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ABSTRACT

Digital image processing methods represent a viable and well acknowledged alternative to strain gauges and
interferometric techniques for determining full-field displacements and strains in materials under stress. This
paper presents an image adaptive technique for dense motion and strain estimation using high-resolution speckle
images that show the analyzed material in its original and deformed states. The algorithm starts by dividing the
speckle image showing the original state into irregular cells taking into consideration both spatial and gradient
image information present. Subsequently the Newton-Raphson digital image correlation technique is applied
to calculate the corresponding motion for each cell. Adaptive spatial regularization in the form of the Geman-
McClure robust spatial estimator is employed to increase the spatial consistency of the motion components
of a cell with respect to the components of neighbouring cells. To obtain the final strain information, local
least-squares fitting using a linear displacement model is performed on the horizontal and vertical displacement
fields. To evaluate the presented image partitioning and strain estimation techniques two numerical and two real
experiments are employed. The numerical experiments simulate the deformation of a specimen with constant
strain across the surface as well as small rigid-body rotations present while real experiments consist specimens
that undergo uniaxial stress. The results indicate very good accuracy of the recovered strains as well as better
rotation insensitivity compared to classical techniques.
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1. INTRODUCTION

Since their introduction in the early 80’s,1–3 Digital image correlation (DIC) methods have become a reliable
measurement tool for the full-field measurement of displacements and strains in the field of experimental me-
chanics. Various algorithmic approaches have been developed over time, the most prominent of these involving
the Newton-Raphson iterative minimization technique.4–6 Respect to the other existing methods, it presents
better sub-pixel accuracy and the possibility of being combined with more complex linear and quadratic mo-
tion models at the expense of computational speed and sensitivity to the interpolation employed.7–9 However,
these disadvantages are becoming less problematic in present experiments because of the continuous evolution
of computing hardware performances and the fact that interpolants such as high order splines10, 11 significantly
reduce the negative impact of interpolation in the motion and strain estimates. In order to obtain the displace-
ments, two images of the analyzed material specimen - which is spray-painted to present a seemingly random
speckle pattern, taken before (reference image) and after (deformed image) the deformation process are used.
The reference image is divided into rectangular blocks and motion is calculated by finding the positions of the
reference blocks into the deformed image. The strains and subsequently obtained from the displacement fields
through differentiation of the latter. A determining factor in the final accuracy of the DIC results is the size of
the blocks into which the image is partitioned. If large blocks are used, slow spatial variations in the underlying
motion fields are accurately captured however, faster ones are smoothed. Smaller blocks can capture fast spatial
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variations but accuracy is lowered by effects such as the aperture problem and the fact less image information is
used.

This paper presents a new alternative to the block-based DIC approach which aims at improving overall
accuracy while maintaining the effectiveness in capturing fast spatial motion fluctuations. The new Newton-
Raphson -based DIC approach employs spatially irregular image cells adaptively built according to the speckle
pattern present in the image to calculate motion. Moreover, spatial regularization is introduced to increase
the spatial consistency of the displacement components corresponding to neighbouring cells. Compared to the
original block-based method, the use of irregular cells and regularization allows for a more efficient use of the
image information improving overall accuracy. The theoretical aspects of the new method are presented in
Section 2 with the experimental results and conclusions in Sections 3 and 4 respectively.

2. THE CELL-BASED NEWTON-RAPHSON METHOD

2.1 Image partitioning

The aim of the image partitioning is to divide the image into irregular cells so that each cell contains inside
at least a speckle large enough to allow accurate motion recovery. This approach is especially suited for hi-
resolution and hi-magnification images where the number of speckles whose sizes satisfy the above condition is
considerable. The partitioning algorithm can be informally split into two phases: the first detects large speckles
or agglomerations of speckles with a diameter over a certain size dmin. The speckle central areas - here considered
the results of a morphological thinning operation - are each distinctly labeled. The second phase assigns each
of the remaining image pixels one of the labels computed previously which effectively partitions the image into
cells. The label assignment operation minimizes a distance that takes into consideration both spatial distances
and the image gradient of the pixels found on the path between the pixel to be labeled and the closest pixels
of distinct previously labeled speckle central areas. The end result is a label map L(x, y) the same size as the
reference image. The value at each spatial location (x, y) indicates to which cell the pixel in the reference image
found at that location belongs to.

First, a binary image is created by applying Otsu’s method12 to the reference image. The binary image is
eroded with a circular element dmin pixels in size to control the density and size of the cells and morphological
thinning is applied. The last step in the first phase of the partitioning algorithm is a connected component
analysis using an 8-pixel connected neighbourhood. It assigns the label, which is a number placed in the label
map, to all pixels belonging to the same “thinned“ binary speckle. In the second partitioning phase, a pixel to
be partitioned located at (x, y), NC components {Ci| i = 1 . . .NC , 1 < NC ≤ NL} closest spatially to the pixel
with NL the total number of components in the image and {(xCi

, yCi
)| i = 1 . . .NC , 1 < NC ≤ NL} the locations

in each connected component closest to the pixel at (x, y) are considered. The label map at (x, y) is assigned
the value one of the connected component which minimizes:

Di(x, y) = (1− λ(x, y))Ei(x, y)Si(x, y) + λ(x, y)Si(x, y) (1)

where:

Ei(x, y) =

√

(x − xCi
)2 + (y − yCi

)2

max
i

(

√

(x− xCi
)2 + (y − yCi

)2
) (2)

is the normalized Euclidean distance between the pixel at (x, y) and the location (xCi
, yCi

) of the component
Ci. The term Si with

Si(x, y) =

Nθi
∑

j=1

∂I

∂θi
(xi,j , yi,j)

2 (3)

where Nθi = max (|x− xCi
|, |y − yCi

|) is the total number of pixels I(xi,j , yi,j) in the image on the direct path of
direction θi that connects the locations, reflects the magnitude of the image gradient information found between
(x, y) and (xCi

, yCi
). A graphical representation of the calculus of Di is shown in Figure 1. The first term in Di

ensures that pixels located inside the speckles will always be in the same cell since the distance is kept very small
due to the lack of gradient inside the speckle. The presence of image gradients at the speckle borders and larger
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Figure 1: Graphical representation of the calculus of Di.

Euclidean distance between the pixel and the speckle’s central area increase Di resulting in the final cell being
too small fully contain the speckle edges. The term λ(x, y) compensates for this effect by lowering the influence
of the spatial distance. Here,

λ(x, y) =

{

0 if β(x, y) ≤ α(x, y)
(β(x, y) − α(x, y))2 otherwise

(4)

where α(x, y) and β(x, y) are the two eigenvalues of the structure tensor of a M × M pixel block centered in
(x, y), each normalized with respect to its highest value for the whole image. Further algorithmic details and
analysis of the partitioning algorithm can be found in previous works.13 In Figure 2 the results of each of the
partitioning steps are presented using a 300× 300 pixel image. A binary mask that specifies if a pixel is to be
partitioned or not can be also provided to the partitioning algorithm. Through this method, complex shapes
can be partitioned provided that there is a straight path between the pixel and a connected component in the
image that falls completely within the partitionable area.

2.2 Motion and strain estimation

The classical block-based Newton-Raphson method is extended here to use the pixels found within image cells
when calculating the displacements. Also, robust displacement field regularization14–16 is used to increase the
spatial consistency of motion estimates. Its recent DIC employment17 in the form of a robust function applied to
the local differences between motion components showed great potential in improving displacement and accuracy
while maintaining fast spatial variations intact. For the description of the motion estimation algorithm, a
partitioned reference and a deformed speckle image F (x, y) and G(x′, y′) along with the i-th reference cell in
the reference image, fi(x, y) = {F (x, y)|L(x, y) = i} containing ni pixels are considered. The integer pixel
displacement of the center of mass of the reference image cell is initially calculated using a block-based approach
in which the cross-correlation coefficient is maximized. If (x0, y0) is the position of the center of mass with
x0 = 1

ni

∑ni

j=1 xj and y0 = 1
ni

∑ni

j=1 yj and u0(x0, y0) and v0(x0, y0) are the horizontal and vertical integer pixel
displacements, a deformed cell gi(x

′, y′) with the same spatial shape is created inside the deformed image around
the position (x′

0, y
′

0) with x′

0 = x0 + u0(x0, y0), y
′

0 = y0 + v0(x0, y0) as shown in Figure 3. Considering a linear
displacement model where x′ = x+ u(x, y), y′ = y + v(x, y) and

u(x, y) = P1 + P3(x− x0) + P5(y − y0) (5)

v(x, y) = P2 + P4(x− x0) + P6(y − y0) (6)

are the sub-pixel horizontal and vertical displacements of the reference cell’s pixels respect to their corresponding
deformed cell positions, the error functional between the cells can be defined as:

E(P) = ED(P) + λES(P) (7)



Figure 2: a) Original image 300 × 300 pixels in size; b) Binary image; c) Results after erosion with a circular
element with dmin = 2 pixels; d) Morphological thinning results; e) Final label map L(x, y); f) Position of cell
borders (dark grey) in the image. In the test, NC = 2 and M = 5 were used.
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Figure 3: The construction of a deformed cell.

with P = {P1, . . . , P6} the six displacement components. The term

ED(P) =
∑

(x,y)∈fi

(fi(x, y)− gi(x, y,P))
2

(8)

is a least-squares measure of the image data fit between the two cells, λ is the regularization strength parameter
while

ES(P) =

6
∑

j=1

Nfi
∑

k=1

ρ (rjk , σj(rjk)) (9)

is the regularization term. The Geman-McClure robust function ρ(r, σ) = r2/(r2 + σ) controls how much each
of the six motion components Pj associated with a cell is influenced by the corresponding components of the Nfi



neighbouring cells. The parameter σj which is a function of the standard deviation σ̃j of the local smoothness

residuals rjk = {Pj − P
(k)
j | j = 1 . . . 6, k = 1 . . .Nfi} adjusts this influence by changing the shape of the robust

function. A linear dependency σj = 15 · σ̃j has been chosen throughout the tests. The choice of the multiplicative
factor represents a compromise between the discontinuity preservation property of the regularization term which
is more pronounced for smaller values and the smoothing effect which is stronger for larger values. Minimizing
Equation 7 is done iteratively, with the solution at the t-th iteration of the form:

Pt −Pt−1 = −
∇E(Pt−1)

∇∇E(Pt−1)
(10)

where
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(12)

are the Jacobian and Hessian matrices of the error functional E(P). Practically, in each iteration the reference
cell is warped towards the deformed cell and the residual displacement components between the two are calculated
and added to the previous iteration solution. Convergence is considered to be reached when the difference between
all corresponding motion components in two successive iterations is smaller than 10−5. To deform the reference
cell, bicubic spline interpolation is used. The final horizontal and vertical displacement fields obtained have the
same resolution as the reference image. To obtain strain fields that can be directly compared with the classic
block-based method, the displacement fields are subsampled at the locations that correspond to the centers of
the blocks. In this way, the displacement fields from both the proposed and classic block-based methods will have
the same size and the displacements will correspond to the same locations in the reference image. The strain
fields can be calculated in a straightforward manner18 by least-squares fitting linear motion models through the
horizontal and vertical displacements located in a rectangular window also called strain window. After the fit
has been performed, the horizontal, shear and vertical strain values corresponding to the strain window can be
easily calculated function of the linear model parameters.

3. TESTS AND RESULTS

3.1 Numerical experiments

The first numerical experiment simulates constant horizontal and vertical strains εxx = εyy = 5×10−3 throughout
the image while the second experiment simulates a vertical strain eyy = 7 × 10−3 and a clockwise rotation of
0.5◦ around the upper left corner of the image. The deformed image in these cases is obtained by warping
a 512 × 512 pixel reference image using a radial basis function interpolation realistic deformation framework.9

The reference image is part of a larger 2208× 3000 pixel frame captured with a Pixelink PL-A782 camera in a
previous experiment. Through the optical alignment, one image pixel corresponds to 8.33µm in the object plane.
The reference image and contours of the cells are shown in Figure 4. An erosion element with dmin = 1 pixels in
size, NC = 3 and M = 5 were used resulting in 573 cells. A larger diameter of the erosion element would have
generated larger cells however the average size of the resulting cells, equivalent to a 21.3× 21.3 pixel block, was
large enough to obtain reliable motion estimates. For an objective comparison with block approaches, both cells
and blocks will have similar sizes. In consequence, overlapping blocks of 21× 21, 23× 23 and 25× 25 pixels with
a 7 pixel step size will be employed by the block-based method. Strains are calculated using five different strain
windows with sizes between 7×7 and 15×15 displacements. Strain accuracy is assessed by calculating the mean
of the absolute strain errors for the block and strain window sizes used in each of the numerical experiments.
This provides a good quantitative evaluation on the overall quality of the estimated deformation and can reliably
indicate accuracy differences if present. The regularization parameter for the cell-based DIC method had the



Figure 4: The reference image used in the first two (numerical) experiments with the contours of the resulting
cells.

values of λ = 0 and λ = 100 to separately assess the influence of the adaptive cells and regularization. All the
methods presented were implemented in Matlab on a Core2 Duo 2.0 GHz machine running the Linux operating
system. As can be seen from the mean absolute errors from Figure 5, the proposed method yields the best
accuracy regardless of the strain window size used. It is interesting to note that the method performs better
than the block-based one with 25 × 25 pixel blocks which are larger than the average cell size suggesting that
on average, the cells contain more image information than the blocks. Furthermore, the fact that the cells do
not overlap does not disadvantage the method. As expected, the strain errors decrease as the strain window
sizes increases. This is because the more displacement values are used, the more accurate the linear fitting
parameters will be. The mean vertical and horizontal strain errors for this case present similar magnitudes for
the same strain window sizes, with errors generally varying between approximately 3% of the 5 × 10−3 strain
amplitudes for the 7× 7 strain windows and 0.7% for the 13× 13 strain windows. It is important to note that in
real experiments these errors are generally larger due to noise, lighting and quantization effects associated with
the image acquisition process. The results of the second experiment, shown in Figure 6 are consistent with the
ones from the first although certain differences exist: in the case of the horizontal strain errors, strain windows
larger than 11×11 do not bring any qualitative improvements with the proposed method still yielding the lowest
overall error. The proposed method performs considerably better for the shear strains with parasitic shear strains
- which are due to the introduced rotation - up to half the size of the ones generated by the block-based method
in the case of the 9×9 strain windows. Vertical strain errors were slightly larger than the ones of the block-based
method with 25× 25 pixel blocks however the minimum error was still achieved by the proposed method using
15× 15 strain windows.

3.2 Validation in real experiments

The experimental validation is done by using the proposed DIC method to measure full-field strains in two
experiments. Both consist in the application of uniaxial load in a vertical upward direction on aluminum
specimens using a Instron 8801 servo-hydraulic machine. The specimens are spray-painted to obtain a black
speckle pattern, mounted in the servo-hydraulic machine and photographed using the Pixelink PL-A782 camera
at a resolution of 2208× 3000 pixels before and after deformation. The specimen used in the third experiment is
rectangular with two lateral slits as seen in Figure 7a which shows the reference image sized 1000×1000 pixels used
in the measurement process. A detail sized 500×500 pixels of the partitioning results is shown in Figure 7b. The
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Figure 5: Mean absolute horizontal, shear and vertical strain errors for different strain windows sizes in the first
(numerical) experiment.
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Figure 6: Mean absolute horizontal, shear and vertical strain errors for different strain windows sizes in the
second (numerical) experiment.



(a) Reference image for the third experiment(1000 ×

1000 pixels)
(b) Partitioning detail (500× 500 pixels)

Figure 7: Third experiment reference image and partitioning detail.

fourth experiment used an aluminum specimen with a central hole. The reference image sized 1200× 1200 pixels
and a detail of the partitioning results sized 500× 500 pixels can be seen in Figures 8a and 8b respectively. The
partitioning and motion estimation algorithms used the same sets of parameters in both validation experiments:
dmin = 2 pixels, NC = 3 and M = 5, λ = 100 and a strain window size of 13 × 13 displacements. The number
of cells resulted from the image partitioning was 745 for the third and 881 for the fourth experiment. The
horizontal and vertical strain fields from the two experiments shown in Figures 9 and 10 respectively, indicate
as expected the largest strain concentrations in the central areas of the specimens. For the third experiment,
measured strain amplitudes vary between −3.2% and 2.3% for the horizontal strains and from 3.5% in-between
the slits to 8% near the tip of the slits for the vertical strains. The large positive vertical strain values indicate
that the specimen deformed only in the area in-between the lateral slits, the load applied elongating the specimen.
In the fourth experiment strains are present in the area adjacent to the central hole’s left and right extremities.
The vertical strains are positive with maximum values up to 4.5% indicating stretching. The horizontal strains
are negative with values down to −1.7% indicating compression. This is consistent with the fact that as the
specimen is pulled upwards, it’s middle section moves inwards, compressing the material. At this stage, there is
no way of assessing the accuracy of the method because no ground truth data exists however, the results are in
line with the expected material behaviour under the specific loads applied.

4. CONCLUSION

In this paper, the concepts of irregular image cells and robust regularization have been combined and introduced
in the Newton-Raphson DIC method with the aim of improving motion and strain accuracy. The newly resulted
DIC method was evaluated in numerical experimental simulations in which the displacements and strains were
known and validated in real experimental scenarios. Results indicate that the improvements in accuracy are
indeed possible if the rectangular blocks are replaced by irregular shaped cells, the new method providing higher
accuracy than the conventional approach. The inclusion of the regularization term further improved the accuracy.



(a) Reference image for the fourth experiment (1200×
1200 pixels)

(b) Partitioning detail (500× 500 pixels)

Figure 8: Fourth experiment reference image and partitioning detail.
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Figure 9: Third experiment horizontal and vertical strains.



(a) Horizontal strains (b) Vertical strains

Figure 10: Fourth experiment horizontal and vertical strains.

In the experimental validation stage the method yielded results in accordance with theoretical assumptions about
the real material behaviour under load.
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