2,002 research outputs found

    GASP : Geometric Association with Surface Patches

    Full text link
    A fundamental challenge to sensory processing tasks in perception and robotics is the problem of obtaining data associations across views. We present a robust solution for ascertaining potentially dense surface patch (superpixel) associations, requiring just range information. Our approach involves decomposition of a view into regularized surface patches. We represent them as sequences expressing geometry invariantly over their superpixel neighborhoods, as uniquely consistent partial orderings. We match these representations through an optimal sequence comparison metric based on the Damerau-Levenshtein distance - enabling robust association with quadratic complexity (in contrast to hitherto employed joint matching formulations which are NP-complete). The approach is able to perform under wide baselines, heavy rotations, partial overlaps, significant occlusions and sensor noise. The technique does not require any priors -- motion or otherwise, and does not make restrictive assumptions on scene structure and sensor movement. It does not require appearance -- is hence more widely applicable than appearance reliant methods, and invulnerable to related ambiguities such as textureless or aliased content. We present promising qualitative and quantitative results under diverse settings, along with comparatives with popular approaches based on range as well as RGB-D data.Comment: International Conference on 3D Vision, 201

    A Primal-Dual Framework for Real-Time Dense RGB-D Scene Flow

    Get PDF
    This paper presents the first method to compute dense scene flow in real-time for RGB-D cameras. It is based on a variational formulation where brightness constancy and geometric consistency are imposed. Accounting for the depth data provided by RGB-D cameras, regularization of the flow field is imposed on the 3D surface (or set of surfaces) of the observed scene instead of on the image plane, leading to more geometrically consistent results. The minimization problem is efficiently solved by a primal-dual algorithm which is implemented on a GPU, achieving a previously unseen temporal performance. Several tests have been conducted to compare our approach with a state-of-the-art work (RGB-D flow) where quantitative and qualitative results are evaluated. Moreover, an additional set of experiments have been carried out to show the applicability of our work to estimate motion in realtime. Results demonstrate the accuracy of our approach, which outperforms the RGB-D flow, and which is able to estimate heterogeneous and non-rigid motions at a high frame rate.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Research supported by the Spanish Government under project DPI1011-25483 and the Spanish grant program FPI-MICINN 2012

    Super-resolution Using Adaptive Wiener Filters

    Get PDF
    The spatial sampling rate of an imaging system is determined by the spacing of the detectors in the focal plane array (FPA). The spatial frequencies present in the image on the focal plane are band-limited by the optics. This is due to diffraction through a finite aperture. To guarantee that there will be no aliasing during image acquisiton, the Nyquist criterion dictates that the sampling rate must be greater than twice the cut-off frequency of the optics. However, optical designs involve a number of trade-offs and typical imaging systems are designed with some level of aliasing. We will refer to such systems as detector limited, as opposed to optically limited. Furthermore, with or without aliasing, imaging systems invariably suffer from diffraction blur, optical abberations, and noise. Multiframe super-resolution (SR) processing has proven to be successful in reducing aliasing and enhancing the resolution of images from detector limited imaging systems

    Linearized Motion Estimation for Articulated Planes

    Full text link

    Dense and accurate motion and strain estimation in high resolution speckle images using an image-adaptive approach

    Get PDF
    Digital image processing methods represent a viable and well acknowledged alternative to strain gauges and interferometric techniques for determining full-field displacements and strains in materials under stress. This paper presents an image adaptive technique for dense motion and strain estimation using high-resolution speckle images that show the analyzed material in its original and deformed states. The algorithm starts by dividing the speckle image showing the original state into irregular cells taking into consideration both spatial and gradient image information present. Subsequently the Newton-Raphson digital image correlation technique is applied to calculate the corresponding motion for each cell. Adaptive spatial regularization in the form of the Geman-McClure robust spatial estimator is employed to increase the spatial consistency of the motion components of a cell with respect to the components of neighbouring cells. To obtain the final strain information, local least-squares fitting using a linear displacement model is performed on the horizontal and vertical displacement fields. To evaluate the presented image partitioning and strain estimation techniques two numerical and two real experiments are employed. The numerical experiments simulate the deformation of a specimen with constant strain across the surface as well as small rigid-body rotations present while real experiments consist specimens that undergo uniaxial stress. The results indicate very good accuracy of the recovered strains as well as better rotation insensitivity compared to classical techniques
    • …
    corecore