757 research outputs found

    Piecewise linear differential systems with two real saddles

    Get PDF
    Agraïments: All authors are also supported by the joint project CAPES-MECD grant PHB-2009-0025-PCand AUXPE-DGU 15/2010.In this paper we study piecewise linear differential systems formed by two regions separated by a straight line so that each system has a real saddle point in its region of definition. If both saddles are conveniently situated, they produce a transition flow from a segment of the splitting line to another segment of the same line, and this produces a generalized singular point on the line. This point is a focus or a center and there can be found limit cycles around it. We are going to show that the maximum number of limit cycles that can bifurcate from this focus is two. One of them appears through a Hopf bifurcation and the second when the focus becomes a node by means of the sliding

    Bifurcation of Limit Cycles from a Periodic Annulus Formed by a Center and Two Saddles in Piecewise Linear Differential System with Three Zones

    Full text link
    In this paper, we study the number of limit cycles that can bifurcate from a periodic annulus in discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines, such that the linear differential systems that define the piecewise one have a center and two saddles. That is, the linear differential system in the region between the two parallel lines (i.e. the central subsystem) has a center and the others subsystems have saddles. We prove that if the central subsystem has a real or a boundary center, then we have at least six limit cycles bifurcating from the periodic annulus by linear perturbations, four passing through the three zones and two passing through the two zones. Now, if the central subsystem has a virtual center, then we have at least four limit cycles bifurcating from the periodic annulus by linear perturbations, three passing through the three zones and one passing through the two zones. For this, we obtain a normal form for these piecewise Hamiltonian systems and study the number of zeros of its Melnikov functions defined in two and three zonesComment: arXiv admin note: text overlap with arXiv:2109.1031

    Aspects of Bifurcation Theory for Piecewise-Smooth, Continuous Systems

    Full text link
    Systems that are not smooth can undergo bifurcations that are forbidden in smooth systems. We review some of the phenomena that can occur for piecewise-smooth, continuous maps and flows when a fixed point or an equilibrium collides with a surface on which the system is not smooth. Much of our understanding of these cases relies on a reduction to piecewise linearity near the border-collision. We also review a number of codimension-two bifurcations in which nonlinearity is important.Comment: pdfLaTeX, 9 figure

    Limit cycles of planar piecewise differential systems with linear Hamiltonian saddles

    Get PDF
    We provide the maximum number of limit cycles for continuous and discontinuous planar piecewise differential systems formed by linear Hamiltonian saddles and separated either by one or two parallel straight lines. We show that when these piecewise differential systems are either continuous or discontinuous and are separated by one straight line, or are continuous and are separated by two parallel straight lines, they do not have limit cycles. On the other hand, when these systems are discontinuous and separated by two parallel straight lines, we prove that the maximum number of limit cycles that they can have is one and that this maximum is reached by providing an example of such a system with one limit cycle. When the line of discontinuity of the piecewise differential system is formed by one straight line, the symmetry of the problem allows to take this straight line without loss of generality as the line x = 0. Similarly, when the line of discontinuity of the piecewise differential system is formed by two parallel straight lines due to the symmetry of the problem, we can assume without loss of generality that these two straight lines are x = ±1

    Limit cycles of planar piecewise linear Hamiltonian differential systems with two or three zones

    Get PDF
    In this paper, we study the existence of limit cycles in continuous and discontinuous planar piecewise linear Hamiltonian differential system with two or three zones separated by straight lines and such that the linear systems that define the piecewise one have isolated singular points, i.e. centers or saddles. In this case, we show that if the planar piecewise linear Hamiltonian differential system is either continuous or discontinuous with two zones, then it has no limit cycles. Now, if the planar piecewise linear Hamiltonian differential system is discontinuous with three zones, then it has at most one limit cycle, and there are examples with one limit cycle. More precisely, without taking into account the position of the singular points in the zones, we present examples with the unique limit cycle for all possible combinations of saddles and centers

    The general Li\'enard polynomial system

    Full text link
    In this paper, applying a canonical system with field rotation parameters and using geometric properties of the spirals filling the interior and exterior domains of limit cycles, we solve first the problem on the maximum number of limit cycles surrounding a unique singular point for an arbitrary polynomial system. Then, by means of the same bifurcationally geometric approach, we solve the limit cycle problem for a general Li\'enard polynomial system with an arbitrary (but finite) number of singular points. This is related to the solution of Hilbert's sixteenth problem on the maximum number and relative position of limit cycles for planar polynomial dynamical systems.Comment: 17 pages. arXiv admin note: substantial text overlap with arXiv:math/061114
    corecore