13,051 research outputs found

    Modern displays: Why we see different colors, and what it means?

    Get PDF
    International audienceOne of the basic tenets of conventional applied colorimetry is that the whole population of color normal observers can be represented by a single "standard" observer with reasonable accuracy. The 1964 CIE standard colorimetric observer has indeed served us well in all industrial color imaging applications, until recently. With the proliferation of modern wide-gamut displays with narrow-band primaries, color scientists and engineers face a new challenge. Various recent studies, including those by the current authors, have shown that the color perception on such displays varies significantly among color normal observers. Conventional colorimetry has no means to predict this variation. In this paper, we explore this problem by summarizing the results from an ongoing study, and explain the practical significance of this issue in the context of display applications

    The science of color and color vision

    Get PDF
    A survey of color science and color vision

    A Perceptually Based Comparison of Image Similarity Metrics

    Full text link
    The assessment of how well one image matches another forms a critical component both of models of human visual processing and of many image analysis systems. Two of the most commonly used norms for quantifying image similarity are L1 and L2, which are specific instances of the Minkowski metric. However, there is often not a principled reason for selecting one norm over the other. One way to address this problem is by examining whether one metric, better than the other, captures the perceptual notion of image similarity. This can be used to derive inferences regarding similarity criteria the human visual system uses, as well as to evaluate and design metrics for use in image-analysis applications. With this goal, we examined perceptual preferences for images retrieved on the basis of the L1 versus the L2 norm. These images were either small fragments without recognizable content, or larger patterns with recognizable content created by vector quantization. In both conditions the participants showed a small but consistent preference for images matched with the L1 metric. These results suggest that, in the domain of natural images of the kind we have used, the L1 metric may better capture human notions of image similarity

    Observations on Cortical Mechanisms for Object Recognition andsLearning

    Get PDF
    This paper sketches a hypothetical cortical architecture for visual 3D object recognition based on a recent computational model. The view-centered scheme relies on modules for learning from examples, such as Hyperbf-like networks. Such models capture a class of explanations we call Memory-Based Models (MBM) that contains sparse population coding, memory-based recognition, and codebooks of prototypes. Unlike the sigmoidal units of some artificial neural networks, the units of MBMs are consistent with the description of cortical neurons. We describe how an example of MBM may be realized in terms of cortical circuitry and biophysical mechanisms, consistent with psychophysical and physiological data

    Computed poststenotic flow instabilities correlate phenotypically with vibrations measured using laser Doppler vibrometry : perspectives for a promising in vivo device for early detection of moderate and severe carotid stenosis

    Get PDF
    Early detection of asymptomatic carotid stenosis is crucial for treatment planning in the prevention of ischemic stroke. Auscultation, the current first-line screening methodology, comes with severe limitations that create urge for novel and robust techniques. Laser Doppler vibrometer (LDV) is a promising tool for inferring carotid stenosis by measuring stenosis-induced vibrations. The goal of the current study was to evaluate the feasibility of LDV for carotid stenosis detection. LDV measurements on a carotid phantom were used to validate our previously verified high-resolution computational fluid dynamics methodology, which was used to evaluate the impact of flowrate, flow split, and stenosis severity on the poststenotic intensity of flow instabilities (IFI). We evaluated sensitivity, specificity, and accuracy of using IFI for stenoses detection. Linear regression analyses showed that computationally derived pressure fluctuations correlated (R2 = 0.98) with LDV measurements of stenosis-induced vibrations. The flowrate of stenosed vessels correlated (R2 = 0.90) with the presence of poststenotic instabilities. Receiver operating characteristic analyses of power spectra revealed that the most relevant frequency bands for the detection of moderate (56–76%) and severe (86–96%) stenoses were 80–200 Hz and 0–40 Hz, respectively. Moderate stenosis was identified with sensitivity and specificity of 90%; values decreased to 70% for severe stenosis. The use of LDV as screening tool for asymptomatic stenosis can potentially provide improved accuracy of current screening methodologies for early detection. The applicability of this promising device for mass screening is currently being evaluated clinically

    Inhibition in the dynamics of selective attention: an integrative model for negative priming

    Get PDF
    We introduce a computational model of the negative priming (NP) effect that includes perception, memory, attention, decision making, and action. The model is designed to provide a coherent picture across competing theories of NP. The model is formulated in terms of abstract dynamics for the activations of features, their binding into object entities, their semantic categorization as well as related memories and appropriate reactions. The dynamic variables interact in a connectionist network which is shown to be adaptable to a variety of experimental paradigms. We find that selective attention can be modeled by means of inhibitory processes and by a threshold dynamics. From the necessity of quantifying the experimental paradigms, we conclude that the specificity of the experimental paradigm must be taken into account when predicting the nature of the NP effect

    Coexistence between fluid and crystalline phases of proteins in photosynthetic membranes

    Get PDF
    Photosystem II (PSII) and its associated light-harvesting complex II (LHCII) are highly concentrated in the stacked grana regions of photosynthetic thylakoid membranes. Within the membrane, PSII-LHCII supercomplexes can be arranged in disordered packings, ordered arrays, or mixtures thereof. The physical driving forces underlying array formation are unknown, complicating attempts to determine a possible functional role for arrays in regulating light harvesting or energy conversion efficiency. Here we introduce a coarse-grained model of protein interactions in coupled photosynthetic membranes, focusing on just two particle types that feature simple shapes and potential energies motivated by structural studies. Reporting on computer simulations of the model's equilibrium fluctuations, we demonstrate its success in reproducing diverse structural features observed in experiments, including extended PSII-LHCII arrays. Free energy calculations reveal that the appearance of arrays marks a phase transition from the disordered fluid state to a system-spanning crystal, which can easily be arrested by thermodynamic constraints or slow dynamics. The region of fluid-crystal coexistence is broad, encompassing much of the physiologically relevant parameter regime. Our results suggest that grana membranes lie at or near phase coexistence, conferring significant structural and functional flexibility to this densely packed membrane protein system.Comment: 11 pages, 5 figure

    Colour Communication Within Different Languages

    Get PDF
    For computational methods aiming to reproduce colour names that are meaningful to speakers of different languages, the mapping between perceptual and linguistic aspects of colour is a problem of central information processing. This thesis advances the field of computational colour communication within different languages in five main directions. First, we show that web-based experimental methodologies offer considerable advantages in obtaining a large number of colour naming responses in British and American English, Greek, Russian, Thai and Turkish. We continue with the application of machine learning methods to discover criteria in linguistic, behavioural and geometric features of colour names that distinguish classes of colours. We show that primary colour terms do not form a coherent class, whilst achromatic and basic classes do. We then propose and evaluate a computational model trained by human responses in the online experiment to automate the assignment of colour names in different languages across the full three-dimensional colour gamut. Fourth, we determine for the first time the location of colour names within a physiologically-based cone excitation space through an unconstrained colour naming experiment using a calibrated monitor under controlled viewing conditions. We show a good correspondence between online and offline datasets; and confirm the validity of both experimental methodologies for estimating colour naming functions in laboratory and real-world monitor settings. Finally, we present a novel information theoretic measure, called dispensability, for colour categories that predicts a gradual scale of basicness across languages from both web- and laboratory- based unconstrained colour naming datasets. As a result, this thesis contributes experimental and computational methodologies towards the development of multilingual colour communication schemes
    corecore