeling approaches. 

Keywords: Convergence, Delay extraction, Electromagnetic interference, High speed 

interconnects, Iterative algorithms, Macromodeling, Multiconductor transmission lines, 

Parallel processing, Power distribution networks, Power integrity, Signal integrity, 

Waveform relaxation. 
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Chapter 1  
 

1 Introduction 
 

 

1.1 Background and Motivation 

Computer aided design (CAD) has become an integral step in the design, analysis and testing 

of very large scale integrated (VLSI) circuits and their packaging into electronic products. 

Through CAD, it has now become possible to perform complex sensitivity analyses, 

tolerance analyses and optimization studies of VLSI circuit design at the push of a button 

leading to easier understanding of design roadblocks and performance tradeoffs. However, 

for CAD to remain relevant, the simulations tools have to be able to take into account the 

rapid growth in packaging density, operating speeds and diverse functionality of modern 

integrated circuits (ICs). 

A key aspect of CAD is signal integrity analysis. Signal integrity analysis is the investigation 

of signal quality as it travels through high speed interconnects. At high frequencies of 

operation, interconnects behave like distributed transmission lines. This distributed 

performance of interconnects are often the reason behind effects such as signal delay, 
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distortion, attenuation, electromagnetic interference (EMI), ringing and crosstalk which can 

severely degrade system performance  and  even lead to false switching of logic gates and 

damage terminating electronic circuits [1]-[3]. 

Another critical area of CAD is power integrity analysis. Power integrity analysis is the study 

of the distribution of the power supply to the active electronic circuits through power 

distribution networks (PDNs) [4]-[5]. Like high speed interconnects, PDNs are distributed 

networks and often are the sites of resonance, ground bounce, simultaneous switching noise 

(SSN), electromagnetic radiation and return path discontinuities (RPDs). Such effects not 

only lead to unreliable power distribution within the system but when coupled to the signal 

network, can adversely affect the signal quality as well [5]. 

Based on the above discussion, it is noted that accurate modeling of interconnects and PDNs 

are extremely important for the early stages of iterative electronic product design. However, 

commercial circuit simulators with integrated circuit emphasis such as SPICE [6] are 

typically unable to perform simulation of distributed networks terminated by nonlinear 

circuits (typically complementary metal oxide semiconductor (CMOS) circuits) as they suffer 

from the frequency/time mismatch problem. This frequency/time mismatch problem arises 

from the fact that distributed networks are described by partial differential equations (PDE) 

which are well represented in the frequency domain, whereas the transient responses of 

nonlinear circuits are described in the time domain by nonlinear differential equations. 

Hence, in order to perform transient analysis of distributed networks terminated by nonlinear 

CMOS circuits, macromodeling algorithms are required to convert the governing PDEs into a 

matrix of ordinary differential equations (ODE)  in the time domain [1]-[3].  
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Macromodeling algorithms can be categorized into two classes – one class of algorithms deal 

with modeling of networks where no knowledge of the physical characteristics of the 

network structure is available whereas another class of algorithms deals with modeling of 

networks where a priori knowledge of the physical characteristics of the network is available 

and assuming a quasi transverse electromagnetic (TEM) mode of propagation through the 

network.  

For the case where no knowledge of the physical characteristics of the network exists, the 

network is characterized by frequency domain, multiport tabulated data obtained either from 

electromagnetic simulations or from measurements [7]-[21]. The behavior of high speed 

distributed networks can be represented by frequency-dependent admittance, impedance, or 

scattering parameters. It is noted that although an inverse fast Fourier transform (IFFT) can 

be used to convert the multiport, frequency domain data into time domain for transient 

analysis, since the tabulated data is bandlimited, direct IFFT cannot explicitly enforce the 

delay of the port-to-port transfer functions and result in significant error in signal integrity 

analysis [19]. In a recent work [19], a single delay extraction based IFFT macromodel was 

developed. This algorithm was found to be highly accurate for networks with one dominant 

delay. However, this technique was unable to capture higher order delays due to multiple 

reflections at the far end of the network and hence has accuracy problems for general 

distributed networks with multiple dominant delays in the transfer function [21]. 

Macromodeling algorithms of a network with known physical characteristics can be either 

based on quasi-static lumped modeling algorithms or delay extraction based algorithms. 

Lumped modeling techniques include lumped resistive-inductive-conductive-capacitive 
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RLGC macromodel (for interconnect networks [1] and for PDNs [5]-[22]), PRIMA [23] and 

matrix rational approximation (MRA) [24]-[25], to name a few. The advantage of these 

algorithms is that they can be made to be passive by construction. However, lumped models 

attempt to implicitly approximate the delay of distributed networks such as high speed 

interconnects and PDNs as a rational function and hence require high order approximations 

to accurately capture the high frequency poles contributed by the delay portion of the transfer 

function. This leads to exorbitantly large models which are inefficient for use in the early 

design cycles.  

On the other hand, delay extraction based techniques explicitly extract the delay of the 

network, thereby explicitly capturing most of the high frequency poles of the transfer 

function. The remainder of the transfer function can be approximated using a low order 

rational approximation leading to relatively compact and more accurate models than lumped 

modeling techniques. The generalized method of characteristics (MoC) is one such algorithm 

which has proved to be very efficient for long, low loss interconnect modeled as 

multiconductor transmission lines (MTLs) [26]-[30]. However, a major limitation of MoC is 

the potential loss of passivity that can occur in the model. Since transmission lines are 

passive elements, loss of passivity of the macromodel can leads to unstable results in the 

transient simulation even when terminated with passive circuits [8].  

Recently, the delay extraction based passive macromodeling algorithm (DEPACT) has been 

found to provide very good results for modeling long interconnects compared to lumped 

models [31]-[32]. Not only does the DEPACT use a delay extraction feature for efficient 

analysis of electrically long networks but is also passive by construction, unlike the 
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generalized MoC algorithm. Nonetheless, the DEPACT being a sectioning based model, its 

accuracy depends on the losses of the interconnect network, line length and the maximum 

frequency of operation. As these parameters increase, additional sections need to be added 

thereby augmenting the computational costs of the algorithm. Thus, attempts to mitigate the 

rapid increase in simulation cost of the DEPACT algorithm with the network size and 

frequency of operation are still an open problems. Recently the delay extraction based W-

element model (based on the MoC and provided by the SPICE platform) has been utilized to 

efficiently model single layered PDNs [33].  

 

1.2 Objectives and Contributions 

The objective of this thesis is to develop efficient broadband macromodeling algorithms for 

distributed networks such as high speed interconnects and PDNs and the following 

contribution are presented in this thesis. 

Firstly, a delay extraction based IFFT algorithm is proposed for accurate and delay-causal 

transient analysis of high speed interconnects characterized by their frequency domain, 

multiport Y parameter data. The proposed algorithm uses time-frequency decompositions to 

extract multiple propagation delays and the associated attenuation losses from the frequency 

domain data in a piecewise manner, and then implements IFFT to efficiently convert the 

frequency response into a sum of delayed time domain responses. Numerical examples 

illustrate that the proposed algorithm shows significantly more accurate results for networks 

with multiple delays when compared to existing IFFT based macromodels. 
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Secondly, for PDNs where the physical characteristics of the structure are known and the 

electrical model can be derived from the discretization of the Helmholtz wave equation, 

novel delay extraction based modeling techniques have been developed. These techniques are 

based on the extension of the one dimensional (1D) DEPACT algorithm to the single layered 

(2D) and multilayered (3D) PDN structures in presence of holes, apertures and irregular 

geometry. Numerical examples have been performed to demonstrate the efficiency and 

accuracy advantages of the DEPACT algorithm for these 2D and 3D problems compared to 

the existing lumped modeling techniques. 

Thirdly, for the parallel simulation of electrically long interconnects, a longitudinal 

partitioning based waveform relaxation (LP-WR) algorithm is developed. The key feature of 

this WR algorithm is that it exploits the DEPACT algorithm to ensure weak coupling 

between the subcircuits and consequently provides swift convergence. Furthermore, a hybrid 

iterative technique that combines the high parallelizability of Gauss-Jacobi iterative 

algorithms with the fast convergence of Gauss-Seidel iterative algorithms has been 

developed for further accelerating the convergence of the WR iterations. The overall 

algorithm exhibits good scaling with both the size of the network involved and the number of 

CPUs available leading to significant improvement in the computational costs over 

sequential SPICE algorithms.  

Fourthly, electromagnetic interference (EMI) analysis of high speed interconnects using the 

above LP-WR algorithm has been proposed as well. A key feature of this work is that the 

benefits of parallel processing and the hybrid WR iterations can be easily extended to the 
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problem where EMI analysis is required. Hence, the proposed parallelizable algorithm is 

significantly more efficient than sequential SPICE algorithms for EMI.  

Finally, the proposed WR algorithm has been extended to the problem of efficient modeling 

of singly layered (2D) PDNs. For PDN problems, the longitudinal partitioning algorithm and 

the hybrid WR iterations have been extended to a 2D partitioning scheme compatible with a 

2D hybrid WR iterations. The overall algorithm retains its highly parallelizable and exhibits 

good scaling with both the size of the PDN involved and the number of CPUs available, 

similar to what has been observed for interconnect problems. 

  

1.3 Organization of the Thesis  

The thesis is organized as follows. Chapter 2 reviews the existing state of art for 

macromodeling of high speed interconnects and PDNs. This chapter covers both classes of 

macromodeling techniques – those based on port-to-port tabulated data as well as those based 

on quasi-TEM mode of propagation where the physical structure of the network is known. 

Moreover, a review of existing longitudinal partitioning based WR algorithms is also 

provided. Chapter 3 deals with the development of the proposed delay extraction based IFFT 

algorithm for macromodeling of interconnects characterized by port-to-port tabulated data. 

Examples are provided to compare the proposed work with pure IFFT based techniques and 

single delay extraction  based IFFT techniques. Chapter 4 deals with the development of the 

delay extraction based macromodeling techniques for single layered (2D) and multilayered 

(3D) PDN structures. Numerical examples are provided to demonstrate the efficient and 
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accuracy of the proposed algorithms with respect to existing lumped techniques. Chapter 5 

covers the proposed LP-WR algorithm for high speed interconnects and provides examples to 

demonstrate the advantages of this WR technique over sequential algorithms and other 

existing longitudinal partitioning based WR algorithms. Chapter 6 extends the LP-WR 

algorithm of Chapter 5 to the problem of EMI in high speed interconnects and chapter 7 

covers the extension of the proposed WR algorithm to the 2D problem of PDNs. Finally, 

Chapter 8 summarizes the proposed work and also presents some suggestions for future 

related work. 
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Chapter 2  
 

2 Background and Literature Review 
 

 

2.1 Introduction 

Interconnects provide the physical path for the signal to propagate between electrical 

devices in chips, electrical packages, printed circuit boards (PCB) etc. At low 

frequencies, interconnects can be modeled using a quasi-static lumped electrical RLGC 

model [1]-[2]. However, at high frequencies, when the wavelength of the travelling 

electromagnetic wave surrounding the conductors are much smaller than the line length, 

interconnects behave as distributed transmission lines and this distributed nature of 

performance is responsible for non ideal effects such as signal delay, distortion, 

attenuation, ringing and crosstalk [1], [2]. Similarly, PDNs at low frequencies behave as 

purely capacitive elements while at high frequencies they too exhibit distributed behavior 

[5]. In course of this chapter, the state of the art regarding macromodeling of such high 

speed distributed networks will be reviewed. The organization of this chapter is as 

follows: Section 2.2 explains macromodeling of high speed interconnect networks which 

are characterized by frequency domain, multiport tabulated data while Section 2.3 covers 
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the modeling of PDN structures using the conventional lumped electrical RLGC model. 

Section 2.4 explains macromodeling of high speed interconnect networks derived from 

quasi-TEM mode of propagation and Section 2.5 provides several transmission line 

macromodels for nonlinear circuit simulators. Finally, Section 2.6 describes existing WR 

techniques for parallel simulation of large networks. 

 

2.2 Macromodeling based on Measured Data 

Typically large interconnect networks can be characterized by their frequency domain, 

multiport admittance (Y), impedance (Z), or scattering (S) parameters obtained as 

tabulated data [7]-[21]. The goal of macromodeling is to derive accurate models based on 

this tabulated data which can then be reused for any arbitrary terminations.  

Presently, there are two approaches towards deriving macromodels of interconnect 

networks characterized by band limited frequency domain data. One approach is based on 

approximating the tabulated data using rational functions via least squares curve fitting 

techniques such as vector fitting (VF) [10] and interpolation-based complex rational 

approximation [7]-[8]. In the time domain, the rational macromodel can be analytically 

represented as a sum of decaying exponentials and convoluted with any input signal 

using the recursive convolution technique [34]. The drawback of such rational 

macromodeling techniques lie in the fact that they attempt to implicitly capture the delay 

feature of the transfer function using rational basis functions and consequently require a 

large number of rational functions for broadband macromodels. Since the memory and 

time complexities associated with rational curve fitting scale as O(Np
2
) and O(Np

4
) 
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respectively, where Np is the number of identified poles, for conventional rational 

modeling of interconnect networks, Np may be exorbitantly large and such models are 

computationally expensive to obtain [19]. Furthermore, passivity constraints need to be 

satisfied by the derived rational models in order to guarantee stable responses for the 

model connected to any arbitrary terminations [8]. Typical passivity enforcement 

techniques, such as that reported in [35], result in additional post processing and may 

increase the incurred computational costs.  

Recently, new curve fitting techniques have been proposed based on delayed rational 

macromodeling techniques [17]-[18]. These techniques extract the propagation delays 

from the tabulated data while the remaining attenuation losses of the frequency response 

are approximated using rational curve fitting. This allows the time domain transfer 

function to be obtained as a sum of delayed exponentials which can be convoluted with 

any given input using the recursive convolution technique [34]. While such models are 

more compact in nature, they still require additional passivity enforcement schemes 

before they can be integrated with any arbitrary circuit termination.  

An alternative approach seeks to simply perform an IFFT operation to convert the 

tabulated frequency domain data into time domain data, which can then be convoluted 

with any input using a numerical convolution technique. The advantages of an IFFT 

operation lies in the fact that it does not require a least square fitting operation and hence 

avoids the large memory and time constraints of such techniques. Moreover, an IFFT 

operation does not require any passivity enforcement. However, these techniques are not 

delay-causal by construction which is defined as an impulse response equal to zero for t < 

tp, where tp is the propagation delay of the system [19]. This is because a direct IFFT of a 
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band limited data does not explicitly preserve the delay of the transfer function and leads 

to signal fluctuations in early time [21]. In order to preserve the delay causality of the 

model, a single delay extraction based IFFT algorithm was proposed in [19] and is 

reviewed below. 

Let us consider an interconnect network characterized by its frequency domain, multiport 

Y parameter data as 

),..,1,()];([)( PjisYs ij Y                                            (2.1) 

where                                         

                                                ijsT

ijij esHsY


 )()(                                                      (2.2) 

and Hij represents the remainder of the transfer function once the dominant delay Tij has 

been extracted. From (2.1), it is noted that 

|)(||)(| sHsY ijij                                                          (2.3) 

Based on (2.3), arg(Hij) can be obtained from the Hilbert transform as 



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 




d
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js
jYsH ijij )

2
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2

1
))(arg(                                 (2.4) 

where ρ is the Cauchy's principal value of the integral and arg(x) is the argument of x 

[19]. Based on the knowledge of (2.3)-(2.4), the dominant delay Tij can be approximated 

as 



13 

 






























)(

)(
arg

sH

sY
slopeavgT

ij

ij
ij                                             (2.5) 

where avg(x) represents the average of a tabulated data x. Once the delay Tij has been 

extracted, performing the IFFT on Hij and enforcing the extracted delay yields a delay-

causal response. Due to the explicit delay enforcement feature of this algorithm, it 

provides more accurate transient results compared to directly implementing IFFT on the 

data.  

It is noted, however that for the Hilbert transform of (2.4), Hij has to be a minimum phase 

response (i.e. it does not have any poles or zeros in the right half of the Laplace plane) 

[36]. This is true if there are no higher order delays embedded in Hij or if the higher order 

delays have very little contribution to the function Hij. This is because any general delay 

terms ( sTe ) embedded in Hij may contribute zeroes in the right half of the Laplace plane. 

However, multiple reflections of the signal at the terminations of interconnect networks 

may result in significantly large higher order delays. As a result, sophisticated algorithms 

to extract the higher order delays are required for the case when Hij may not exactly be a 

minimum phase response.  

 

2.3 Macromodeling of Power Distribution Networks 

Power Distribution Networks (PDNs) provide a path for the power supply to the core 

logic circuits and I/O drivers of high speed digital systems [4]-[5]. Ideally PDN should 

exhibit low impedance over a large frequency range of operation so that the transient 
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currents induced by the simultaneous switching of digital circuits do not lead to excessive 

noise propagation over the PDN [4]-[5]. However with the progressive increase in clock 

speed, scaling of supply voltage, high switching speed of logic circuits and reduced noise 

margins, effects like ground bounce, EM interference and SSN noise arising in the PDNs 

can quickly lead to undesirable voltage fluctuations and propagation delays in chip, board 

and packaging levels. Hence PDNs are fast emerging as a critical area for 

electromagnetic compatibility (EMC) and power integrity (PI) verification for high speed 
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Figure 2-1: Modeling of PDN. (a)  Single layered PDN. (b) Discretization of PDN into 

unit cells. 
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Figure 2-2: π representation of a unit cell. Each Z and Y block can be modeled using 

quasi-static lumped RLGC network [5]. 
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packages. 

2.3.1 Single Layered PDNs 

A PDN consisting of a rectangular signal/ground plane with single layered dielectric in 

between and assumed to be free of any surface irregularity is considered in Fig. 2-1(a). 

This PDN is typically represented in the frequency domain by the Helmholtz PDE [5]. In 

order to derive a macromodel that can represent the electrical performance of the PDN, 

typically finite difference discretization of the Helmholtz PDE is performed. Such a 

discretization of the PDE can be physically visualized as the discretization of the 

geometry into a grid of unit cells as shown in Fig. 2-1(b). The equivalent circuit 

representing a unit cell can be obtained from the physical and electrical parameters of the 

plane using a quasi-static model provided the dielectric separation between the power and 

ground plane pairs is much smaller compared to the dimensions of the plane [5]. 

Considering a square unit cell of dimensions (l) with a dielectric separation of (d) 

between planes, thickness of metal (t), metal conductivity (ζ), loss tangent ( ) and 

relative permittivity ( r ), the equivalent electrical parameters are  









0

2

2),tan(

,,,
2

s
RCG

dL
d

l
C

t
R

s

oro





                                    (2.6) 

where s =2jπf is the Laplace variable, f is the instantaneous frequency, ε0 and µ0 are the 

permittivity and the permeability of free space, εr  is the relative permittivity of the 

dielectric and R, L, G, C and Rs are the resistive, inductive, capacitive, conductive and 

skin effect losses contribution of the unit cell respectively [5]. Based on the parameters of 

(2.6), each unit cell of Fig. 2.1(b) can be represented by a π model as shown in Fig. 2-2 
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[5]. In particular, the Z and Y blocks of the π model can be realized using RL and RC 

ladder networks respectively as explained in [5] thereby allowing for their SPICE 

implementation. 

2.3.2 Multilayered PDNs 

Realistic multilayered PDN designs consist of multiple irregular shaped planes stacked 

vertically. Due to the presence of apertures, holes and irregular geometry of the planes, 

wraparound currents are supported on the plane layers which lead to the electromagnetic 

(EM) coupling between individual planes in the transverse direction [5], [37].  

For multilayered PDNs, modeling techniques based on the multilayered finite difference 

method (MFDM) has been proposed [37]. This MFDM model discretizes the 

multilayered PDN structure to yield an equivalent three dimensional (3D) lumped circuit 

model which can be directly realized in SPICE for both frequency and transient analysis. 

In order to understand how that is possible, the illustrative example consisting of four 

d1

d2

d3

a

         

d1
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d3

+

 

(a)                                                                         (b) 

Figure 2-3: Illustrative example of multilayered PDN. (a) Original four layered structure 

(b) Original structure decomposed into two separate multilayered structures. 
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vertically stacked square planes as shown in Fig. 2-3(a) is considered. It is observed that 

the presence of an aperture in the middle planes will give rise to wraparound currents 

thereby leading to EM coupling between all four planes. The coupled four plane structure 

can be considered as made up of two separate multilayered PDN structure consisting of 

four and two layers as shown in Fig. 2-3(b). For any multilayered structures of Fig. 2-

3(b), each i
th

 plane assigns the i+1
th

 plane below it as its local reference plane. In other 

words, considering a current on the bottom of the i
th

 plane, the return path for the same 

current is considered to exist on the top of the i+1
th

 plane below.  

A common methodology of modeling the multilayered PDNs of Fig. 2-3(b) is by 

discretizing the structures into numerous multilayered unit cells based on a finite 

difference treatment of the Helmholtz equation [37]. A unit cell of the four layered PDN 

section of Fig. 2-3(b) is shown in Fig. 2-4(a). The resistive (Ri), inductive (Li), capacitive 

(Ci), conductive (Gi) and skin effect loss ( iR̂ ) parameters of each i
th

 plane of the unit cell 
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          (a)                                                                   (b) 

Figure 2-4: (a) Unit cell from the four layered PDN of Figure 2-3. (b) Lumped π model 

of unit cell. 
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of Fig. 2-3(a) with respect to its local reference (i+1
th

 plane of the unit cell of Fig. 2-4(a)) 

can be described using a quasi-static model provided the dielectric separation between the 

planes is much smaller compared to the dimensions of the plane similar to what has 

already been done in (2.6) [5]. In order to obtain an equivalent circuit model of Fig. 2-

4(a) compatible with SPICE, the local reference planes of Fig. 2-4(a) are replaced by a 

single common ground plane which is taken as the bottommost planes in the stacked 

structures. As a result, the electrical parameters of each i
th

 plane of the unit cell of Fig. 2-

4(a) with respect to the common ground is obtained as [5], [37]  
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where jijijiji RGCL ,,,, ,,, and jiR ,
ˆ  represent the coupling term between the  i

th
 and  j

th
 

plane for 1,1  Nji  and N represents the total number of PDN layers (i.e. N = 4 for 

Fig. 2-4). It is noted that (2.7) represent the transverse coupling due to the magnetic flux 

and (2.8) represents the transverse coupling due to the electric field through the dielectric. 
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Overall, (2.7)-(2.9) provides a generalized quantification of the coupling of any general N 

layered PDN. Based on (2.7)-(2.9), the equivalent lumped π-model representing each unit 

cell is illustrated in Fig. 2-4(b) [37] where each of the Z and Y blocks of Fig. 2-4(b) is 

realized in SPICE using a lumped RL and RC network respectively [5].  

For the accurate modeling of the distributed nature of PDNs, the geometric dimensions of 

each unit cells of Fig. 2-1(b) (single layered PDNs) and Fig. 2.4(a) (multilayered PDNs) 

has to be very small compared to the PDN dimensions. This leads to very large modified 

nodal analysis (MNA) matrices representing the PDN when realized using commercial 

circuit simulators like SPICE. Furthermore, realization of the frequency dependent 

parameters of (2.7)-(2.9) using lumped RL/RC ladder networks as proposed in [5], [37] 

will lead to introduction of additional nodes and further augmentation of the MNA 

matrices. Thus, computational costs of modeling PDNs are typically expensive and 

alternative methodologies for efficient modeling of PDNs are still being investigated. 

 

Ground plane

ε, μ0

Interconnect
Substrate

Interconnect

Substrate

 

Figure 2-5:  Three-dimensional and cross sectional views of an interconnect structure. 
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2.4 High Speed Interconnect Modeling 

Figure 2-5 shows the physical structure of a typical interconnect network.  The 

complexity of the interconnect macromodel depends on the physical dimensions and 

operating frequency of the circuit. For cases where the minimum wavelength of the 

travelling electromagnetic wave through the medium is comparable with the cross 

sectional dimensions of the interconnect network, full wave models are required. On the 

other hand, as long as the minimum wavelength of the travelling electromagnetic wave is 

much larger than the cross sectional dimensions of the interconnect network, a TEM 

mode of propagation is the dominant mode of wave propagation. In TEM mode of 

propagation, the electric and magnetic fields surrounding the space around the line 

conductors are transverse or perpendicular to the line axis and to each other [1]. TEM 

mode exists for transmission lines with homogenous medium and perfect conductors. In 

inhomogeneous mediums, electromagnetic waves are generated with different velocities. 

Moreover, interconnect networks with imperfect conductors produce electric fields along 

the surface conductor. Such interconnect structures violate the TEM wave characteristics, 

since TEM waves propagate with only one velocity and have no electric field along the 

surface conductor. However, for many lossy interconnects in presence of inhomogeneous 

medium, the results are almost similar to TEM structures and thus they can be 

approximated as TEM mode, referred as quasi-TEM assumptions. One of the important 

characteristics of TEM mode of propagation (which is approximated for non-perfect 

conductors in quasi-TEM modes) is the ability of expressing the voltage and current 

values of each point of the conductor line using the Telegrapher's equations, as below 
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where x is the position variable along the axis of the conductors; V(x, s) and I(x, s) 

represent the spatial distribution of voltage and current vectors of the multi-conductor 

transmission lines (MTLs) respectively; R(s), L(s), G(s) and C(s) are the frequency 

dependent per unit length (p.u.l.) resistance, inductance, conductance and capacitance 

matrices, respectively. The p.u.l. parameter matrices can be determined by a can be 

obtained from a static solution of the Laplace equation in the 2-D plane containing the 

cross section of the conductors of Fig. 2-5 [1]. The difficulty with modeling of 

interconnects using (2.10) is that they cannot be directly linked to circuit simulators such 

as SPICE. This is because typical circuit simulators solve nonlinear ordinary differential 

equations (ODEs) while Telegrapher‟s equations are expressed as PDEs. To overcome 

this difficulty, numerical techniques are used to convert distributed models into ODEs as 

explained in detail in the next subsection.  
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Figure 2-6:  Lumped transmission line model for single transmission line. 
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2.5 Simulating Interconnects in SPICE-like Simulators 

For the case when the physical characteristics of the interconnect structure is known and 

quasi-TEM is assumed, the electrical performance of interconnects can be expressed 

using the Telegrapher's partial differential equations (PDE). Commercial circuit 

simulators like SPICE being unable to solve the PDE's in the time domain, 

macromodeling algorithms are required to convert the PDE to ordinary differential 

equations (ODE) which can be solved by numerical integration. Moreover, 

macromodeling algorithms can also be extended to perform EMI analysis due to incident 

field coupling to lossy transmission lines. The following sections describe some of the 

existing macromodeling techniques based on quasi-TEM mode of propagation, followed 

by a review of incident field analysis. 

2.5.1 Lumped Segmentation 

Lumped segmentation technique uses lumped equivalent circuits of the transmission lines 

to approximate Telegrapher‟s equations. Applying Euler‟s method [1] to (2.10) yields 
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where x=[1,2,...,η ], Δx=l/η, η is the number of sections and l is the length of 

interconnect. Equation (2.11) can be implemented by lumped equivalent circuit 

composed of resistors, inductors and capacitors as shown in Fig. 2-6. In order to ensure 

that the discretization of (2.11) is accurate, the value of Δx has to be very small. The 

basic rule of thumb to determine the value of Δx is to ensure that the number of segments 

(n) satisfy the following condition  
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 20                                                          (2.12) 

where rt  is the rise/fall time. The lumped segmentation model is passive and provides a 

direct method to discretize (2.10). However as the rise time of signal shortens with VLSI 

technology and/or if the interconnect is electrically long, many lumped elements are 

required for an accurate model. This leads to large MNA matrices thereby increasing the 

simulation time. 

2.5.2 Matrix Rational Approximation  

Matrix rational approximation (MRA) macromodel directly converts the Telegrapher‟s 

equations into time domain macromodels based on analytic rational approximations of 

exponential matrices [24]-[25]. An important feature of the MRA macromodel is that it is 

passive by construction. To describe this macromodeling algorithm, the solution of (2.10) 

can be written in the Laplace-domain as an exponential matrix function as 
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where l is the length of the transmission line. The exponential matrix 
Ze  in (2.13) can be 

expressed with a matrix rational approximation as 

)()( ZQZP
Z

NM e                                               (2.14) 
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where )(ZPM  and )(ZQN  are polynomial matrices 
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After some mathematical manipulations, the results of (2.15) can be used to obtain a 

macromodel represented by a set of ordinary differential equations, in a closed form 

manner [24]-[25]. Since the MRA macromodel is described in terms of predetermined 

coefficients ip  and iq , and the p.u.l parameters, the macromodel can be constructed very 

quickly. While the MRA macromodel has been proved to be highly efficient for 

interconnects with small line length, it is not very computationally efficient for 

electrically long lines since the delay of the transmission line is not extracted. Hence, for 

long lines, a higher order of approximation is required to express 
Ze  as a matrix rational 

approximation. In the following subsections two common delay extraction macromodels 

are reviewed that addresses the computational constraint of such lumped model. 

 

Figure 2-7: Circuit realization of MoC for a two-conductor transmission line. 
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2.5.3 Method of Characteristics  

Among the most commonly used algorithms are those based on the generalized method 

of characteristics (MoC). The MoC extracts the line-propagation delay and produce exact 

models when applied to lossless transmission lines [26]. Over the years, these algorithms 

have been extended to model lossy MTLs [27]-[30]. The efficiency of MoC is derived by 

extracting the propagation delay which allows the attenuation function to be 

approximated with a low-order rational function. This significantly reduces the 

computational complexity of the transfer function; especially for long lines with low 

losses.  

The original method of characteristics [26] is able to represent interconnects as ODEs 

containing time delays. Although the original method of characteristics was developed in 

the time-domain using what is referred as characteristic curves (hence the name), a 

simpler alternative derivation in the frequency-domain is presented. The frequency 

domain solution of (2.13) for a two-conductor transmission line is 
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where   is the propagation constant and 0Z  is the characteristic impedance. After some 

mathematical manipulations, the terms in (2.16) can be expressed as 
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where 1W  and 2W  are defined as recursive relations  
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For lossless transmission lines,   and 0Z can be reduced to  

LCs ;     CLZ /0                                              (2.19) 

which makes γ a purely imaginary number and Z0 a real constant. The time domain 

solution of MoC can be obtained by taking the inverse Laplace transform of (2.17) and 

(2.18) as 
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where τ = γl is represented as a delay term. An equivalent circuit realization of time 

domain macromodel of a lossless transmission line is demonstrated in Figure 2-7. For the 

case of lossy transmission lines, γ is not purely imaginary and Z0 is not a real constant 

and therefore, the direct time domain representation is not possible. In this case, 

numerical techniques have been proposed to incorporate lossy transmission line models 

[27]-[30] using rational approximation of 0Z   and 
le 
. 
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2.5.4 Delay Extraction-Based Passive Compact Transmission-Line 

Macromodeling Algorithm (DEPACT) 

Another delay extraction based algorithm is the DEPACT macromodel which, unlike the 

MoC can be made passive by construction [31]-[32]. To better understand the DEPACT 

macromodel, the Z  matrix of (2.13) is rewritten as 

BAZ s                                                           (2.21a) 
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and )( LL and )( CC  are the extracted p.u.l inductance and capacitance of the 

line and l represents the line length.  
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Figure 2-8: Circuit realization of DEPACT macromodel. 
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The basic idea of the delay extraction-based passive compact transmission-line 

(DEPACT) macromodeling algorithm is to separate the extracted delay terms (  Bse ) from 

 )( BA se  thereby enabling  Ae to be modeled using a low order rational function. However, 

this is not a trivial task since the matrices A and sB do not commute, (i.e.   BABA ss eee  )( ). 

To approximate  s )( BAe in terms of a product of exponentials, a modified Lie product 

[38] is used as   
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where n is the number of sections. The associated error of the approximation scale to the 

second power of number of sections n, as || n || O(1/n
2
) [31] (i.e. (2.22) quickly 

converges to the exponential matrix of (2.13) with increase of number of sections n). 

Equation (2.22) shows that the exponential function of (2.13) can be divided into 

subsections of ne 2A  and nse B . The matrix ne 2A  represents a lossy line segment and 

nse B  represents a lossless line segment and the product of the two can be viewed as a 

cascade of transmission line subnetworks [31], [32]. For a two-conductor transmission 

line example, each iΨ  in (2.22) can be realized as shown in Figure 2-8. Here, the lossy 

terms can be macromodeled using the MRA algorithm (section 2.5.2) and the lossless 

sections can be modeled using the MoC approach (section 2.5.3). The resulting 

macromodels are of significant lower orders since for electrically long lines a significant 

portion of the delay is already extracted using MoC [31]. It is however noted that the 

accuracy of the Lie approximation of (2.22) is dependent on the line losses, the line 
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length and the maximum frequency of operation [31]. As these parameters increases, the 

number of sections, n needs to be increased to obtain a more accurate approximation of 

(2.13) and consequently may still leads to large macromodels for simulation. 

2.5.5 Transmission Line Macromodels with Incident Fields 

With the increasing packaging density, proliferation of low powered devices and scaling 

of the supply voltage, susceptibility of interconnects to external electromagnetic fields is 

a major issue for signal integrity analysis. For this reason, the analysis of transmission 

lines excited by an external electromagnetic wave has been an active area of research [4]-

[39]-[52]. Majority of the works are based on the formulation given by Taylor in [39] 

which is applicable for two-conductor transmission lines. The technique is also expanded 

for frequency domain solution of excited MTLs in [40] and later for the time domain 

solutions in [41]-[42]. In these formulations, the excited transmission line model is 

composed of two parts: i. an unexcited transmission line and ii. forcing functions at the 

terminals of the transmission lines modeling the effects of the incident field. These 

techniques are based on the quasi-TEM mode of propagation along the transmission line. 

In [48]-[52], the analysis of MTLs in the presence of an incident field has been evaluated 

using various macromodeling techniques such as MRA, DEPACT and a passive MoC 

algorithm to name a few.  
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2.6 Waveform Relaxation for Parallel Simulation   

It is observed from the above discussion that interconnect networks can not only consist 

of large number of coupled conductors but also for segmentation based macromodeling 

techniques (of Section 2.5.1 or Section 2.5.2) may require large number of segments for 

long line lengths, high frequency of operations and large p.u.l. parameters values. As a 

result, simulation costs of interconnect networks are typically very large. One technique 

to curb the computational costs is based on model order reduction techniques [23]. In this 

thesis an alternative technique based on parallel simulation of large networks, referred to 

as waveform relaxation technique, is discussed. 

Waveform relaxation, from its introduction in [53], has proven to be an attractive 

algorithm to address the issue of exorbitant computational costs for solving large 

networks using traditional circuit solvers like SPICE. The algorithm is based on 

partitioning large networks into smaller subcircuits where the coupling between the 

subcircuits is represented using time domain lumped sources introduced (hereafter 

referred to as „relaxation sources‟) into each subcircuit. Assuming an initial guess for the 

waveforms of the relaxation sources, the subcircuits are solved independently. The 

present solution of the subcircuits is then used to update the relaxation sources for the 

next iteration. This process is repeated until the error between two successive iterations 

falls within a prescribed error tolerance. Solving the individual subcircuits using modern 

parallel processing resources has allowed the utilization of multiprocessor hardware and 

provided significant CPU savings in memory and time compared to traditional full circuit 

simulation [54]. It is noted that the main limitation of relaxation algorithms is the speed 

of convergence of the iterations. Several methods have been reported to speed up 
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convergence, such as time windowing [55], overlapping subdomains [56]-[57] and 

optimization [58]. 

In the existing literature, WR algorithms have been successfully implemented for large 

interconnect networks using two different approaches – transverse partitioning based WR 

(TP-WR) and longitudinal partitioning based WR (LP-WR). Typically, transverse 

partitioning techniques attempt to partitioning MTL networks into single lines based on 

an assumption of weak inductive and capacitive coupling between the lines [54], [59]-

[63].  On the other hand, LP-WR attempt to partition the length of the line into smaller 

sections where each section can now be realized using a particular model outlined in 
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Figure 2-9:  Longitudinal partitioning of transmission line using lumped RLGC model. 
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Figure 2-10:  Subcircuits generated from Figure 2.9 for single transmission line (no 

optimization). 
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Section 2.5 [58], [64]-[68]. Hence, TP-WR is very efficient for modeling of MTLs with 

large number of conductors while LP-WR has been found to be very efficient for 

modeling of MTLs with electrically long line lengths. Two typical LP-WR algorithms are 

reviewed next. 

2.6.1 Optimization based LP-WR 

Consider a single line interconnect modeled using the lumped RLGC methodology of 

Section 2.5.1. The partitioning between two adjacent lumped sections is illustrated in Fig. 

2-9. As a result of this partitioning scheme, the entire line length can be divided into n 

subcircuits where n is the number of RLGC sections of (2.12). In order to preserve the 

continuity in the current and voltage waveforms on either side of the partition of Fig. 2-9, 

the coupling between the subcircuits can be described by the following Dirichlet‟s 

transmission condition where the quantities on either side of the equation are relaxed by 

an iteration count. 
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                            (2.23) 

where the superscript refers to the iteration count. The equivalent circuit representation of 

(2.23) is shown in Fig. 2-10. Once this partitioning has been performed, an initial guess 

of the relaxation sources ( )(),(
)0()0(

tVtI ii ) is assumed to begin the iterations and the n 

partitioned subcircuits can now be solved in parallel. Once any k
th

 iteration is over, the 

relaxation sources can be updated using (2.23) for the k+1
th

 where the quantities in the 

right hand side are known from the k
th

 iteration.  

However, longitudinal partitioning techniques based on segmentation models have a 

common limitation that since each segment is cascaded with the next, the Dirichlets 
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transmission condition of (2.23) is required to preserve the current/voltage waveform at 

the boundary of the subcircuits and this leads to slow convergence of the WR iterations 

[58]. In order to address this problem, the work of [58] developed an optimization based 

constraint for updating the relaxation sources which is mathematically expressed as 

)()()()(

);()()()(

)(
,

)(
,

)1(
1,

)1(
1

)(
1,

)(
1,

)1(
,

)1(

tVtVtItV

tVtItVtI

k
nout

k
nout

k
nin

k
n

k
nin

k
nin

k
nout

k
n














                              (2.24) 

It can be seen that according to (2.24), the Dirichlet‟s transmission condition of (2.23) 

has been replaced by an alternative condition where additional information is exchanged 

between the subcircuits per iteration. The idea behind [58] is that the values of the scalar 

weights α and β can be optimized a priori so as to artificially accelerate the convergence 

of WR iterations as explained in detail in [58]. It is to be noted however, that the value of 

these weights are problem dependent and may need to re-evaluated for changes in the 

interconnect structure. Another such efficient LP-WR algorithm based on the MoC is 

explained next.  

2.6.2 MoC based LP-WR 

Consider a single line interconnect modeled using the MoC methodology of Section 

2.5.3. An attractive feature of the MoC is that there exists a natural disjoin between the 

left and right halves of the macromodel as illustrated in Fig. 2-7 where the two halves of 

the macromodel are coupled through the W sources of (2.18). As a result, there is no need 

to preserve the current or voltage waveforms across the partitioning interface (i.e. the 

Dirichlet‟s transmission condition is no longer applicable). This ensures that the 

subcircuits of Fig. 2-7 are weakly coupled and that the WR converge naturally and 

efficiently [64]. 
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The iterative solution of two halves of the MoC macromodel (of Fig. 2-7) begins with a 

initial guess of the relaxation sources (W1
(0)

(t), W2
(0)

(t)). Once the two subcircuits of the 

MoC macromodel have been solved for any general k
th

 iteration is over, the relaxation 

sources can be updated using a relaxed version of the MoC delayed equations (2.20) as 
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                              (2.25) 

where all the waveforms of the right hand side are known from the k
th

 iteration [64]. It is 

observed that despite the efficient convergence of the WR iterations using (2.25), for 

lossy MTL networks, the problem of passivity of the MoC macromodel still exists. This 

has limited the application of MoC based WR algorithms for SPICE simulation. 

Besides interconnect networks, WR algorithms can also be applied to PDNs [69]. 

However, the typical WR based parallel simulation of PDNs of [69] is based on lumped 

RC models and are applicable for on-chip structures. As a result, sophisticated distributed 

PDN models for large package/board power bus examples that can include the distributed 

effects are still under investigation. 
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Chapter 3  
 

3 Transient Simulation of 

Distributed Networks using Delay 

Extraction based Numerical 

Convolution 
 

3.1 Introduction 

This chapter presents a delay extraction based IFFT technique for the macromodeling of 

distributed networks characterized by their frequency domain, multiport Y parameter data 

[21]. The proposed algorithm uses time-frequency decompositions to extract multiple 

propagation delays of a distributed network. Based on the knowledge of the delays, the 

associated attenuation losses can be quantified in a piecewise manner using the Hilbert 

transform. As a result, in the time domain, the transfer function is represented as a sum of 

delayed time domain responses. Numerical examples illustrate that the proposed 

algorithm shows significantly more accurate results for networks with multiple long 

delays when compared to existing numerical convolution techniques. 
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3.2 Motivation and Review of General Time-Frequency 

Decompositions 

3.2.1 Motivation 

For ease of presentation, it is assumed that the tabulated data of any general multiport 

network is described in terms of the Y parameters as 

),..,1,()];([)( PjisYs ij Y                                  (3.1) 

where 

    


 ijksTk
ijij esYsY ,)()(

)(
                                      (3.2) 

and Tk,ij is the k
th

 propagation delay, Yij
(k)

(s) is the attenuation losses corresponding to the 

k
th

 propagation delay, „s‟ represents the Laplace variable, [0:Fmax] is the bandwidth of 

interest and P is the number of ports of the network. The time domain representations of 

Y parameters of (3.1) are 

    )()( ,
)(

ijk
k

ijij TtYtY                                          (3.3) 

where Yij
(k)

(t) is the inverse Fourier transform of Yij
(k)

(s). Evaluating )(tYij using direct 

IFFT on the Yij(s) without delay extraction results in errors in early time [19], [21] 

leading to inaccurate signal integrity verification such as eye diagram simulations [19]. 

One approach to reduce these errors is to extract the dominant propagation delay of the 

system [19], as  

ijsT

ijij esHsY


 )()(                                                 (3.4) 
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where Tij is the dominant propagation delay (i.e. minimum propagation delay) and Hij(s) 

correspond to the attenuation losses of the overall system. This approach produces 

accurate results when the system is characterized by a single dominant delay (i.e. where 

Hij(s) is a minimum phase response and can be extracted using a Hilbert transform of 

Yij(s)) as illustrated in [19]. For networks characterized by multiple delays, extraction of 

the dominant delay T = T0,ij allows Hij(s) to be expressed as 





)()( ,0,)()( ijijk TTsk

ijij esYsH                                          (3.5) 

Provided the delays are closely spaced, the phase contribution of all 
)( ,0, ijijk TTs

e


 is 

relatively small. As a result, Hij(s) can still be approximated as a minimum phase 

response and accurately evaluated by applying Hilbert transform on (3.4) using (2.3)-

(2.4). However, this methodology of evaluating the attenuation losses may not yield 

accurate results for the case of a general distributed network with multiple delays which 

are not grouped close together (i.e. where the phase contribution of 
)( ,0, ijijk TTs

e


is non-

negligible) [36]. Thus, application of the Hilbert transform blindly to (3.4) may lead to 

inaccurate approximation of Hij(s) [36].  

In order to address the above issues, a methodology to extract multiple delays for 

generalized distributed networks using the time-frequency techniques is proposed. The 

next section briefly reviews the general class of time-frequency decomposition 

techniques to better explain the proposed algorithm. 

3.2.2 General Time-Frequency Decompositions 

The time-frequency decompositions are a class of transformations from a one 
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dimensional function, say Yij(s), to a two dimensional function Fij(ω,τ) that measures the 

variance of the function with respect to both frequency (ω) and time (η) variables. The 

time-frequency transform of Yij(s) is defined as [70]-[71]: 

                   deWYF j
ijij 





 )()(),(                                    (3.6) 

where Fij(ω,τ) is the two dimensional inverse Fourier transform function, ω and η are the 

angular frequency and time variables respectively, W(δ-ω) a window centered at δ = ω of 

prescribed width L and s = jδ represents a simple transformation of variable. The integral 

of (3.6) provides a mechanism to filter sections of Yij(s) using an arbitrary window as it 

sweeps the frequency axis within the prescribed bandwidth of interest, and take the 

inverse Fourier transform of each section individually. In this work, W(δ-ω) represents a 

Gaussian window which corresponds to a Gabor transform and provides optimal support 

in both the time and frequency domains [70]-[71]. The window width (or the standard 

deviation) can be chosen using the methodologies of [72]-[73]. For the examples of this 

paper, the window sizes used are determined using the procedure of [73]. The energy of 

the function Fij(ω,τ) can be calculated as  

                      dFijij 




 2|),(|)(                                            (3.7) 

The εij(τ) of equation (3.7) is a one dimensional function localizing the variation of 

energy of Fij(ω,τ) with time and provides a method to extract propagation delays 

embedded in any frequency domain data [14]-[15]. The inverse of (3.6) exists [69]-[71] 

and can be expressed as  

  


 
 









 ddeWFY j
ijij )(),(

2

1
)(                          (3.8) 
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The reconstruction of Yij(δ)  in (3.8) can also be done in a piecewise manner by separating 

the time-frequency plane of (ω,τ) into smaller regions Ωm, and performing the integral of 

(3.8) over each region as 





1

)(
)(

~
)(

m

m
ijij YY                                                    (3.9)   




  ddeWFY j
ij

m
ij

m





   )(),(
2

1
)(

~ )(
                    (3.10) 


1

2




m

m                                              (3.11) 

where the summation of each integral of (3.10) over the suitable chosen Ωm area leads to 

the piecewise reconstruction of Yij(δ). The time-frequency techniques of (3.6)-(3.11) 

provide a mechanism to extract the delays and the associated losses from the data for 

general multiple delay networks. 

 

3.3 Development of the Proposed Algorithm 

The objective of this work is to use the time-frequency decompositions to predetermine 

the delays Tk,ij and the corresponding attenuation loss components Yij(s) in order to 

evaluate the components of (3.1). 

3.3.1 Determining Multiple Delays ( kT ) 

To determine the propagation delays Tk,ij, the transform of (3.6) is used to convert the 

tabulated data of Yij(s) to the time-frequency domain representation of Fij(ω,τ) and to 

obtain the energy distribution of εij(τ) using (3.7). From the resultant energy distribution 
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εij(τ), the delays will appear as sharp peaks with significant energy contributions. To 

illustrate how the delays are evaluated, consider the example of Fig. 3-1(a) where the 

physical layout of the interconnect network is described in Fig. 3-1(b) and the details of 

this example is provided in Example 1 of Section 3.4 (also shown in [21]). This example 

consists of a three port (P1-P2-P3) subnetwork consisting of coupled interconnects and 

terminated with a nonlinear CMOS 180 nm inverter. The three port network is 

characterized by its tabulated data in terms of the Y parameters up to 3.5 GHz. 

Identification of the delays are determined by firstly evaluating the energy content of 

local peaks of )(ij  as  





k

k

dij
k

ij










1

)(
2

1
ˆ )(

                                            (3.12) 

where 1k  and k  are time points corresponding to local minimums of )(ij  bounding 

the k
th

 local maxima of εij(τ). All local maximums with relative energy contributions 

below a predefined tolerance ε 

                         
     

                            (a)                                                                (b) 

Figure 3-1: Circuit layout of illustrative example. (a) Circuit layout. (b) Geometric layout 
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






k

k
ij

k
ij

)(

)(

ˆ

ˆ
                                                 (3.13) 

are discarded. The value of ε is so chosen such that the energy contribution of the 

neglected delays does not significantly affect the accuracy of the model and is problem 

        

   (a)                                                                         (b) 

Figure 3-2: Evaluating delay peaks of Example 1.  (a) Energy of |Y11| (ε11(η)). 

(b) Energy of |Y12| (ε12(η)) . 

Table 3-1: Identified Delays (Example 1) 

Delays (ns) Y11 Y12 

T1 2.25 1.27 

T2 2.54 3.42 

T3 4.49 3.81 

T4 4.79 5.66 

T5 5.08 6.05 

T6 - 6.35 
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dependent [14]. Fig. 3-2 illustrates the energy functions of ε11(τ) and ε12(τ) where the 

peaks of the function with significant energy contribution identified using (3.12)-(3.13) 

and ε = 1e-5 are quantified in Table 3-1.  

3.3.2 Partitioning the Time-Frequency Plane 

The proposed methodology seeks to represent the frequency contribution of a single or a 

group of delay peaks of Yij(s) in terms of piecewise functions )(
~ )(

sY
m

ij  using (3.9)-(3.10). 

In order to evaluate each )(
~ )(

sY
m

ij , the Ωm region of (3.10) need to be determined. In this 

work, the partitioning for of the (ω,τ) plane into Ωm regions is determined by choosing 

the point τk between two adjacent delays Tk-1,ij and Tk,ij where εij (τ = τk) is the minima for 

Tk-1,ij < τ < Tk,ij. If the value of εij (τ = τk)  is below a certain predefined threshold δ (i.e.  

εij(τ = τk) < δ), then the point τk is retained as a valid partitioning point, else it is 

discarded. The value of δ is so chosen such that the valid partitioning point (τ = τk) can 

effectively separate the energy contributions of two adjacent delays Tk-1,ij and Tk,ij from 

each other, thereby allowing a piecewise decomposition of Yij(δ). For a given predefined 

threshold δ, the Ωm regions are expressed as  

 },20:),{( 1max  kkm ttF                            (3.14) 

Table 3-2: Partitioning of the (ω,τ) plane for Example 1 

Ωm regions Y11 Y12 

Ω1 
0 < η < 1.00 ns 0 < η < 2.25 ns 

Ω2 
1.00 < η < 3.00 ns 2.25 < η < 4.70 ns 

Ω3 
3.00 < η < 6.00 ns 4.70 < η < 7.25 ns 
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For the example of Fig. 3-1, the Ωm regions, evaluated using  

δ = 1e-6, are shown in Table 3-2. 

3.3.3 Computing the Attenuation Losses (Yij
(k)

(s)) 

Once the Ωm regions are determined, the integral of (3.10) allows a piecewise 

reconstruction of the frequency domain data. For the case where there is only one 

identified delay peak in Ωm, evaluating the integral of (3.10) yields  

ijmsTm
ij

m
ij esYsY ,)()(

~ )()( 
                                                (3.15) 

where Tm,ij is the extracted delay and Yij
(m)

(s) is the the associated attenuation losses 

within the region Ωm. For (3.15), taking the Hilbert transform as described by (2.3)-(2.4), 

the data stream of Yij
(m)

(s) can be obtained.  

For the case when more than one identified delay exist in the region Ωm, )(
~ )(

sY
m

ij can be 

expressed as 







d

ijnm

N

n

sTnm
ij

m
ij esYsY

1

),()( ,,)()(
~

                                    (3.16) 

where Nd is the number of delays identified within the Ωm region which are grouped 

together. In this case, the attenuation losses Yij
(m,n)

(s)  cannot be separately evaluated due 

to the energy spectrum of the delays Tm,n,ij overlapping each other. For this scenario 

(3.16) is approximated as 
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       (a)                                                                 (b)                                    

Figure 3-3: Transient response of Example 1 using proposed algorithm, HSPICE‟s W-

element and direct IFFT.  (a) Response at P2. (b) Response at P3. 

 

                                     

     (a)                                                                 (b) 

Figure 3-4: Propagation delay capture of Example 1 using the proposed algorithm, 

HSPICE‟s W-element and direct IFFT.  (a) Response at P2. (b) Response at P3. 
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where Tm,1,ij is the minimum delay in Ωm and is already known. Since it is assumed that 

the delays (Tm,n,ij) are grouped close together, the phase contribution of all 
)( ,1,,, ijmijnm TTs

e


 

is relatively small and Yij
(m,n)

(s) can be considered as a minimum phase response. Hence, 

the Hilbert transform as described by (2.3)-(2.4) can still be applied to (3.17) to obtain 

Hij
(m)

(s). Once the attenuation loss functions of Yij
(m)

(s) or Hij
(m)

(s) are obtained, they can 

be easily converted to time domain by an IFFT operation followed by zero padding the 

data stream to explicitly enforce the Tm,ij or Tm,1,ij delay respectively. 

 

3.4 Numerical Examples 

Three examples are presented in this section to demonstrate the validity of the proposed 

algorithm (as found in [21]). The proposed algorithm is performed using MATLAB 

R2008a. In addition, since the examples selected had known structures, the transient 

responses obtained using proposed model were compared with HSPICE‟s W-element 

model [6]. The bandwidth of interest of the examples are determined using the following 

rule of thumb Fmax = 0.35/Tr as suggested in [2] where Fmax is the maximum frequency of 

interest and Tr is the rise/fall time of the signal. 

Example 1: Two Coupled Interconnect Network: A three port network is considered and 

shown in Fig. 3-1(a) where the physical layout of the network is described in Fig. 3-1(b).  

The HSPICE field solver is used to obtain the p.u.l. parameters and includes the skin 

effect losses. The length of the transmission line is set to 20 cm. 
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The network is characterized by its terminal responses (Y parameters) over a bandwidth 

of 0-3.5 GHz. Using (3.6) and (3.7), the time-frequency transforms of Fij(ω,τ) and the 

energy spectrums of εij(τ) for all the port-to-port Y-parameters are evaluated. The energy 

functions of ε11(τ) and ε12(τ) are shown in Fig. 3-2 and for ε = 1e-5, the delay peaks are 

identified as shown in Table 3-1. To obtain the attenuation loss responses in terms of 

sampled data, the (ω,τ) plane of Fij(ω,τ) is divided into Ωm regions for the piecewise 

integral of (3.10). The results of the partitioning of the time-frequency plane are 

summarized in Table 3-2.  

Once )(
~ )(

sY
m

ij  are evaluated using the integral of (3.10), using the Hilbert transform and 

enforcing the extracted delays, the terminal responses are described as a sum of delay-

causal responses in the time domain. For a trapezoidal input pulse of rise time Tr  = 0.1 ns 

and pulse width of 2 ns, the transient responses using the proposed algorithm is shown in 

Fig. 3-3. In addition, the proposed algorithm is compared with the transient results 

obtained by directly implementing IFFT on the tabulated data and HSPICE‟s W-element. 

It is observed that directly implementing IFFT on band limited data results in a transient 

response that is not delay-causal as shown in Fig. 3-4. This may result in inaccurate 

 

Figure 3-5: Two port circuit for Example 2 

 

Fig. 6: Two port circuit for Example 2 
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signal integrity quantities, such as eye diagram simulations as reported in [19]. However, 

since the proposed algorithm and HSPICE’s W-element model both use delay extraction 

to obtain the transient response, they provide similar responses. 

Example 2: Single Line Network: In order to validate the accuracy of the delay extraction 

methodology proposed in Section 3.3, a two port example as reported in [13] (Fig. 3-5) is 

considered. The transmission line network has the resistive, inductive and capacitive 

p.u.l. parameters of R = 0.25 Ω/cm, L = 4nH/cm and C = 1.6 pF/cm respectively and a 

line length of l = 100 cm. Hence, the time of flight delay can be analytically determined 

as LClT 0 . Due to mismatch of the termination impedance with the characteristic 

impedance of the line, the travelling TEM suffers multiple reflections at the near and far 

end of the network. This leads to multiple delays in the transient response at the near and 

far ends of the network which can be analytically expressed as [14] 

   

(a)                                                                (b) 

Figure 3-6: Evaluating delay peaks of Example 2.  (a) Energy of |Y11| (ε11(η)). 

(b) Energy of |Y12| (ε12(η)) . 
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where 
)(

12

)(

11 , mm TT  represent the delays of 
)(

11

)(

11 , mm YY  respectively and m is an integer. To 

validate the accuracy of the proposed delay extraction methodology, the network is 

characterized by its tabulated Y parameters data over a bandwidth of 0-3.5 GHz. Using 

(3.6) and (3.7), the time-frequency transforms of Fij(ω,τ) and the energy spectrums of 

 Table 3-3: Comparison of identified delays with the theoretical values of (3.18) for 

Example 2. 

 
Y11 Y12 

m 

Theoretical 

Delay 

(T11
(m)

 (ns)) 

Observed 

Delays (Tk 

(ns)) 

% Error 

Theoretical 

Delay 

(T12
(m)

 (ns)) 

Observed 

Delays (Tk 

(ns)) 

% Error 

0 0.00 0.00 0.00 8.00 8.00 0.00 

1 16.00 15.98 0.13 24.00 24.02 0.08 

2 32.00 31.07 0.22 40.00 39.96 0.10 

3 48.00 47.95 0.10 - - - 

 

Table 3-4: Partitioning of the (ω,τ) plane for Example 2. 

Ωm Regions Y11 Y12 

Ω1 0 < η < 8.00 ns 0 < η < 16.00 ns 

Ω2  8.00 < η < 24.00 ns 16.00 < η < 32.00 ns 

Ω3 24.00 < η < 40.00 ns 32.00 < η < 48.00 ns 

Ω4 40.00 < η < 50.00 ns - 
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εij(τ) for all the port-to-port Y-parameters are evaluated. The energy functions of ε11(τ) 

and ε12(τ) are shown in Fig. 3-6 and the delays are identified for ε = 1e-5 as shown in 

Table 3-3. It is observed from Table 3-3 that the observed delays ( kT ) show excellent 

agreement with the theoretical delay values of (3.18).To obtain the attenuation loss 

responses in terms of sampled data, the (ω,τ) plane of Fij(ω,τ) is divided into Ωm regions 

 

Figure 3-7: Transient response at far end of Example 2. 

 

 

Figure 3-8: Three port circuit for Example 3. 
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for the piecewise integral of (3.10). The results of the partitioning of the time-frequency 

plane are summarized in Table 3-4. Based on the partitions of Table 3-4 and the 

methodology outlined in Section 3.3.3, the terminal responses can be converted into a 

sum of delay-causal responses in the time domain. For a trapezoidal input pulse of rise 

time Tr = 0.1 ns and pulse width of 20 ns, the transient port responses obtained using the 

proposed algorithm are shown in Fig. 3-7. In addition, the proposed algorithm is 

compared with the HSPICE W-element model. It is observed that the proposed model 

gives good agreement with HSPICE‟s W-element and is similar to those reported in [13].  

 Table 3-5: Identified Delays (Example 3). 

Delays (ns) 
Y11 Y12 

T1 2.44 3.22 

T2 2.73 5.57 

T3 4.79 5.96 

T4 5.18 6.84 

T5 5.47 7.13 

T6 6.35 9.28 

T7 7.52 9.57 

T8 7.91 9.86 

T9 9.08 10.45 

T10 10.06 10.74 

T11 10.35 11.04 
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Example 3: Cascaded Two Coupled Interconnect Network: A three port example is 

considered as shown in Fig. 3-8. The linear network consists of three subnetworks, each 

consisting of two coupled transmission lines. The p.u.l. parameters of the subnetwork 1 

are 

    R  cmΩ /
252.00

0252.0








 

                                                         cmnH /
36.3865.0

865.036.3








L  

    cmpF /
29.1197.0

197.029.1












C  

cmmho/0G  

 

and that of subnetwork 2 and 3 are 

 

R  cmΩ /
34.00

034.0








 

    cmnH /
76.41.1

1.176.4








L  

 Table 3-6: Partitioning of the (ω,τ) plane for Example 3 

Ωm Regions Y11 Y12 

Ω1 0 < η < 1.25 ns 0 < η < 4.39 ns 

Ω2  1.25 < η < 3.70 ns 4.39 < η < 6.55 ns 

Ω3 3.70 < η < 6.00 ns 6.55 < η < 7.72 ns 

Ω4 6.00 < η < 7.00 ns 7.72 < η < 10.25 ns 

Ω5 7.00 < η < 8.50 ns 10.25 < η < 11.00 ns 

Ω6 8.50 < η < 11.00 ns - 
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          cmpF /
258.0

58.02












C  

cmmho/0G  

The transmission line length of each subnetwork is set to 20 cm and is terminated with a 

nonlinear inverter. The network is characterized by its terminal responses (Y parameters) 

as tabulated data over a bandwidth of 0-7 GHz, generated using HSPICE. Next, using the 

same technique as illustrated in Example 1 and Example 2, the transient response of 

Example 3 is obtained as well. The extracted delays and the partitioning points of the 

(ω,τ) plane is reported in table 3.5 and 3.6 respectively. Considering a trapezoidal input 

pulse of rise time Tr = 0.05 ns and pulse width of 2 ns, the transient responses using the 

proposed algorithm, and the single delay model of [19] are shown in Fig. 3-9. It is 

observed that the proposed model gives good agreement with HSPICE‟s W-element, 

while the single delay extraction model leads to slight errors due to the non negligible 

phase contribution of the multiple delays.  

  

      (a)                                                                 (b)                                    

Figure 3-9: Transient response of Example 3 using the proposed algorithm, HSPICE‟s 

W-element and single delay extraction based IFFT [19].  (a) Response at Port 1. (b) 

Response at Port 2. 
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3.5 Conclusion 

In this chapter, a novel approach towards multiple delay extraction within a numerical 

convolution scheme is proposed for modeling distributed networks characterized by band 

limited frequency responses. The proposed algorithm uses time-frequency analysis to 

extract the higher order propagation delays of a distributed network and to evaluate the 

associated attenuation losses in a piecewise manner, and implements IFFT to efficiently 

convert the frequency response into a sum of delayed time domain responses. Numerical 

convolution of the delay-causal response with any input provides accurate transient 

responses without the need for iterative curve fitting of the band limited data. The 

algorithm is tested for various multiport transmission line networks and was found to 

provide more accurate results compared to existing single delay extraction models based 

on numerical convolution techniques. 
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Chapter 4  
 

4 Delay Extraction based 

Macromodeling of Power 

Distribution Networks 
 

 

4.1 Introduction 

In this chapter, an efficient approach for modeling irregular shaped single layered and 

multilayered power distribution networks (PDNs) is presented [74]-[75]. The proposed 

methodology is based on discretization of the structure into a 2D grid of rectangular unit 

cells. Using a delay extraction based macromodel for each unit cell, a compact circuit 

model is achieved for the PDN which can explicitly capture the high frequency 

distributed effects of the network. Moreover, the macromodel is capable of 

approximating the high frequency skin effect losses and dispersive effect as a passive 

rational model that is independent of the discretization (i.e. size of the unit cell) and 

hence needs to be calculated only once for extensive design space explorations. The 

proposed work has been successfully implemented for a variety of PDN structures and 

geometries and has been shown to yield significant savings in memory and run time costs 

compared to the existing quasi-static SPICE lumped models. 



55 

 

4.2 Development of the Proposed Macromodel 

The discretization of single and multilayered PDNs into unit cells based on the traditional 

finite difference method has been covered in Section 2.3. This section begins by 

demonstrating that the finite difference method for discretization of a general PDN is 

equivalent to a simple discretization of the Telegraphers partial differential equations for 

transmission lines. This allows the PDN structures to be realized using a mesh of 

transmission line segments. Thereafter, the DEPACT macromodel, used to realize the 

mesh of transmission line segments in SPICE, is described. 

4.2.1 Formulation of Transmission Line Model for PDN 

In order to explain the proposed transmission line model for PDNs, a general 

multilayered unit cell obtained from the finite difference discretization of a multilayered 

PDN, as shown in Fig. 2-4(a), is considered. In order to derive a circuit model 

representing the electrical performance of the unit cell, it can be represented by an 

equivalent π-model as illustrated in Fig. 2-4(b). Each of the frequency dependent 

1,1Z

2,2Z

3,3Z

2,1Z

3,2Z

1,, jiV

2,, jiV

3,, jiV

1,,1 jiV 

2,,1 jiV 

3,,1 jiV 

3,1Z

2/2,1Y

2/3,2Y

2/3,3Y

2/2,1Y

2/3,2Y

2/3,3Y

1,, jiI

2,, jiI

3,, jiI

1,,1 jiI 

2,,1 jiI 

3,,1 jiI 

 

Figure 4-1: Lumped circuit of a single face of unit cell. 
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elements of Fig. 2-4(b) can be realized in SPICE using a lumped RL/RC network [5], 

[37].  

The π-model representing any single face of the unit cell of Fig. 4-1(b) is considered in 

Fig. 4-1. The circuit equations governing the voltage/current relationship in the 

longitudinal direction is given by the following difference equation 
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where the quantities Zk,m and Yk,m for 1,1  Nmk is given as  

4

)(
);ˆ(2

,,

,,,,,

jiji

mkjijijimk

sCG
YsLRRZ


                                (4.2) 

and Li,j, Ci,j¸ Gi,j¸ Ri,j  and jiR ,
ˆ  represent the coupling term between the  i

th
 and  j

th
 plane 

for 0 < i, j < N (see (2.7)-(2.9)) and N represents the total number of PDN layers. 

Defining a new set of variables, lZZ mk
pul
mk /,

)(
,   and lYY mk

pul
mk /,

)(
,   and replacing them in 

(4.1), followed by dividing both sides of (4.1) by l and taking the limit to l → 0, yields 

after some algebraic manipulations  
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The left hand side of (4.3) represents a spatial differential operator and (4.3) can be 

rewritten as the following differential equation 
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where Z
(pul)

(s) and Y
(pul)

(s) are the per-unit-length (p.u.l.) impedance and admittance 

matrices whose entry in the k
th

 row and m
th

 column is Zk,m and Yk,m respectively and the 

vectors Vi,j(s) and Ii,j(s) are defined as 
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The matrices Z
(pul)

(s) and Y
(pul)

(s) are related to the unit cell parameters of as 
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where R(s)k,m, L(s)k,m, C(s)k,m, G(s)k,m are the entries in the k
th

 row and m
th

 column of R(s), 

L(s), C(s) and G(s) matrices respectively and the terms Lk,m, Ck,m¸ Gk,m¸ Rk,m  and mkR ,
ˆ  can 

be directly obtained from (2.7)-(2.9). It is observed that (4.4) is the general form of the 

Telegraphers partial differential equation governing the signal propagation in a MTL 

structure in the frequency domain [1]. Based on the above discussion, it is appreciated 

that the finite difference solution of the Helmholtz equation for a unit cell can be 

represented using distributed MTLs as shown in Fig. 4-2. For the special case of single 
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Figure 4-2: (a) Multilayered unit cell. (b) Unit cell model using MTLs. 
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layered PDNs, the MTL network of Fig. 4-2 is replaced by a two conductor transmission 

line segment [74].   

In order to obtain an equivalent circuit representation of the MTL compatible with 

commercial circuit simulators like SPICE, each MTL segment of the Fig. 4-2 is modeled 

using the delay extraction based passive compact transmission line (DEPACT) 

segmentation model [31], [32] as explained in the next subsection. 

4.2.2 Modeling Unit Cells using DEPACT 

Considering the MTL segment making up each face of the unit cell of Fig. 4-2, the 

solution of (4.4) can be written as an exponential matrix function [31], [32] as 
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where 
 Φ ))(( BA ssee   and A, B matrices has already been defined in (2.21b). Typically, 

the solution of (4.8) does not have an exact time domain counterpart and hence 

segmentation based modeling techniques as in [1]-[2], [31]-[32] are generally used to 

derive an equivalent time domain expression of (4.8). Of these segmentation algorithms, 
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Figure 4-3: DEPACT realization of the single face of the unit cells using MTLs. 
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the DEPACT is particularly attractive due to fact that it explicitly extracts the delay of the 

network leading to better accuracy of the model compared to lumped models of same 

level of discretization. 

The basic idea of DEPACT is to extract the delay terms (
 Bse ) from 

 ))(( BA sse 
using a 

Lie decomposition [38], as explained in Section 2.5.4. The Lie decomposition of (2.22) 

provides a methodology of discretizing the MTL segment of Fig. 4.3 into alternating 

subsections with the individual stamps of 
nse 2)(A

 and 
 Bse as shown in Fig. 4-3 for the 

case n = 1. In Fig. 4-3, the modeling of the lossless subsections is performed using a 

similarity transformation to decouple the lossless MTLs into single conductors followed 

by the MoC algorithm [1], [26]. In order to model the lossy sections of Fig. 4-3, a Padé 

approximation is derived as explained in the next subsection. 

4.2.3 SPICE Realization of Lossy Section 

Based on Fig. 4-3 and (2.22), the lossy subsection with the stamp of 
nse 2)(A

 can be 

represented as 
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The variables Va(s), Ia(s) and Vb(s), Ib(s) represent the near and far end voltage and 

current variable vectors as illustrated in Fig. 4-3 respectively, and  
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To capture the frequency dependence of the parameters of (4.9), the functions of (4.10) 

are approximated as a rational function as  
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where r0
(z)

, r0
(y)

 are the constant matrices; ri
(z)

, ri
(y)

 are the matrix containing the i
th

 

residue, pi
(z)

, pi
(y)

 are the i
th 

poles and Nz, Ny are the order respectively of the rational 

approximation of (4.11). The poles and residue matrices of (4.11) can be obtained offline 

for various orders of accuracy while ensuring that the rational approximation is positive 

real to maintain the passivity of the macromodel [35]. Once the rational functions of 

(4.11) are available, the DEPACT uses a matrix rational approximation (MRA) derived 

from a closed form Padé representation of the exponential function of 
nse 2)(A

 [24], [25]. 

Since the discretization of PDNs result in short MTL segments and the delays of these 

segments (
 Bse ) have been extracted in (2.22), a Padé order of 1/1 (i.e. 

)2/1()2/1( 1 xxe x  
) is sufficient to accurately approximate the exponential matrix of 

(4.9) as 
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Replacing the rational approximation of (4.11) in (4.12), the exponential matrix of (4.12) 

can be now be expressed as 
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where the Ai(s), Bi(s), Ci(s) and Di(s) are expressed in rational form as 
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and the constant matrices aj, bj, cj, dj  and poles jp~  can be obtained from (4.12). It is 

observed that the rational approximation of (4.11) is independent of the discretization of 

the structure (i.e. line length l) and hence needs to be done only once for a given 

bandwidth of interest maxf . With the knowledge of the rational approximation of (4.11), 

the macromodel of (4.14) can be obtained in a closed form manner for any arbitrary 

discretization while maintaining the passivity of the model. It is also appreciated that the 

macromodel of (4.14) can be included in the modified nodal analysis (MNA) matrices of 

the structure for transient analysis using recursive convolution [34] and this does not 

augment the MNA matrices in comparison to lumped models which capture the 

 

Figure 4-4: Physical structure of PDN for Example 1. 
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frequency dependent effects using RL/RC ladders thereby introducing extra nodes/circuit 

variables in the MNA matrices [5], [37]).  

 

4.3 Numerical Examples 

Two examples are presented in this section to demonstrate the validity and efficiency of 

the proposed delay extraction based macromodeling technique for PDNs. For the 

proposed work, the rational approximation of (4.11) is obtained using the vector fitting 

(VF) algorithm [10] on MATLAB 2009b platform and verified to be passive using [35]. 

For the examples of this section Nz = Ny  = 4 in (4.11) which corresponds to a 4
th

 order 

RL/RC ladder to capture the skin effect losses and dispersive effects. The proposed 

macromodel based on DEPACT is compared with the results of the lumped model based 

     

      (a)                                                                 (b)                                    

Figure 4-5: Comparison of the proposed DEPACT model with the quasi-static lumped 

model. (a) Frequency domain response (Z12). (b) Transient response at Port 2. 
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on the FDM [5], [37] (hereafter referred to as the conventional lumped model) where 

both models are simulated using HSPICE on an UNIX server (66 GB RAM and 160 GB). 

Example 1: Single Layered PDN: The objective of the example is to illustrate the 

accuracy and efficiency achieved using the proposed delay extraction based model 

compared to existing quasi-static SPICE lumped models for single layered PDNs. A 

simple rectangular PDN of size 4 cm by 4 cm (a = 4 cm, b = 4 cm) as shown in Fig. 4-4 

is considered. The signal and ground planes are made of copper of thickness t = 30.5 µm 

and separated by a d = 25.4 µm thick FR4 dielectric (εr = 4.27). The input is a current 

source that mimics the transient current drawn from the PDN during switching of the 

digital circuits. The PDN is loaded with a linear capacitor of 1pF. Considering a source 

with rise time 0.1 ns, the size of the unit cell is set to l = 0.25 cm. For this given unit cell 

size, the lumped model of [5] and the proposed delay extraction based model is realized 

in SPICE. The I/O terminals of the PDN are located at diagonally opposite corners of the 

PDN as shown in Fig. 4-4. Figure 4-5(a) shows the Z-parameter of the transfer 

Table 4-1: Comparison of CPU run time and accuracy of proposed model with lumped 

model for Example 1 

Model 
# Unit Cells (length of 

transmission line segment) 

CPU Time 

(sec) 

RMS error w.r.t. 

IFFT  

Proposed 256 (l = 0.25 cm) 32.61 0.007 

Lumped 
256 (l = 0.25 cm) 158.10 0.152 

625 (l = 0.16 cm) 461.20 0.010 

MRA (2
nd

 

order Pade) 

256 (l = 0.25 cm) 211.75 0.044 

625 (l = 0.16 cm) 544.25 0.006 
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impedance ( 12Z ) of the PDN over a bandwidth of 10 MHz - 10 GHz using the proposed 

model. In addition, the proposed algorithm is compared with the conventional lumped 

model [5] and the W-element model [33] for the same discretization. It is found that the 

proposed model can accurately match the W-element model over the entire bandwidth 

while the lumped model matches the W-element till 5 GHz only.  

To estimate the simultaneous switching noise (SSN), a trapezoidal input pulse of rise 

time Tr = 0.2 ns, pulse width of 2 ns and amplitude 20mA is applied at port 1 while the 

transient response at port 2 is observed. Fig. 4-5(b) shows the transient response at port 2 

obtained using the proposed model, the conventional lumped model [5] and the W-

element model [33] for the same cell size. The proposed model yields similar responses 
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Figure 4-6: 6 coupled multilayered PDN problem of Example 2 
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as the W-element while the lumped model yields different responses since it cannot 

capture the high frequency poles of the PDN as seen in Fig. 4-5(a). 

Table 4-1 illustrates the computational expense and associated accuracy for the transient 

analysis using the proposed model, the lumped model and the MRA model [24], [25], all 

compared against the IFFT result. Note that the proposed model is about 20 times more 

accurate than the lumped model and 6 times more accurate than the MRA model, all of 

same discretization. The accuracy of the lumped model can be improved by decreasing 

the cell size at the cost of increased CPU expense as shown in Table 4-1. For this 

example, the proposed model provides an approximate speedup of 14 times over the 

lumped model and 17 times over the MRA model for similar accuracy constraints. 

Example 2: Irregular Shaped Multilayered PDN: The objective of this example is to 

compare the accuracy and efficiency of the proposed delay extraction based model with 

the lumped model [5], [37] for multilayered PDNs. For this purpose a six layered PDN 

structure as illustrated in Fig. 4-6 is considered. Each plane of this PDN is 5 cm by 5 cm, 

made of copper of thickness t = 0.025 mm and separated from each other by a FR4 

dielectric medium (εr = 4.27) of thickness d = 12.7 µm. The input port is located at Port 1 

on plane 1 (4.5, 4.5) and two output ports are located at Port 2 on plane 3 (0.5, 0.5) and 

Port 3 on plane 4 (4.5, 0.5). Due to the irregular geometry of the planes 2-5, wraparound 

currents arising in these planes lead to the coupling of entire multilayered structure. 

The three port S-parameters of the PDN structure of Fig. 4-6 is extracted using three 

different methodologies – a reference model based on the exact frequency domain 

solution of (4.8) for each MTL segment, the proposed macromodel based on DEPACT 

and the lumped model [5], [37]. In this example, a cell dimensions of l = 0.5 cm is 
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expected to provide sufficiently accurate results for an input signal of rise time Tr = 0.2 

ns [33]. As a result, for each of the above model the discretization is set to l = 0.5 cm. 

The results of the above analyses are shown in Fig. 4-7. It is observed that while the 

proposed macromodel demonstrates good agreement with the exact solution of (4.8) over 

                                                                                                 

(a)               (b) 

Figure 4-7: Comparison of S parameters of Example 2 using the proposed and lumped 

models for cell dimensions l = 0.5 cm. (a) Magnitude of S12. (b) Magnitude of S13. 

               

(a)               (b) 

Figure 4-8: Comparison of S parameters of Example 1 the using proposed model (l = 0.5 

cm) and lumped model (l = 0.167 cm). (a) Magnitude of S12. (b) Magnitude of S13. 
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a bandwidth of 0-10 GHz, the lumped model can only match the exact solution till 4 

GHz. The high frequency errors in Fig. 4-7 arise due to the inability of the lumped model 

to capture the distributed effects of the relatively large unit cell. The results of the lumped 

model can be improved by considering a smaller discretization of the structure. For this 

example, the maximum cell dimensions allowable for the lumped model to match the 

results of the proposed macromodel over the entire bandwidth are l = 0.167 cm and the 

corresponding results are illustrated in Fig. 4-8.  

For the transient analysis, an input source modeled as a Norton‟s equivalent current 

source with source resistance 20Ω and having a triangular pulse waveform with rise time 

Tr = 0.2 ns and amplitude 50mA is placed at Port 1 while terminating resistances of 500Ω 

is placed at Port 2 and 3. The input source mimics the injected SSN and the transient 

response at Port 2 and 3 represents the noise coupling due to the wraparound current. The 

transient response at Port 2 and 3 using both proposed macromodel and lumped model for 

                                                                                     

(a)        (b) 

Figure 4-9: Comparison of transient response of Example 2 using the proposed 

macromodel (l = 0.5 cm) and lumped model (l = 0.167 cm) (a) Response at Port 2 (b) 

Response at Port 3. 
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the same cell discretization (l = 0.5 cm) is shown in Fig. 4-9(a). When the cell 

discretization for the lumped model is reduced to l = 0.167 cm, the transient response for 

the lumped model shows better agreement with the proposed work as shown in Fig. 4-

9(b). 

Table 4-2 illustrates the computational expense and associated accuracy for the transient 

analysis using the proposed macromodel, the lumped model and the MRA transmission 

line model [24], [25]. For this purpose, all the above two models are compared with 

respect to the reference model where an IFFT operation is performed on the exact 

solution of (4.8). It is noted that the proposed macromodel is about 25 times more 

accurate than the lumped model and 15 times more accurate than the MRA model, all for 

the same discretization. For this example the proposed macromodel is 8 times as efficient 

as the lumped model and about 4 times as efficient as the MRA model for a relative error 

of below 10e-3.  

Table 4-2: Comparison of CPU run time and accuracy of proposed model with lumped 

model for Example 2 

Model 
No. of Unit Cells (length of 

MTL segment) 
CPU Time (sec) 

RMS error w.r.t. 

IFFT  

Proposed 100 (l = 0.5 cm) 60.33 4.46e-3 

Lumped 

100 (l = 0.5 cm) 72.35 109.11e-3 

400 (l = 0.25 cm) 218.20 50.33e-3 

900 (l = 0.167 cm) 483.60 6.56e-3 

MRA(2
nd

 

order Pade) 

100 (l = 0.5 cm) 122.35 67.75e-3 

400 (l = 0.25 cm) 288.46 9.50e-3 

900 (l = 0.167 cm) 535.67 2.06e-3 
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4.4 Conclusion 

In this chapter a delay extraction based approach is presented for achieving accurate 

macromodels for analysis of single and multilayered power distribution networks in 

electronic packages and boards. The key contribution of this work is in demonstrating 

that the finite difference solution of the Helmholtz equation is equivalent to a simple 

discretization of the Telegraphers partial differential equation. Based on this result a more 

accurate and efficient delay extraction based macromodel is developed to model the 

single layered (2D) and multilayered (3D) structure in presence of holes, apertures and 

irregular geometry. Numerical examples illustrate that the validity and the efficiency of 

the proposed macromodel over existing quasi-static lumped models. 
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Chapter 5  
 

5 Longitudinal Partitioning based 

Waveform Relaxation Algorithm 

for Efficient Analysis of Distributed 

Transmission Line Networks 
 

 

5.1 Introduction 

In this chapter a waveform relaxation algorithm is presented for parallelizable transient 

analysis of large transmission line networks [76], [77]. The proposed methodology 

represents lossy transmission lines using the DEPACT macromodel of Section 2.5.4. A 

longitudinal partitioning scheme utilizing the natural disjoin provided by the method of 

characteristics allows the resulting subcircuits to be weakly coupled by construction [76]. 

The subcircuits are solved independently using a proposed hybrid iterative technique that 

combines the advantages of both traditional Gauss-Seidel and Gauss-Jacobi algorithms. 

The overall algorithm is highly parallelizable and exhibits good scaling with both the size 

of the network involved and the number of CPUs available. Numerical examples have 

been presented to illustrate the validity and efficiency of the proposed work.  
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5.2 Overview of Waveform Relaxation Algorithms 

Waveform relaxation (WR), from its introduction in [2], has proven to be an attractive 

algorithm to address the issue of exorbitant computational costs for solving large 

networks using traditional circuit solvers like SPICE. The algorithm is based on 

partitioning large networks into smaller subcircuits and attempting to solve the 

subcircuits iteratively in parallel. 

Presently, two approaches exist for application of waveform relaxation to transmission 

line networks. One such approach is the transverse partitioning scheme [54], [59]-[63] 

where multi-conductor transmission lines (MTLs) are partitioned into single lines by 

assuming weak capacitive and inductive coupling between the lines. The coupling 

between the lines is represented as time domain relaxation sources introduced into the 

circuit model of each line.    

An alternative waveform relaxation algorithm is based on longitudinal partitioning of the 

network into repeated subcircuits [58], [64]-[68]. While longitudinal partitioning schemes 

based on the generalized method of characteristics (MoC) has been reported in [64]-[68], 

more recent works [58] have focused on partitioning the line based on segmentation 

models such as the conventional resistive-inductive-conductive-capacitive (RLGC) 

lumped model [1]. Partitioning techniques based on segmentation models have a common 

limitation that since each segment directly feeds into the next segment, in other words the 

adjacent segments are strongly coupled in physical space. This is reflected in the fact that 

blindly partitioning the conductor between segments requires resolving the stringent 
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Dirichlet’s transmission condition across the partition and consequently exhibits poor 

convergence [58]. The work of [58] accelerated the convergence of the WR algorithm by 

artificially exchanging additional voltage/current waveforms (i.e. increasing the overlap 

between subcircuits) followed by optimization routines. The following section addresses 

this limitation of WR algorithms for typical segmentation based transmission line models. 

 

5.3 Development of Proposed Waveform Relaxation 

Algorithms 

This section begins by describing the proposed longitudinal partitioning scheme for 

MTLs and thereafter proceeds to discuss both the Gauss-Jacobi (GJ) and the proposed 

hybrid iterative technique to solve the resultant subcircuits in parallel. 
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Figure 5-1: SPICE equivalent circuit of a MTL using DEPACT.  
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5.3.1 Proposed Partitioning Scheme for MTLs 

The DEPACT model of Section 2.5.4 provides a methodology to discretize MTLs into 

alternating cascade of lossy and lossless line segments as shown Fig. 5-1. To better 

explain the proposed partitioning methodology, consider the equations for the i
th

 lossless 

line segment in Fig. 5-1 given below. 
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It is observed that (5.1) leads to 2m coupled equations. However, the coupled lossless 

sections can be decoupled into m single lossless lines using a linear transformation of 

modal voltages/currents as shown below [1] 
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where TV and TI are constant matrices chosen to diagonalize L and C  and have the 

following properties [1], [32] 

111
;

~
;

~ ---
TTTCTCTLTL I

t
VVIIV                                (5.3) 

and },...,,{
~

21 mllldiagL , },...,,{
~

21 mcccdiagC  are diagonal matrices and the superscript „t‟ 

denotes the transpose of the matrix. Replacing (5.2)-(5.3) into (5.1) and performing the 

same algebraic manipulations followed by converting the resultant equations into the 

time domain, the decoupled lossless sections can be represented using the MoC equations  

as shown below 
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where „j‟ represents the line number, jj
j

clZ /
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0   and ncll jjj /  represents the 

characteristic impedance and delay of each lossless section respectively of the j
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where )(
~

),(
~

),(
~

),(
~

,,,, tttt outiinioutiini IIVV  are the time domain counterparts of the vectors 

)(
~

),(
~

),(
~

),(
~

,,,, ssss outiinioutiini IIVV  respectively defined in (5.2). The MoC equations (5.4) for 

MTLs can be realized using the equivalent circuit of Fig. 5-1 where the matrices TV and 

TI arising from the similarity transformation of (5.2) is grouped with the lumped 

representation of the lossy section. It is observed that the MoC provides natural interfaces 

for MTLs across which information is exchanged using the time delayed equations of 

(5.4) rather than the Dirichlet‟s transmission conditions of (2.23). Since the Dirichlet‟s 
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Figure 5-2: Partitioning of MTLs into subcircuits for waveform relaxation.  
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transmission condition of (2.23) is responsible for the strong coupling between 

subcircuits, by avoiding the use of (2.23) and rather longitudinally partitioning 

transmission lines at natural MoC interfaces, as shown in Fig. 5-2, the WR converges 

naturally and efficiently [76]. The following section describes the iterative solution of the 

subcircuits of Fig. 5-2. 

5.3.2 Iterative Solution of Subcircuits using Gauss-Jacobi 

This discussion begins by considering a general MTL discretized into n subcircuits as 

illustrated in Fig. 5-2. From Fig. 5-2, it is observed that the sources due to the MoC (i.e. 

{W2i-2
(j)

(t), W2i-1
(j)

(t)} act as the relaxation sources that describe that describe the coupling 

between the adjacent subcircuits. For the k
th

 iteration, it assumed that the waveforms of 

all the relaxation sources nitWtW jk
i

jk
i 



 1)};(),({ ),1(

12
),1(

22  are known from the previous k-1
th

 

iteration where the additional superscript has been introduced to refer to the iteration 

count. The known relaxation sources are used as input excitations for the corresponding 

subcircuits in the k
th

 iteration. This translates to the following terminal conditions 

required for the i
th

 subcircuits described as  
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Since the relaxation sources of (5.6) (i.e. )}(),({
),1(

12
),1(

22 tWtW
jk

i
jk

i




 ) of each i

th
 subcircuit are 

assumed known beforehand and independent of the present (k
th

) solution of the remaining 

n-1 subcircuits, the n subcircuits can be solved in parallel using a Gauss-Jacobi (GJ) 

iteration [55]. The k
th

 iterative solution of all the n subcircuits provides the self consistent 
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solution of the waveforms )}(),({ ),(
,

),(
,1 tVtV jk

ini
jk
outi  which are thereafter used to update the 

relaxation sources for the future k+1
th

 iteration using the MoC equations (5.4) as  
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             (5.7) 

The updating procedure of (5.7) does not require any matrix inversion and since all 2nm 

the equations of (5.7) are mutually decoupled, they can also be solved in parallel. This 

iterative cycle continues until the absolute error satisfies a predefined tolerance ( ) 
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It is noted that the above GJ iterative solution is fully parallelizable and hence faster than 

sequential GS solution of the subcircuits. However, the GS iterative solution involves 

greater exchange of waveforms during the updating of the relaxation sources and hence 

converges faster than GJ solution. Hence, in the next section, a hybrid iterative solution 

that combines the complimentary features of the GS and GJ solution is described. 

5.3.3 Hybrid Iterative Solution of Subcircuits 

To explain this contribution, the n subcircuits of Fig. 5-2 is considered to be divided 

among two groups – group A containing the odd numbered subcircuits and group B, the 

even numbered subcircuits where the total number of subcircuits within each group is 

defined as 

Bgroupnnn

Agroupnn
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odd


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]2/[

]2/[
                                  (5.9) 
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and [x] represents the greatest integer less than x. Since, for the specific case of 

longitudinal partitioning, coupling exists between an odd numbered and an even 

numbered subcircuit only (and not between two odd numbered or two even numbered 

subcircuits themselves), the k
th

 iterative solution of any subcircuit in any group is 

independent of the present (k
th

) solution of any other subcircuit within the same group 

and rather depends on the present (k
th

) solution of particular subcircuits within the 

opposite group. This coupling is addressed using a nested iterative technique. The outer 

iteration solves the group A and B in sequence (using GS) with updating the relaxation 

sources after every group solution. This ensures that the coupling between the group A 

and B converge quickly. The inner iteration solves the subcircuits within each group in 
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Figure 5-3: Hybrid GS-GJ iterative technique 
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parallel (using GJ) since they are uncoupled. This forms the basis of the proposed hybrid 

iterative technique and is illustrated in Fig. 5-3.  

Assuming that the waveforms of all the relaxation sources responsible for exciting the 

subcircuits of group A odd
jk

i
jk

i nitWW 
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 1)};(,{ ),1(

34
),1(

44  are known from the previous k-1
th

 

iteration, the nodd subcircuits of group A can be solved in parallel via the GJ technique 

explained in the previous section. Once the GJ is concluded, voltage waveforms  
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outi   determined from the present (k
th

) iteration of group A is used to 

update the relaxation sources responsible for exciting only the subcircuits of group B as 
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          (5.10) 

The relaxation sources of (5.10) now serve as the input for the corresponding subcircuits 

of group B and the neven subcircuits can also be solved in parallel using the GJ technique. 

The voltage waveforms  )}(),({ ),(
,2

),(
,12 tVtV jk

ini
jk
outi  determined from the present (k

th
) iteration of 

group B is used to update the relaxation sources responsible for exciting only the 

subcircuits of group A for the future k+1
th

 iteration as 

mjnitWtVtW

tWtVtW

odd
jk

i
jk
outi

jk
i

jk
i

jk
ini

jk
i

,...,2,1;,...,2,1);()(2)(

)()(2)(

),1(
24

),(
,12

),(
34

),(
54

),(
,22

),(
44









               (5.11) 

The above iterative cycle of continues till the absolute error of the iterations satisfies the 

error tolerance as in (5.8). It is noted that (5.10)-(5.11) provide twice the amount of 

waveform exchange compared to the single waveform exchange of (5.7) per iteration and 

hence, the hybrid technique exhibits improved convergence compared to the GJ 

technique. 



80 

 

 

5.4 Computational Complexity of Proposed Algorithm 

This section provides the mathematical reasoning behind the efficiency of the proposed 

WR algorithm. The analysis begins by considering a general MTL network of Fig. 5-2 

discretized into n DEPACT sections. Assuming each DEPACT section to be described 

using β number of delayed ordinary differential equations, the size of the overall circuit 

matrix describing the original network is N = nβ. The computational complexity of 

directly inverting the above matrix to perform time domain analysis is O(n
3
) [36], [37]. 

However, the matrices obtained by traditional circuit simulators are sparse by nature and 

can be solved more efficiently using sparse matrix routines at a cost of O(n
α
) where 

typically 25.1   depending on the sparsity of the matrix [59]. For large distributed 

networks, the interconnect have to be discretized into many segments to accurately 

capture the response at the output ports (i.e. large n). For such cases, the super linear 

scaling of the computational cost for traditional circuit simulators is a major factor 

limiting its applicability. To address the above issue in the proposed WR algorithm, the n 

DEPACT sections are separated into n subcircuits each described using β delayed 

differential equations which can now be solved independently. The total computational 

cost of the proposed WR algorithm is mathematically quantified using the following 

lemmas. 

Lemma 1: For n subcircuits, the computational cost of the proposed WR algorithm using 

traditional GJ iterations is O([n/p]ni) where ni is the number of iterations and p is the 

number of CPUs available for parallel processing. 
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Proof: For typical WR algorithms, the total computational cost can be divided into two 

parts - the first part is to solve the n subcircuits independently and the next is to update 

the relaxation sources. 

It is assumed that the cost of solving one subcircuit scales as k1β
α
 where k1 is the scaling 

coefficient. Using a GJ iterative technique where the task of independently solving n 

subcircuits can be distributed over p CPUs, the total cost of solving the n subcircuits per 

iteration is given by k1β
α
.[n/p]. The second stage of the algorithm involves updating the 

2nm relaxation sources using (5.7). This translates to the solution of 2nm linear algebraic 

equations in the time domain per iteration. Since the equations are all decoupled, they can 

be solved independently in parallel using p CPUs for a cost of k2[2nm/p] where k2 is the 

scaling coefficient for the second part of the proposed WR algorithm. Since, within the 

context of this analysis, 2m is a constant, the above cost can be rewritten as 

]/[]/2[ 32 pnkpnmk  . Thus the total cost per iteration is the sum of the above costs 

given as  

]/[]/[ˆ
31 pnkpnkGJ                                        (5.12) 

where GJ̂  is the cost of each GJ iteration. Since the above process needs to be redone for 

ni iterations, the total cost of the proposed algorithm using traditional GJ is  

iiiGJGJ npnknpnkn ]/[]/[.ˆ
31                            (5.13) 

where GJ is the total cost of the proposed algorithm using GJ.  
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It is observed that the solution of the 2nm linear algebraic equations to update the 

relaxation sources of (5.7) does not involve any matrix inversion. On the other hand, the 

solution of each subcircuits involves the inversion of a matrix of size β. As a result, the 

cost of solving the subcircuits (first part) is found to dominate over the cost of updating 

the relaxation sources (second part) [54] (i.e. 31 kk  ). Hence, the result of (5.13) can 

be simplified to  

iGJ npnk ]/[1
                                               (5.14) 

where within the context of this work β is a function of the number of MTLs (m) and is 

treated as a constant. Equation (5.14) demonstrates that the proposed WR algorithm 

scales as )]/([ inpnO  when using the traditional GJ. The following lemma extends the 

above analysis to the hybrid iterative technique. 

 Lemma 2: For n subcircuits, the computational cost of the proposed WR algorithm using 

the hybrid iterative technique is )ˆ]/([ inpnO  where in̂  is the number of iterations 

involved. 

Proof: The cost of the proposed WR algorithm using the hybrid iterative technique can be 

divided into two parts – the first part is to solve the oddn  subcircuits and update the 

mneven2  relaxation sources using (5.10). The second part is to solve the evenn  subcircuits 

and update the mnodd2  relaxation sources using (5.11). Since updating the relaxation 

sources using (5.10)-(5.11) does not require any matrix inversion, the contribution of 

solving (5.10)-(5.11) is minimal compared to the cost of the solution of each subcircuit 

(see Lemma 1 and [54]). As a result, the total cost of the hybrid iterative technique can be 
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approximated as simply the cost of the independent solution of the nodd and neven 

subcircuits.  

The computational cost of solving the nodd subcircuits per iteration using the GJ technique 

with p parallel CPUs is given by k1β
α
.[nodd/p] (from Lemma 1). Similarly, the cost of the 

neven subcircuits per iteration is approximated as k1β
α
.[neven/p]. Since, the solution of nodd 

and neven subcircuits proceeds in sequence, the total cost of the hybrid technique per 

iteration is the sum of the above two costs 

])/[]/([ˆ
1 pnpnk evenoddGJGS  

                                      (5.15) 

Multiplying the above cost with the number of iterations (in this case in̂ ) provides an 

estimate of the full computational cost of the proposed WR algorithm using the proposed 

GS-GJ hybrid iterative technique as below. 

ievenoddiGJGSGJGS npnpnkn ˆ])/[]/([ˆ.ˆ
1  

                           (5.16) 

From the definition of oddn  and evenn  in (5.9), (5.16) can be approximated to 

iGJGS npnk ˆ]/[1
                                          (5.17) 

Equation (5.17) demonstrates that the proposed WR algorithm scales as )ˆ]/([ inpnO  

when using the hybrid iterative technique.  Comparing the scaling of (5.14) and (5.17) 

with number of available CPUs (p), it is appreciated that the hybrid iterative technique 

retains the high degree of parallelizability as the GJ technique. However, the hybrid 

technique has the added advantage of faster convergence over the GJ counterpart due to 
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the greater exchange of waveforms using (5.10)-(5.11) compared to the single exchange 

of (5.7) (i.e. nni ˆ ). 

It is observed that the main reason behind the attractiveness of the proposed algorithm 

(whether using GJ or the hybrid technique) is the ability to solve the subcircuits 

independently. This translates to an almost linear scaling of the computational costs of 

the proposed algorithm with number of DEPACT sections unlike SPICE which suffers 

from a super linear scaling. In addition, using GJ and the hybrid technique provides an 

additional advantage over SPICE of dividing the computational cost of the proposed 

algorithm over multiple CPUs (p > 1). These results will be validated using the numerical 

examples in the following section. 

 

5.5 Numerical Results 

Two examples are presented in this section to demonstrate the validity and efficiency of 

the proposed algorithm. For a fair comparison of the proposed LP-WR algorithm with 

full blown SPICE simulation using segmentation techniques, this work is compared with 

the DEPACT model of [32] (hereafter referred to as „full SPICE simulation‟) which is 

based on a delay extraction principle and hence is highly efficient for modeling long 

MTL networks. The parallel solution of the subcircuits are automated in MATLAB 

2011b while the actual solution of the subcircuits are performed using HSPICE on an 

UNIX server (66 GB RAM and 160 GB memory). A customized C++ code has been 

developed to extract and update the waveforms of the relaxation sources. 
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Example 1: Single Line Network: The objective of this example is to demonstrate the 

accuracy of the proposed WR algorithm and the superior convergence of the hybrid 

iterative technique over the traditional GJ technique. For this example a transmission line 

network consisting of seven transmission line segments as shown in Fig. 5-4 is 

considered. The per-unit-length (p. u. l.) parameters of the network are R = 0.25 Ω/cm, L 

= 4 nH/cm, C = 1.21 pF/cm, G = 0.2 mmho/cm and Rs = 1.9e-5 Ω/ Hz /cm where 

)1()( jfRsR st   represents the skin effect losses as a function of frequency f [6]. The 

network is excited by a trapezoidal voltage source of rise time Tr = 0.1 ns, pulse width 5 

ns, amplitude of 2V and loaded with two SPICE level 49, CMOS inverters using 180 nm 

technology.  

To illustrate the accuracy of the proposed algorithm, the line length of each segment is set 

to l = 30 cm. In this case, the total number of subcircuits required is 420. The network is 

then solved using both proposed work and the full SPICE simulation. The proposed work 

 

Figure 5-4: Circuit of Example 1. 
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uses the hybrid iterative technique to solve the subcircuits on a sequential platform (p = 

1) using GJ and the predefined error tolerance set to η = 1e-5 and an initial guess of the 

relaxation sources set to the DC solution of zero. The transient responses at the far end of 

     

      (a)                                                                     (b) 

Figure 5-5: Transient response for Example 1. All line lengths are l = 30 cm.  (a) 

Transient response at output port N1. (b) Transient response at output port N2. 

 

 

Figure 5-6: Convergence properties of the proposed hybrid iterative technique compared 

to GJ. All line lengths are l = 30 cm 



87 

 

the network (N1, N2) using the proposed WR algorithm and full SPICE simulations are 

shown in Fig. 5-5.  

Next, the convergence properties of the proposed hybrid technique are compared with the 

traditional GJ technique. For each algorithm, the number of iterations is varied from 1 to 

10 and the scaling of the associated error is displayed in Fig. 5-6. It is observed that the 

proposed hybrid technique shows significantly faster convergence than the traditional GJ 
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w

s

…...
Line 1 Line 2 Line 7
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(a)                                                                       (b) 

Figure 5-7: Transmission line structure of Example 2. 

 

      

     (a)                                                                       (b) 

Figure 5-8: Transient response for Example 2. Line length of the network is l = 50 cm.  

(a) Transient response at output port N1. (b) Transient response at output port N2. 
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algorithms. This is due to the fact that the proposed hybrid technique involves twice the 

amount of information exchange as the GJ technique for same number of iterations. 

Example 2: MTL Network: The objective of this example is to illustrate the 

computational efficiency of the proposed work over full SPICE simulations for MTL 

structures. For this example a 7-coupled line network with the physical dimensions as 

shown in Fig. 5-7(a) is considered. The per-unit-length parameters for this example are 

extracted from the HSPICE field solver [6] and include frequency dependent parameters. 

For the following analyses, the MTL network topology is shown in Fig. 5-7(b) where line 

1, 3, 5 and 7 is excited with trapezoidal voltage sources of rise time Tr = 0.1 ns, pulse 

width 5 ns and amplitude of 2V.  

This example begins with a demonstration of the performance of the proposed work 

compared to full SPICE simulations as the size of the network increases. The line length 

of the network (l) in Fig. 5-7 is increased from 0 cm to 200 cm in steps of 10 cm. To 

accurately model the network, the numbers of subcircuits, n are increased in steps of 16 

for each 10 cm step and ranges from 0 to 320. For each case, the network is solved using 

both proposed work and the full SPICE simulation. The proposed work uses both the 

hybrid technique and traditional GJ technique on a sequential platform (p = 1) with the 

predefined error tolerance set to η = 1e-5 and an initial guess of the relaxation sources set 

to the DC solution of zero. For this particular error tolerance, the number of iterations 

required for convergence is found to be consistently between 5 and 6. The accuracy of the 

proposed work (with the hybrid technique) compared to full SPICE simulation is 

illustrated in Fig. 5-8 for l = 50 cm (i.e. for 80 subcircuits). The scaling of the 

computational cost of both proposed work and full SPICE simulation with the line length 
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(l) is shown in Fig. 5-9(a). It is observed from Fig. 5-9(a) that the proposed work scales 

almost linearly (O(n)) for both GJ and the hybrid algorithm as predicted in (5.14), (5.17) 

respectively while the full SPICE solution of the original network scale super linearly as 

O(n
α
) where α = 1.8 for this example. In addition the hybrid iterative technique converges 

twice as fast as traditional GJ technique.  

                                                                         

(a)                                                                 (b) 

Figure 5-9: Scaling of computational cost for Example 2. (a) Scaling of computational 

cost with line length (l) (b) Scaling of CPU speed up with number of CPUs (l = 200 cm) 

 

Table 5-1: Comparison of CPU run time for Example 2 

# 

CPU 

CPU Time (sec) Speedup 

w. r. t. 

Gauss-

Jacobi 

Speedup 

w. r. t. 

Gauss-

Seidel 

Speedup 

w. r. t. 

Hybrid 
Gauss 

Jacobi  

Gauss 

Seidel 
Hybrid SPICE 

1 
562.99 

197.35 

281.50 

4736.30 

8.41 

24.00 

16.83 

4 
170.67 84.45 27.75 56.09 

6 
112.60 56.30 42.06 84.13 

8 
87.97 42.22 53.84 112.17 
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Next, the performance of the proposed work is demonstrated on a parallel platform. The 

length of the network is fixed at the corner of our design space where l = 200 cm and the 

network solved using both proposed work and full SPICE simulation. The proposed WR 

iterations are performed using the hybrid technique, the traditional GS and the traditional 

GJ techniques where number of processors are varied from p = 1 to p = 8 for the same 

error tolerance as before. The CPU speed up offered by the hybrid and GJ techniques 

over full SPICE simulations is shown in Fig. 5-9(b). The actual CPU run times for the 

hybrid, GS, GJ and the sequential SPICE simulation is summarized in Table 5-1. The 

speed up for either iterative technique scale almost linearly with number of processors, 

thereby demonstrating the high parallelizability of both as theoretically expected from 

(5.14) and (5.17). The minor deviation of Fig. 5.9(b) from the exactly linear scaling with 

respect to number of CPUs (p) is due to the incurred communication overheads between 

processors. 

 

5.6 Conclusion 

In this chapter a longitudinal partitioning based waveform relaxation algorithm for 

parallel transient analysis of distributed transmission line networks is presented. The 

proposed methodology utilizes the regular MoC interfaces provided by the DEPACT as 

possible partitioning interfaces thereby longitudinally partitioning the network into 

weakly coupled subcircuits. The subcircuits are solved independently using a hybrid 

iterative technique that combines the fast convergence of the proposed GS technique with 

the parallelizability of the GJ technique. Numerical examples illustrate that the proposed 
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algorithm exhibits good scaling with both the size of the network and the number of 

CPUs available for parallel processing, thereby providing significant savings in run time 

costs compared to full SPICE simulations. 
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Chapter 6  
 

6 Electromagnetic Interference 

Analysis of Multiconductor 

Transmission Line Networks using 

Longitudinal Partitioning based 

Waveform Relaxation Algorithm 
 

 

6.1 Introduction 

This work extends the concepts of [76], [77] to perform parallel EMI analysis of MTL 

networks [78], [79]. The distributed nature of the incident field coupling with the network 

is represented as lumped sources introduced into each DEPACT section. Combining the 

lumped sources (due to EM fields) with the delayed sources due to the MoC 

representation of the lossless section leads to a more compact realization of the 

subcircuits as well as reduces the communication overhead between processors leading to 

a more scalable LP-WR algorithm. The resultant subcircuits are solved independently 

using the hybrid iterative technique that was presented in Section 5.3.3. The overall 
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algorithm is highly parallelizable and exhibits good scaling with both the size of the 

circuit involved and the number of CPUs available as illustrated in the numerical 

examples section. 

 

6.2 Background of EMI Analysis of MTL Networks 

In order to explain the contributions of the proposed work, this section discusses the 

general formulation of MTL structures exposed to incident fields followed by a 

description of the DEPACT macromodel reported in [32] to perform the EMI analysis. 

6.2.1 General Formulation of MTLS Exposed to Incident EM Fields 

Consider a MTL network supporting quasi-transverse electromagnetic mode of 

propagation, backed by a reference plane and exposed to incident fields as shown in Fig. 

 

Figure 6-1: Geometry of a multiconductor transmission line exposed to an incident field. 
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6-1. In such cases, the MTL structure is described by the inhomogeneous Telegraphers 

partial differential equations as follows [1]  
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where V(z,s) and I(z,s) represent the spatial distribution of the voltage and current along 

the longitudinal direction,  R(s), L(s), G(s) and C(s) are the frequency-dependent 

resistive, inductive, conductive and capacitive per-unit-length (p. u. l.) parameters of the 

line respectively, s = j2πf is the Laplace variable and f is the instantaneous frequency. 

The functions VF(z,s) and IF(z,s) represent the effect of the incident field coupled to the 

MTL and can be mathematically expressed as [48]-[51] 
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The variables z


 and t


 are the longitudinal and transverse components of the incident 

electric field respectively; (xi,yi) and (x0,y0) refer to spatial coordinates of the i
th

 conductor 

and the reference conductor respectively and ρ is a parameter of x- and y- in the 

transverse plane (see Fig. 6-1). 

Different types of far radiating sources are often approximated in a localized region of 

space as uniform plane waves [1], [48]-[52]. For such examples the electric field of the 

incident field can be expressed as  

zsysxs
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i zyx eeeaAaAaAsEzyxE
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where E(s) is the electric field amplitude, Ax, Ay, and Az are the direction cosines of the 

incoming wave and β = [βx, βy, βz]
t
 is the propagation vector. Replacing (6.4) in (6.3) and 

solving (6.1), the frequency domain expression of the current/voltage at the line 

extremities is written [79] 
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where 
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In (6.5)-(6.6), the terms Vt and Vz can be expressed in closed-form as 
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In order to represent the EMI effects of (6.5) using an equivalent circuit model, the 

DEPACT macromodel of [32] is utilized as explained in the next subsection. 

6.2.2 DEPACT Model for EMI Analysis  

The DEPACT macromodel uses a modified Lie product [38] to approximate the 

exponential function in (6.5) as a product of exponentials as already discussed in (2.22) 

of Section 2.5.4.  
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The effect of the incident field coupling to the MTL structure can be reduced to the 

following two steps - the effect of the incident field on the lossless sections ( nlse B ) is 

evaluated first and thereafter, the lossy sections ( nle 2A ) are incorporated into the 

macromodel [51]. For this purpose, the solution of (6.1) for any i
th

 lossless section can be 

formulated similar to (6.5)-(6.8) as [79]  
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The variables Vi,in(s), Ii,in(s) and Vi,out(s), Ii,out(s) represent the near and far end voltage 

and current sources for any i
th

 lossless section, superscript „j‟ represents the line number 

and nlizi /)1(1  . For the case of lossless MTL, the integral of (6.10) can be solved in 

closed form [51], [79] and when replaced back in (6.9) yields the frequency domain 

solution for the lossless MTLs exposed to incident fields as 
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where  
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and 
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Now, considering the line losses, the lossy sections ( nle 2A ) are incorporated between 

successive lossless sections to provide the equivalent circuit model for the entire MTL 

structure in presence of incident fields as illustrated in Fig. 6-2.  

It is appreciated that the solution of the macromodel of Fig. 6-2 requires the inversion of 

the corresponding modified nodal analysis (MNA) matrix. The computational complexity 
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Figure 6-2: Discretization of MTL using DEPACT in the presence of incident fields.  
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of directly inverting a matrix scales to O(n
3
) [79]. However, the matrices obtained by 

traditional circuit simulators are sparse by nature and can be solved more efficiently 

using sparse matrix routines at a cost of O(n
α
) where typically 25.1   depending on 

the sparsity of the matrix [59]. For large distributed networks operating at high 

frequency, DEPACT macromodel of Fig. 6-2 may require many segments in Fig. 6-2 (i.e. 

n is large). For such cases, the super linear scaling of the computational cost for 

traditional circuit simulators is a major factor limiting their applicability. To address the 

above issue, the proposed contribution of applying the LP-WR algorithm [77] to perform 

EMI analysis is explained in the following section. 

 

6.3 Development of Proposed WR Algorithm 

This section begins by describing the methodology to longitudinally partition the 

DEPACT macromodel into compact subcircuits for transient analysis followed by the 

hybrid iterative techniques to solve the subcircuits. 

6.3.1 Generation of Compact Subcircuits 

In [51], a similarity transform is directly performed on (6.11) to decouple the m coupled 

lossless MTL into m single lossless lines. In this work, the similarity transform of [51] is 

modified in order to group the lumped sources due to the incident fields with the delayed 

sources due to the MoC which leads to a more scalable LP-WR algorithm. For this 

purpose, the proposed similarity transformation is performed on the quantities Vi,in(s), 

Ii,in(s),Vi,out(s), Ii,out(s)  (and not on )(
~

, siniV , )(
~

, siniI , )(
~

, soutiV , )(
~

, soutiI ) as 
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where the matrices Tv and TI are constant matrices chosen to diagonalize L and C  and 

have the following properties [1] 
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21 mllldiagL , },...,,{
~

21 mcccdiagC  are diagonal matrices. Replacing (6.14)-

(6.15) in (6.11) and converting to time domain yields the following m decoupled MoC 

equations 
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The superscript „j‟ represents the line number, jj
j

clZ /
)(

0   and ncll jjj /  represents 

the characteristic impedance and delay of each lossless section respectively of the j
th

  line. 

The variables )(, tiniV , )(, tiniI , )(, toutiV , )(, toutiI  and ),(),(),(),(),( 1,,,, tztttt itbibiaiai VIVIV  

are simply the time domain waveforms of the corresponding sources in (6.14) and (6.12) 

respectively. The lumped sources Vi,a(s), Ii,a(s), Vi,b(s), Ii,b(s) and Vt(zi-1,t) can be obtained 

in a closed form manner using the direct inverse Laplace transform of (6.13) and (6.8) as 
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Based on (6.16)-(6.19), the representation of the i
th

 lossless section of Fig. 6-2 is 

illustrated in Fig. 6-3(a). In Fig. 6-3(a) the „decoupling block‟ represent the lumped 
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   (a)                                                                 (b) 

Figure 6-3: Proposed circuit representation of the incident field coupled with i
th

 lossless 

section. (a) Prior to grouping of the lumped sources. (b) After grouping of the lumped 

sources using (6.20). 
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dependent sources used to represent the transformation of (6.14). A key feature of the 

proposed representation of Fig. 6-3(a) is that the lumped sources due to the incident fields 

Vi,a(t), Ii,a(t), Vi,b(t), Ii,b(t) and Vt(zi-1,t) can be grouped together with W2i-1(t), W2i(t) into a 

compact Thevenins network as 
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where Vth,2i-1(t), Vth,2i(t) represent the Thevenins equivalent sources and Rth,2i-1, Rth,2i  

represent the Thevenins equivalent impedance for the i
th

 lossless section as displayed in 

Fig. 6-3(b). Replacing the expression for W2i-1(t), W2i(t) from (6.17) into (6.20), the 

Thevenins sources can be rewritten using delay linear equations for each decoupled line 

as 
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where   jA  represents the j
th

 row vector of A. It is noted that the terms 
)(

,12
j

xiV  , )(
,2
j
xiV  of 

(6.22) can be calculated offline and stored prior to the LP-WR iterations. From Fig. 6-

3(b), it is observed that each lossless section provides a natural MoC interfaces (disjoin) 

across which current/voltage information is exchanged using the delayed linear equations 
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of (6.22). Partitioning the MTL macromodel of Fig. 6-3(b) along these natural MoC 

interfaces avoids the need of preserving the current/voltage continuity between 

subcircuits using Dirichlets transmission conditions and has been demonstrated to exhibit 

fast convergence for MTL networks in absence of incident fields [79]. Extending such a 

partitioning methodology for EMI analysis of MTLs based on the proposed 

representation of Fig. 6-3(b) leads to n subcircuits where the sources Vth,2i-1(t), Vth,2i(t) act 

as the relaxation sources responsible for maintaining the coupling between subcircuits. It 

is observed that based on (6.20) the size of the MNA matrices of each subcircuits is 

reduced by eliminating the variables Vi,a(t), Ii,a(t), Vi,b(t), Ii,b(t) (see Fig. 6-3(a) and 6-

3(b)) thereby leading to more compact formulation of the subcircuits. Moreover, solution 

of each subcircuit now requires the prior knowledge of only the 2m waveforms (Vth,2i-1(t), 

Vth,2i(t)) rather than the 5m waveforms of Vi-1,a(t), Ii-1,a(t), Vt(zi-1,t), W2i-2(t), W2i-1(t) as 

would be required if the proposed partitioning scheme was directly applied to the circuit 

model of Fig. 6-2. The combination of the above factors leads to improved scalability of 

the proposed LP-WR algorithm. It is observed from Fig. 6-3(b) that the proposed 

partitioning scheme does not in any way affect the hybrid iterative scheme outlined in 

Relative dielectric constant = 4
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tan δ = 1e-3

w=0.1mm,  s=0.1mm
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w w
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                                               (a)                                                                         (b) 

Figure 6-4: Three coupled microstrip lines of Example 1. (a) Geometry of the 

transmission lines. (b) Circuit layout of the transmission lines. 
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Section 5.3.3. As a result, the benefits of the hybrid iterations are transferable to the 

problem of EMI analysis of MTL networks. 

 

6.4 Numerical Examples 

Three examples are presented in this section to demonstrate the validity and efficiency of 

the proposed work. For a fair comparison of the proposed LP-WR algorithm with full 

blown SPICE EMI simulation using segmentation techniques, this work is compared with 

the work of [51] (hereafter referred to as „full EMI‟). Both techniques are performed 

using MATLAB 2011b on an UNIX server (66 GB RAM and 160 GB memory). All 

transient simulations are performed similar to Section 5.5. 

 Example 1: Three Coupled Microstrip Network: The objective of this example is to 

demonstrate the accuracy of the proposed LP-WR algorithm compared to the full EMI 

       

                                (a)                                                                         (b) 

Figure 6-5: Transient response for Example 1 using the proposed LP-WR algorithm and 

full simulation. (a) Transient response at output port 4. (b) Transient response at output 

port 5. 
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simulation. For this example a three coupled microstrip structure with the physical 

geometry as shown in Fig. 6-4(a) is considered. The per-unit-length parameters for this 

example are extracted from the HSPICE field solver [6] and are as given below 
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where )1()( jfs st  RR  represents the skin effect losses as a function of frequency f  

[6] and diag refers to a diagonal matrix. For the following analysis, the line length of the 

network is set to l = 30 cm. In this case, the number of subcircuits required for the 

proposed LP-WR is n = 50. The network is excited by a trapezoidal voltage source of rise 

 

Figure 6-6: Transient response (Vout) of inverter in Example 1 with incident fields. 
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time Tr = 0.1 ns, pulse width 5 ns and amplitude of 1.8 V and loaded with a nonlinear 

inverter as shown in Fig 6-4(b). This network is also exposed to an incident electric field 

with Gaussian temporal waveform ))/)(exp(()( 22
00 TttEtE   where t0 = 1 ns and T = 

0.25 ns, the peak amplitude E0 = 5 kV/m, an elevation angle ζp = 60
o
 , azimuthal angle φp 

= −60
o
  and a polarized angle ζE = −90

o
 as in Fig. 6-1.   

To illustrate the accuracy of the proposed algorithm, the network is solved using two 

methods - the hybrid iterative technique with improved initial guess and the full EMI 

simulation [51]. For the hybrid technique, the entire time span of analysis between 0-10 

ns is divided into 20 time windows and the iterations for each time window are 

performed on a sequential platform (one processor). For a predefined error tolerance of η 

= 1e-5, the hybrid technique required 5 iterations to converge. The transient responses at 

the far end of the network using the proposed work are illustrated in Fig. 6-5 and exhibits 

good agreement with the full EMI simulation. Figure 6-6 shows the response of the 

output of the inverter (Vout) illustrating the false switching induced due to the incident 

field. The CPU cost of solving the full network (full EMI simulation) is 364 seconds and 

the CPU cost of the proposed LP-WR is 89 seconds (speedup of 4 times). 

Example 2: Seven Microstrip Example: The objective of this example is to demonstrate 

the scalability of the proposed work with respect to the size of the network and the 

numbers of CPUs available for parallel processing. For this example a seven coupled 

microstrip structure of [79] with p.u.l. parameter matrices as given below is considered 

where )1()( jfs st  RR  represents the skin effect losses as a function of frequency f  

[6]. In addition, the MTL is exposed to a incident electric field with a double exponential 
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temporal waveform     ttEtE   expexp)( 0  with 
8104  and 

910 , the 

peak amplitude E0 = 1kV/m, an elevation angle ζp = 60
o
, azimuthal angle φp = −60

o
  and a 

polarized angle ζE = −90
o
 as in Fig. 6-1. 

This example begins with a demonstration of the scaling of the computational cost of the 

proposed work compared to full EMI simulation as the size of the network increases. For 

       

    (a)                                                                       (b) 

Figure 6-7: Computational efficiency of the proposed LP-WR algorithm over full EMI 

simulation. (a) Scaling of computational cost with line length (l) (b) Scaling of CPU 

speed up with number of CPUs (p) (l = 200 cm). 

 

Table 6-1: Comparison of CPU run time for Example 2 

# 

CPU 

CPU Time (sec) Speedup 

w. r. t. 

DEPACT (Eq. 

(6.20) + WR) 

Speedup 

w. r. t. direct 

DEPACT+WR 

DEPACT 

(Eq. (6.20)) + 

WR  

Direct 

DEPACT

+WR  

Full EMI 

1 
511.50 511.49 

6763.90 

13.22 13.22 

4 
148.49 140.44 45.55 48.16 

6 
111.80 102.25 60.50 66.15 

8 
95.55 80.65 70.78 83.86 
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this purpose the line length of the network (l) of the network is increased from 0 cm to 

200 cm in steps of 10 cm. To accurately model the network, the numbers of subcircuits, n 

is increased in steps of 16 for each 10 cm step and ranges from 0 to 320. For each case, 

the network is solved using two methods – the proposed hybrid iterative technique with 

initial guess and the full EMI simulation of [51]. For the hybrid technique, the entire time 

span of analysis between 0-15 ns is divided into 20 time windows and the iterations for 

each time window are performed on a sequential platform. For a predefined error 

tolerance of η = 1e-5, the hybrid technique required on average 5 iterations to converge. 

The scaling of the computational cost of both proposed work and full EMI simulation 

with the line length (l) is shown in Fig. 6-7(a). It is observed from Fig. 6-7(a) that the 

proposed work scales almost linearly (O(n)) (as expected for the proposed LP-WR [77]) 

while the full EMI simulation of the original network scale super linearly as O(n
α
) where 

α = 1.73 for this example.  

Next, the performance of the proposed work is demonstrated on a parallel platform. For 

this purpose the length of the network is fixed at the corner of our design space where l = 

200 cm. The network is solved using three methods – full EMI simulation [51], the 

hybrid technique with initial guess where the partitioning is performed directly on the 

circuit of Fig. 6.2 (referred to as „direct DEPACT+WR‟ in Fig. 6-7(b) and Table 6-1) and 

the same hybrid technique when the partitioning is performed on the more compact 

circuit of Fig. 6-3(b). Both hybrid techniques use the same time windowing as above and 

the iterations for each time window are performed on a parallel platform where the 

number of available CPUs are varied from p = 1 to p = 8 and the error tolerance set to η = 

1e-5. The scaling of the CPU speed up offered by the proposed hybrid techniques over 
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full EMI simulations as a function of the number of processors is shown in Fig. 6-7(b) 

and summarized in Table 6-1. As expected, the speed up for both techniques scales 

efficiently with number of processors. However, when the partitioning is performed on 

the circuit of Fig. 6-7(b), the resultant savings in the size of the subcircuits and the 

communication overheads leads to a more improved scaling of the CPU speedup (closer 

to the ideal scenario where it is assumed that no communication or scheduling overheads 

are incurred) than that using the circuit of Fig. 6-2 without Thevenins representation. 

 

6.5 Conclusion 

In this chapter a longitudinal partitioning based waveform relaxation algorithm for 

parallel EMI analysis of MTL networks is presented. In the proposed work, an improved 

partitioning technique is proposed that replaces the Dirichlet‟s transmission conditions 

with delayed linear equations thereby accelerating the convergence of the waveform 

relaxation iterations. Moreover, the subcircuits are solved independently using a hybrid 

iterative technique that combines the fast convergence of the proposed GS technique with 

the parallelizability of the GJ technique. Techniques to compress the size of the 

subcircuits and reduce communication overheads are also provided. The proposed 

algorithm is found to scale only linearly with the size of the network and naturally lends 

itself for parallel implementations. 
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Chapter 7  
 

7 Waveform Relaxation Algorithm 

for Fast Transient Analysis of 

Power Distribution Networks  
 

 

7.1 Introduction 

As demonstrated in the previous chapters, typically WR algorithms allow for a parallel, 

iterative simulation of a large network, thereby proving to be more efficient that 

conventional sequential algorithms. However, although WR algorithms have been 

extensively investigated for various problems including digital circuits [55] and 

transmission lines [54], [58]-[68], [76]-[79], they have found limited application for 

PDNs. This is due to the fact that in PDNs, every node is spatially connected in multiple 

directions leading to the subcircuits being tightly coupled and exhibiting slow 

convergence. Recently, a one dimensional (1D) partitioning based WR algorithms based 

on a lumped resistive-capacitive (RC) equivalent model for on-chip PDNs was proposed 

[69]. In the work of [69], regular VDD/GND connections in on-chip PDNs were used as 

drain paths for the transient signal leading to good localization of the signal close to the 
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source and consequently efficient convergence. 

In this chapter, a WR algorithm based on the DEPACT model for package/board level 

PDNs, as introduced in Chapter 3, is developed [80]-[81]. This paper extends the 

preliminary concepts proposed in [80] to provide a more efficient WR algorithm with 

improved scalability and convergence properties [81]. A key feature of this work is a 2-D 

partitioning methodology that physically divides the PDN in horizontal and vertical 

directions into rows and columns of subcircuits. In order to expedite the convergence of 

WR iterations, a regular distribution of the global decoupling capacitors over the 

package/board PDN structures is assumed. These decoupling capacitors serves as extra 

drain paths for the transient simultaneous switching noise (SSN) to ground, and in doing 

so, ensures that there is only weak SSN leakage from one subcircuit to the next i.e. 

coupling between the subcircuits is typically weak. As a result, the amplitude of the 

relaxation sources is very small and beginning the iterations with the initial guess of the 

relaxation sources set to the DC solution leads to fast convergence even for PDN 

examples. Furthermore, the advantages of a hybrid iterative technique that was proposed 

for transmission lines examples of Section 5.3.3 has been extended to this 2D PDN 

example as well. A proof of convergence of the proposed WR algorithm has also been 

provided.  The overall algorithm is highly parallelizable and exhibits good scaling with 

both the size of the circuit matrices involved and the number of CPUs available. 

Numerical examples have been provided to illustrate the validity and efficiency of the 

proposed WR algorithm in comparison with solving the entire network. 
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7.2 Development of the Proposed WR Algorithm 

To illustrate the methodology to model PDNs using the DEPACT macromodel, a single 

layer, rectangular PDN is considered as shown in Fig. 2-1(a). Typical modeling 

algorithms for single layered PDNs are based on a 2D discretization of the Helmholtz 

wave equation over the planar area which translates to the division of the physical 

structure into rectangular unit cells as shown in Fig. 2-1(b). Each of the unit cells can 

further be modeled using the DEPACT macromodel as explained in details in Chapter 4 

and [74]. The following subsection demonstrates the 2D proposed partitioning. 

7.2.1 Proposed 2D Partitioning Methodology 

Figure 7-1 illustrates the modeling of the unit cell where the transmission line segments 

of Fig. 7-1(a) is modeled using a single DEPACT section as shown in Fig. 7-1(b). 
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Figure 7-1: Equivalent circuit models for PDNs. (a) Transmission line representation of 

unit cell. (b) DEPACT representation of unit cell. (c) Equivalent circuit model of unit 

cell. 
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Considering the lossless section between the nodes (i, j) and (i, j+1) in Fig. 7-1(b) 

described in the time domain by the MoC as [1] 
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Figure 7-2: Partitioning along the natural MoC interfaces provided by DEPACT model. 
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where  CLZ /0  and  CLl  are the characteristic admittance and the delay of each 

lossless section respectively. The MoC equations of (7.1) can be realized by the simple 

equivalent circuit of Fig. 7-1(c). The natural MoC interfaces provided by the DEPACT 

allow for a 2D partitioning of the PDN structure and has been shown in detail in Fig. 7-2. 

From Fig. 7-2, it is observed that p and q points of coupling exist between adjacent 

subcircuits along the Y and X direction respectively. Thus, the coupling between (m, n)
th

 

and (m+1, n)
th

 subcircuit (X direction) is ensured by the relaxation sources (Wx,2m-1,λ(t), 

Wx,2m,λ(t)) (see Fig. 7-2) and can be expressed as 

nppntWtVtW

tWtVtW

mxmxmx
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               (7.2) 

Similarly, the coupling between (m, n)
th

 and (m, n+1)
th

 subcircuits (Y direction) is 

ensured by the relaxation sources (Wy,2n-1,μ(t), Wy,2n,μ(t)) (see Fig. 7-2) and can be 

expressed as 
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Figure 7-3: Proposed 2D partitioning 
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The above methodology partitions the PDN in 2D into rows and columns of subcircuits 

as shown in Fig. 7-3 and results in smaller subcircuits than [69] where the PDN was 

partitioned into block of rows. Since the cost of solving each subcircuit scales super 

linearly with the size of the subcircuit, the proposed partitioning methodology provides 

more efficient scaling of the WR algorithm. However, despite the advantages of the 

proposed partitioning methodology, since each node of Fig. 2-1(b) is spatially connected 

to other nodes in multiple directions, partitioning the PDN at the natural MoC interfaces 

still ay not yield fast convergence. Hence, techniques to expedite convergence based on 

placement of decoupling capacitors and extension of the hybrid iterative algorithm of 

Chapter 5 to the PDN problem is discussed next. 

7.2.2 Effect of Decoupling Capacitors 

The localization effect due to multiple VDD/GND connections found on on-chip PDN 

structures has already been found to accelerate the WR iterations [69]. In this work, the 

localization properties due to a regular arrangement of global decoupling capacitors 

found on PCB power buses are utilized to accelerate the WR iterations as explained 

below. 

Typical PDN designs at the PCB level include the uniform distribution of global 

decoupling capacitors over the entire PDN surface to mitigate the effects of SSN [5], 

[82]-[83]. These decoupling capacitors are represented as a series equivalent resistive-

inductive-capacitive (RLC) model. As a result, for frequencies close to the resonance 
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frequency )2/(1 LCf s  , the decoupling capacitor behaves like a predominantly resistive 

path to ground, where due to the high conductivity of the electrode, the path resistance 

(R) is typically very small [5]. Considering the SSN propagating across any (i,j)
th

 

subcircuit of Fig. 7-3, components of the transient current with frequencies located close 

to fs will feed into these low impedance paths (i.e. decoupling capacitors) local to the 

(i,j)
th

 subcircuit rather than those located in the neighboring subcircuit due to the 

additional path resistance encountered in crossing the partition interface (similar to what 

has been observed for the VDD/GND connections in [69]). As a result, for the above noise 

components, the decoupling capacitors local to each subcircuit ensure reasonable 

localization of the SSN signal within that subcircuit and consequently the leakage of the 

SSN signal propagating across the partitioning interfaces is relatively weak (i.e. the 

relaxation sources has weak amplitude). As a result, even for large amplitude SSN signals 

as observed during resonance, an initial guess of the relaxation sources set to the DC 

solution is sufficient for convergence. 

To ensure the above localization effect, the partitioning of Fig. 7-2 must ensure sufficient 

decoupling capacitors local to each subcircuit. It is expected that increasing the size of 

subcircuits to incorporate more decoupling capacitors within each subcircuit would lead 

to even better localization of the signal and hence, improved convergence. However, with 

the increase in subcircuit size, the CPU cost of solving each subcircuit would also 

increase super linearly leading to a poor scaling of the WR algorithm. It was observed 

through various experiments with different PDN structures that for subcircuits containing 

two decoupling capacitors in the horizontal and vertical directions each (i.e. total four 

decoupling capacitors) provide good localization of the noise signal in either directions 
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and consequently was a good compromise between the CPU cost of solving each 

subcircuit and the speed of convergence. This will be illustrated through a numerical 

example in Section VI.  

The above localization effect is maximum near the resonance frequency of the 

decoupling capacitor (fs) and decreases as we move away from fs. In order to ensure that 

the rate of convergence remains smooth over the entire bandwidth of operation, the 

hybrid iterative technique proposed in Chapter 5 has extended to PDNs, as described 

next. 

7.2.3 2D Hybrid Iterative Technique 

Once the PDN has been partitioned into subcircuits, these subcircuits can be solved 

independently in an iterative manner. Typically two techniques exist for the iterative 

solution of the subcircuits – the Gauss-Seidel (GS) and the Gauss-Jacobi (GJ) techniques 

[55]. In [77], a hybrid iterative technique that combined the complimentary features of 

GS with that of GJ was proposed for 1D transmission line networks. In this subsection, 

the 1D iterative technique has been extended to the 2D problem with PDNs.  

To begin the hybrid iterative technique, all the subcircuits are divided into two groups – 

group A and B where the (i, j)
th

 subcircuit is placed in group A if i+j is an even number 

or else it is placed in group B if i+j is an odd number. The total number of subcircuits 

within each group is defined as 

BgroupNNNNn

AgroupNNn

yxyxB

yxA





]2/[

]2/[
                           (7.4) 
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and [x] represents the least integer greater than x. From Fig. 7-3, it is observed that such a 

grouping ensures that subcircuits of one group do not share any partitioning interface 

with (i.e. are not coupled to) any other subcircuits in the same group but are coupled to 

subcircuits from the other group. As a result, the exchange of waveforms required to 

update the relaxation sources only occurs between subcircuits of different groups and 

never between those of the same group. This grouping can be exploited using a nested 

iterative technique similar to that of Section 5.3.3. The outer iteration solves group A and 

B in sequence (using GS) and updates the relaxation sources after every group solution. 

The inner iteration solves the subcircuits within each group in parallel (using GJ). This 

forms the basis of the proposed hybrid iterative technique. 

In each iteration, the GS sequence begins with the group A before proceeding to the 

group B. Prior to beginning the k
th

 iteration, it is assumed that the k-1
th

 iteration has been 

completed for all N subcircuits and the waveforms of the relaxation sources responsible 

for exciting the nA subcircuits of group A have been updated to 
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where mqqmnppn  )1(;)1(  and (m+n) is even. If k = 1, the waveforms of 

RA
(0)

 are simply the initial guesses. Using the relaxation sources with known waveforms 

of (7.5) as input for the corresponding subcircuits of group A translates to the following 

terminal conditions (Fig. 7-2) 
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The terminal conditions of (7.6) along with the equations arising from the DEPACT 

representation of the transmission line segments within each subcircuit, together form the 

set of delayed ordinary differential equations (DODE) describing each subcircuit of 

group A. These subcircuits can now be solved in parallel on a multiprocessor machine 

using GJ for a self consistent solution of the left hand side of (7.6) as 
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Once the GJ for group A is concluded, the waveforms of the relaxation sources exciting 

the subcircuits of group B are updated using the delayed MoC equations of as 

)()(2)(

)()(2)(

)()(2)(

)()(2)(

)1(
,12,

)(
,12,

)(
,2,

)1(
,22,

)(
,22,

)(
,32,

)1(
,12,

)(
,12,

)(
,2,

)1(
,22,

)(
,22,

)(
,32,





































tWtVtW

tWtVtW

tWtVtW

tWtVtW

k
ny

k
ny

k
ny

k
ny

k
ny

k
ny

k
mx

k
mx

k
mx

k
mx

k
mx

k
mx

                        (7.8) 

where the waveforms on the right hand side are already known from (7.5) and (7.7). The 

equations of (7.8) being decoupled, can be solved in parallel. The above updated 

relaxation sources responsible for exciting the subcircuits of group B are expressed 

similar to (7.5) as 
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Using the relaxation sources of (7.9) as the input excitation for the corresponding 

subcircuits of group B translates to the following terminal conditions (Fig. 7-2) 
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Using the terminal condition of (7.10), the subcircuits in group B can be solved in 

parallel using GJ for a self-consistent solution of the left hand side of (7.10) as 
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 Based on (7.11), the waveforms of the relaxation sources exciting the subcircuits of 

group A are updated for the k+1
th

 iteration using the delayed MoC equations of as 
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where the waveforms on the right hand side are already known from (7.9) and (7.11). 

This iterative cycle continues till the absolute error satisfies a predefined tolerance limit. 

It is noted that the hybrid technique provides more frequent exchange of waveforms 

using (7.8), (7.12) compared to traditional GJ which allows only a single exchange. As a 

result, the hybrid technique exhibits better convergence than GJ. Moreover, the 

subcircuits in group A or B can still be solved in parallel unlike a full blown GS 

technique. 
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7.3 Numerical Examples 

Two examples are presented in this section to demonstrate the validity and efficiency of 

the proposed work. For a fair comparison of the WR algorithm with full simulation of the 

PDN, this work is compared with the work of [74] (hereafter referred to as „full EMI‟). 

Both techniques are performed using MATLAB 2011b on an UNIX server (66 GB RAM 

and 160 GB memory). All transient simulations are performed similar to Section 5.5. 

Example 1: The objective of this example is to demonstrate the robustness of the 

proposed partitioning methodology. For this example a rectangular PDN structure with 

the physical dimensions shown in Fig. 7-4 is considered. The signal and ground planes 

are made of copper with thickness t = 0.025 mm and separated by d = 1.1 mm thick FR4 

dielectric (εr = 4.5). The PDN is discretized into an orthogonal grid of transmission lines 
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Figure 7-4: PDN structure of Example 1 
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where the length of each line segment is set to 0.5 cm (i.e. Nc = 46, Nr = 36 of Fig. 2-1). 

The PDN is populated with a uniform distribution of 48 global decoupling capacitors and 

a single local decoupling capacitor (0.5 cm away from the SSN source as shown in Fig. 

7-4). Each decoupling capacitor belongs to the package size 0805 family and is modeled 

as a lumped series RLC models where R = 85mΩ, L = 0.5nH, C = 7.3nF [83]. The input 

port is located at Port A (22, 17) while three output ports are located at Port B (2.5, 15), 

Port C (7.5, 10) and Port D (2.5, 5). To mimic the injected transient current, the input 

source is modeled as a Norton‟s equivalent current source with a resistance of 10Ω in 

parallel. The input waveform is a triangular pulse with rise time Tr = 0.2 ns and amplitude 

100mA. The p. u. l. parameters of the transmission line segment are obtained from the 

physical and electrical characteristics of the PDN as explained in [74].  

To illustrate the localization phenomenon and its effect on the convergence of WR 

iterations, the above PDN structure is analyzed for two cases – in presence of the 

decoupling capacitors of Fig. 7-4 (network one) and when no decoupling capacitors are 

present (network two). For network one, the PDN is partitioned as shown in Fig. 7-4 (two 

decoupling capacitors in the X and Y directions) yielding a total of N = 12 subcircuits (Nx 

= 4, Ny = 3 in Fig. 7-3). To provide a fair comparison between the two networks, network 

two is also partitioned in a similar manner as network one. Figure 7-5 shows the result of 

the WR iterations at port D for both networks using GS on a sequential platform (number 

of processors (p) = 1) where the initial guess of the waveforms of the relaxation sources 

is set to the zero and the error tolerance is set to η = 1e-6. It is observed that for network 

one, the amount of the SSN signal reaching the port D from port A is significantly less 

than for network two. This is due to the fact that for network one, the decoupling 
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capacitors local to each subcircuit provide reasonable localization of the SSN within that 

subcircuit by acting as alternative current drain paths and thereby ensure that the strength 

of SSN propagating between two adjacent subcircuits between ports A and D is relatively 

weak. As a result, using an initial guess of the relaxation sources set to DC solution of 

zero converges to the actual solution of network one within 7 iterations but fails to 

      

                                     (a)                                                                    (b) 

Figure 7-5: Transient response for Example 2 using proposed WR algorithm and full 

simulation. (a) Transient response at output port B considering decoupling capacitors. 

(b) Transient response at output port B without decoupling capacitors. 

 

Table 7-1: Change in rate of convergence with number of decoupling capacitors for 

Example 1 

Test case 

# Decoupling capacitors 

per subcircuit in X 

direction 

# Decoupling capacitors 

per subcircuit in Y 

direction 

# Iterations 

1 
1 1 12 

2 
2 1 9 

3 
2 2 7 

4 
2 3 7 

5 
4 3 7 
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capture the high amplitude waveform of network two even after 25 iterations.   

Next, the dependence of the speed of convergence on the number of decoupling 

capacitors within each subcircuit is investigated. For this purpose five test cases for the 

PDN structure of Fig. 7-4 are described in Table 7-1. It is observed from Table 7-1 that 

the size of the subcircuits are steadily increased from test case 1 to 5 to progressively 

include more decoupling capacitors within themselves. The WR iterations are performed 

for each test case using Gauss-Seidel (p = 1) with an initial guess of the relaxation 

sources set to zero and an error tolerance of η = 1e-6. The variations in speed of 

convergence with the number of decoupling capacitors within each subcircuit are shown 

in Table 7-1. It is noted that as size of the subcircuits are increased from test case 1 to test 

case 3, the increase in number of decoupling capacitors lead to better localization and 

consequently better convergence. However, beyond test case three, there is negligible 

improvement in the convergence speed. This is because, increasing the size of each 

subcircuits also leads to an increase in the number of coupling points between adjacent 

subcircuit which impedes the convergence and thus offsets any benefit of including 

additional decoupling capacitors. Furthermore, with the increase in subcircuit size, the 

CPU cost of solving each subcircuit would also increase super linearly leading to a poor 

scaling of the WR algorithm.     

It was observed through various experiments with different PDN structures that the 

subcircuits containing two decoupling capacitors in the X and Y directions each (i.e. test 

case 3 for this example) provide good localization of the noise signal in either directions 

and consequently was a good compromise between the CPU cost of solving each 

subcircuit and the speed of convergence.  
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Example 2: The objective of this example is to illustrate the computational efficiency of 

the proposed work over full simulation of the PDN [74]. For this example, a PDN 

structure of variable dimension a cm as shown in Fig. 7-6 is considered. The signal and 

ground planes are made of copper of thickness t = 0.025 mm and separated by d = 1.1 

mm thick FR4 dielectric (εr = 4.5). The PDN is discretized into an orthogonal grid of 

transmission lines where the length of each line segment was set to 0.5 cm. The PDN 

contains a uniform distribution of global decoupling capacitors spaced 1.5 cm from each 

other and 0.5 cm from the PDN edges (Fig. 7-6) where each decoupling capacitor belongs 

to the package size 0805 family [83]. The input port is located at Port A (a-0.5, a-0.5) 

and an output port is located at Port B (0.5, 2). The input source is modeled as a Norton‟s 

equivalent current similar to Example 1 and has a triangular pulse waveform with rise 

time Tr = 0.2 ns and amplitude 100mA. The p. u. l. parameters of the transmission line 

segment are obtained from the physical and electrical characteristics of the PDN as 
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Figure 7-6: PDN structure for Example 2. 
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explained in [74]. The PDN is partitioned as shown in Fig. 7-6 yielding a total of N = Nx 

Ny subcircuits where for this example 0NNN yx  .  

To demonstrate the scaling of the computational cost with size of the network, the 

dimensions of the PDN is increased from a = 5.5 cm to a = 29.5 cm in steps of 3 cm. 

This corresponds to N0 increasing from 0 to 8 in unit steps. For each case, the PDN is 

solved using three techniques – proposed WR with hybrid technique, proposed WR with 

  

                                          (a)                                                                 (b) 

Figure: 7-7: Scaling of computational cost for Example 2. (a) Scaling of computational 

cost with number of subcircuits (N0) (number of CPUs set to 1). (b) Scaling of CPU 

speed up with number of CPUs (p) (N0 = 100). 

 

Table 7-2: Comparison of CPU run time for Example 2 

# CPU 

CPU Time (sec) Speedup 

w. r. t. Gauss 

Jacobi 

Speedup 

w. r. t. Hybrid 
Gauss 

Jacobi  
Hybrid 

Full 

Simulation  

1 
1057.00 587.25 

3579.00 

3.38 6.09 

4 
327.70 187.92 10.92 19.04 

6 
222.35 117.45 16.09 30.47 

8 
165.45 93.96 21.63 38.09 
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traditional GJ technique and the full PDN simulation [74]. For a fair comparison, both 

WR algorithms use time windowing [55] where the entire time span ranging between 0-

8ns is divided into 20 time windows. The WR iterations are performed on a sequential 

platform (p = 1) with the predefined error tolerance set to η = 1e-6. For this particular 

error tolerance, the number of iterations required for the hybrid technique is 5 while that 

required for the GJ was 9. The scaling of the computational cost of the WR algorithms 

and full PDN simulation [74] with the size of the PDN (i.e. N) is shown in Fig. 7-7. It is 

observed from Fig. 7-7(a) that the CPU cost for both GJ and the hybrid algorithm scales 

almost linearly with number of subcircuits (O(N)). This scaling of the CPU cost with the 

number of subcircuits is similar to that reported for typical WR algorithms [77], [79]. The 

CPU cost of the full PDN solution scale super linearly as O(n
α
) where α = 1.83 for this 

example. Moreover, the 2D hybrid iterative technique of Section 7.2.3 provides faster 

convergence than that due to GJ.   

Next, the performance of the proposed work is demonstrated on a parallel platform. The 

dimensions of the PDN is fixed at the corner of our design space where a = 29.5 cm. The 

WR iterations are performed on a parallel processing platform where number of 

processors are varied from p = 1 to p = 8 for the same error tolerance as before. The CPU 

speed up offered by both WR algorithms over full simulation of the PDN [74] is shown in 

Fig. 7-7(b) and summarized in Table 7-2. The speed ups for either iterative technique 

scale almost linearly with number of processors, thereby demonstrating the high 

parallelizability of both. However, the 2D hybrid iterative technique is still much faster 

than the GJ. The minor deviation of Fig. 7-7(b) from the exactly linear scaling with 
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respect to number of CPUs (p) is due to the incurred communication overheads between 

processors and the and scheduling overheads for the time windows. 

 

7.4 Conclusions 

In this chapter a waveform relaxation algorithm for the efficient transient analysis of 

power distribution planes is presented. The proposed methodology represents the network 

using an orthogonal grid of transmission line segments where a delay extraction based 

macromodel is used to represent each line segment in time domain. Novel partitioning 

and iterative techniques are proposed for fast convergence and improved scalability of the 

proposed relaxation algorithm. The overall algorithm is highly parallelizable and exhibits 

good scaling with both the size of the circuit matrices involved and the number of CPUs 

available. 
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Chapter 8  
 

8 Summary and Future Work 
 

 

8.1 Summary 

The objective of this thesis is to develop efficient algorithms for computer aided signal 

and power integrity analyses in high speed packaging. This thesis typically derives delay 

extraction based algorithms and parallelizable solution strategies for the accurate yet 

efficient broadband macromodeling of high speed interconnects and PDNs. The major 

contributions of this thesis are summarized below. 

Firstly, a delay extraction based IFFT algorithm has been developed for the 

macromodeling of interconnect networks characterized by their frequency domain, 

multiport Y parameter matrix. This algorithm exploits a time-frequency decomposition 

(Gabor transformation) to explicitly extract multiple delays from the tabulated data 

arising due to the multiple reflections of the signal at the I/O terminals. This is followed 

by a Hilbert transform to capture the attenuation loss term corresponding to each delay. 

Thereafter, a simple IFFT operation converts the frequency domain Y parameter data into 
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a sum of delayed data in the time domain that is more accurate than traditional IFFT and 

single delay extraction based IFFT techniques. Numerical convolution of the time domain 

Y parameter matrix with the input yields the transient network response. 

Secondly, a delay extraction based macromodeling algorithm has been presented to 

model high speed PDNs. This algorithm is based on extending the DEPACT algorithm to 

single layered (2D) and even multilayered (3D) PDN structures including holes, apertures 

and irregular geometry thereby providing more efficient broadband macromodels than the 

existing quasi-static lumped models. 

Thirdly, a longitudinal partitioning based WR (LP-WR) algorithm using delay extraction 

has been developed for the parallel simulation of large high speed interconnects. This 

algorithm is highly parallelizable, demonstrates naturally swift convergence and the 

associated computational costs show excellent scalability with the size of the network and 

the number of CPUs available. Moreover, a hybrid iterative scheme that combines the 

high parallelizability of the GJ iterative technique with the superior convergence of the 

GS technique is developed to further accelerate the speed of WR iterations. 

Fourthly, the LP-WR algorithms developed for transient analysis of interconnects have 

been extended to include EMI analysis. A key feature of this work has been that the 

advantages of the hybrid iterative technique are easily retained for the problem of EMI 

analysis of interconnects. Moreover, novel techniques to compress the size of subcircuits 

and reduce communication overheads during iterations have been developed. In addition, 

techniques based on time windowing and the delay extraction feature of DEPACT have 
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been exploited to ensure an improved initial guess of the waveforms of the relaxation 

sources thereby further accelerating the convergence. 

Finally, the attributes of the above LP-WR algorithm has been extended to the modeling 

of the singly layered PDNs. For the problem of PDNs, a 2D partitioning scheme based on 

the DEPACT model has been developed. The regular distribution of global decoupling 

capacitors has been considered as additional drain paths for the SSN injected into the 

PDNs, thereby ensuring good localization of the SSN and consequently efficient 

convergence of WR iterations. The hybrid iterative technique developed previously for 

interconnects has been extended to the 2D problem of PDNs. 

For each of the above contribution, several numerical examples are provided in this thesis 

to demonstrate the validity and efficiency of the proposed algorithms. 

 

8.2 Future Work 

This section provides some suggestions for future research based on the work presented 

in this thesis: 

1. The extension of WR to PDN modeling is based on an assumption of regular 

arrangement of decoupling capacitors. However, in many design scenarios, 

decoupling capacitors are located near to the position of the SSN source (i.e. the 

position of the ICs embedded in the PDN) rather than being distributed all over the 

PDN. In such cases, the arrangement of decoupling capacitors may not cover the 

entire PDN area and this has been found to lead to relatively slow convergence. New 
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techniques based on overlapping based WR are currently being investigated that can 

ensure fast convergence. Overlapping based WR however require multiple solution of 

the same subcircuit and do not scale optimally with regard to its CPU costs. As a 

result, novel methodologies need to be developed for faster solution of overlapping 

based WR iterations and this is a currently open topic of research. 

2. Applications of LP-WR for the parallel simulation of power transmission line issues 

such as corona discharge, lightening discharge and overvoltage analysis  can be 

examined. 

3. While the developed LP-WR provide excellent results where the number of DEPACT 

sections may increase due to an increase in line resistance, line length or frequency of 

operation, it still requires the simulation of MTL DEPACT subcrcuits and does not 

scale well with large number of coupled lines. On the other hand, alterative WR 

algorithms based on a transverse partitioning (TP-WR) can separate the MTL into 

multiple single line examples which can then be solved iteratively. Hence, in my 

future work I will seek to combine the LP-WR with the TP-WR to develop a new 2D 

partitioning methodology based on simultaneous longitudinal and transverse 

partitioning for taking into account both larger number of DEPACT sections and 

larger number of coupled interconnects.  

4. The 2D partitioning methodology used for parallel simulation of single layered PDNs 

in [81] need to be extended to the problem of 3D partitioning for parallel simulation 

of multilayered PDNs. In order to do so, I am currently investigating decoupling the 

plane layers using the TP-WR techniques of [59] and then further partitioning each 

plane layer into smaller subcircuits using the 2D partitioning methodology of [81]. 
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Such a 3D partitioning based WR algorithm is expected to be highly effective for 

parallel SPICE simulation of complex 3D PDN problems. 
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