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Computed Poststenotic Flow
Instabilities Correlate
Phenotypically With Vibrations
Measured Using Laser Doppler
Vibrometry: Perspectives for a
Promising In Vivo Device for
Early Detection of Moderate and
Severe Carotid Stenosis
Early detection of asymptomatic carotid stenosis is crucial for treatment planning in the
prevention of ischemic stroke. Auscultation, the current first-line screening methodology,
comes with severe limitations that create urge for novel and robust techniques. Laser
Doppler vibrometer (LDV) is a promising tool for inferring carotid stenosis by measuring
stenosis-induced vibrations. The goal of the current study was to evaluate the feasibility
of LDV for carotid stenosis detection. LDV measurements on a carotid phantom were
used to validate our previously verified high-resolution computational fluid dynamics
methodology, which was used to evaluate the impact of flowrate, flow split, and stenosis
severity on the poststenotic intensity of flow instabilities (IFI). We evaluated sensitivity,
specificity, and accuracy of using IFI for stenoses detection. Linear regression analyses
showed that computationally derived pressure fluctuations correlated (R2¼ 0.98) with
LDV measurements of stenosis-induced vibrations. The flowrate of stenosed vessels cor-
related (R2¼ 0.90) with the presence of poststenotic instabilities. Receiver operating
characteristic analyses of power spectra revealed that the most relevant frequency bands
for the detection of moderate (56–76%) and severe (86–96%) stenoses were 80–200 Hz
and 0–40 Hz, respectively. Moderate stenosis was identified with sensitivity and specific-
ity of 90%; values decreased to 70% for severe stenosis. The use of LDV as screening
tool for asymptomatic stenosis can potentially provide improved accuracy of current
screening methodologies for early detection. The applicability of this promising device
for mass screening is currently being evaluated clinically. [DOI: 10.1115/1.4046586]

Keywords: asymptomatic carotid disease, auscultation, computational fluid dynamics
(CFD), stenosis severity, laser Doppler vibrometer (LDV), intensity of flow instabilities
(IFI)

1 Introduction

More than three million people died worldwide due to an ische-
mic stroke in 2017 [1], where the underlying disease was carotid
stenosis in one of ten stroke patients [2]. Early detection could
decrease mortality [3] and impact elective therapy [4]. However,
the majority of carotid stenoses is asymptomatic and rarely
detected. The most common clinical screening method for asymp-
tomatic carotid stenosis is auscultation of the poststenotic
turbulence-induced carotid bruit [5–7]. Carotid auscultation’s
specificity is approximately 80%, but sensitivity is operator-
dependent and varies from 50% to 70% [8,9].

Poststenotic pressure fluctuations induce vibrations in the arte-
rial wall, which propagate as mechanical waves to the skin, and
manifests as vibrations or sound waves [10]. Extensive studies
have been performed on the analysis of the downstream-stenosis

turbulence [11,12]. Furthermore, the poststenotic flow instabilities
are well known to be affected by stenosis degree, the volumetric
flowrate in the common carotid artery, and the flow split between
the internal carotid artery and external carotid artery [13,14].
However, to the best of our knowledge, no study systematically
analyzed a complete combination of these factors potentially
affecting the intensity of flow instabilities, varying over the patho-
physiological range, or addressed the correlation between (the
intensity of) stenosis-induced flow instabilities and skin
vibrations.

Laser Doppler vibrometer (LDV) is a promising method for
inferring carotid stenoses as a result of its high spatiotemporal
resolution (10 nm, 10 ls) [15]. We recently performed an in vitro
experiment [16] using a novel multibeam LDV [15] to measure
the displacement of the surface of the gel embedding a compliant
replicate of a patient-specific carotid bifurcation stenotic model.
We found a significant correlation between flowrate and the wall
displacement in the 0–200 Hz range. The experiment, intended as
a proof-of-concept for showing that the LDV could be used for
inferring the presence of asymptomatic carotid stenosis, was
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limited to only one degree of stenosis. Computational fluid
dynamics (CFD), on the other hand, has established itself as a key
methodology to cheaply assess relevant fluid dynamical quantities
[17], allowing for parametric studies that, in contrast, would be
experimentally labor-intensive. Furthermore, we recently con-
ducted a study to identify the sufficiently accurate numerical
methodology to simulate downstream-stenosis flow instabilities
[18].

The aim of this study was threefold: (i) to assess the validity of
using CFD to mimic the physics of the phenomenon whereby flow
instabilities induce high-frequency pressure oscillations that prop-
agate to skin level, (ii) to analyze the parameter space of patholog-
ical and healthy models, in order to provide a correlation between
flowrate, flow split, and stenosis severity and the intensity of post-
stenotic instabilities; (iii) to investigate the receiver operating
characteristics (ROC) derived sensitivity, specificity, and accu-
racy of using LDV to infer the presence of a stenosis, by populat-
ing the correlation previously found in (ii) with a resolution and
variability reflective of a population, therefore obtaining a ficti-
tious clinical study.

As such, the presented study does not aim to provide a compre-
hensive understanding of the poststenotic flow field, but rather a
proof-of-concept of the ability of the LDV to detect stenosis with
physiologically plausible flow conditions in this specific carotid
bifurcation geometry.

2 Methods

2.1 Computational Fluid Dynamical Model. We took
advantage of the patient-specific geometry presented in Iannac-
cone et al. [19], which was a segmentation of a carotid bifurcation
of a 75 y=o man with a 76% stenosis in the internal carotid artery
(ICA). With a focus on assessing the impact of stenosis severity,
we used the plausible prelesion lumen, segmented by Iannaccone

et al. [19], as a healthy control. Furthermore, we obtained four
additional degrees of stenosis, varying from moderate to
extremely severe (56%, 66%, 86%, and 96%), by adapting the
open-source tool morphMan [20] on the segmented 76% stenotic
geometry (see Fig. 1(a)). Specifically, the cross-sectional area of
the original model within the region of interest (Fig. 1(b)) was
multiplied by a factor (Fig. 1(c)). Finally, the centerlines and the
Voronoi diagram of the surfaces were used to obtain the four geo-
metries. Please refer to Kjeldsberg et al. [20] for a more thorough
description of the methodology.

The healthy and the five additional models, each with a differ-
ent degree of stenosis, were meshed using VMTK [21] with four
boundary layers and a local refinement in the stenosis area or, for
the healthy geometry, where the stenosis developed. The spatial
resolution, measured as averaged cell length (Dxmean), was set to
Dxmean ¼ 1:92� 10�4 m (error< 5% with respect to Richardson’s
extrapolated solution [22]) accordingly to the spatial refinement
study that was recently performed with a focus on the turbulent-
like flow features on the same model [18], resulting in 32 tetrahe-
dral cells across the stenosis area in the original 76% geometry.

Furthermore, we varied the volumetric flowrate (Q) imposed at
the common carotid artery (CCA) and the flow split between ICA
and external carotid artery based on the in vivo variability
reported in three clinical studies [23–25]. A combination of all
possible permutations between stenosis degree, QCCA and QICA/
QCCA leads to 150 simulations, as a result of setting the mean-
one and two standard deviations (SDs) for QCCA and QICA=QCCA

for each of the six degrees of stenosis. Only a subgroup of the pos-
sible scenarios was run, in order to efficiently cover a wide range
of physiological conditions. The simulations were organized into
five categories. The first category consists of six simulations car-
ried out on several degrees of stenosis with boundary conditions
matching mean physiological values reported on a population
level [23,24]. In the second and third category, we used the 76%
stenosis model and changed the CCA flowrate and the ICA flow

Fig. 1 (a) The healthy and 76% stenosis were obtained from computer tomography angiography images [19]. The remain-
ing four degrees of stenosis were obtained by multiplying the cross-sectional area of the original stenotic geometry [20]
within the region marked by the dashed lines reported in (b) with the factor reported in (c). Furthermore, in (b) the details
of the stenosed geometries are shown as overlapped, and the centerline of the models is reported as a dotted–dashed
line. The pressure field was probed at point P located 1D downstream of the stenosis on the centerline of the ICA.
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split, separately with 61 and 2 SDs. The flow split of the healthy
model was changed as �1 and 2 SDs in the fourth category. In the
fifth category, we simultaneously varied a combination of multi-
ple parameters, in order to populate the parameter space with per-
mutations matching a Reynolds number between 300 and 380, in
which we observed a phenotypical change in the flow field of
intermediate results, resulting in five simulations. In total, encom-
passing all categories, we ran 21 simulations with QCCA varying
from 145 to 529 ml=min and QICA=QCCA from 11:9 to 70:8%
(Table 1), reflecting the physiological range [26]. To contain the
influence of the numerical setting on the solution, the flow split
was imposed by setting its complementary value at the outlet of
the external carotid artery, while a zero pressure boundary condi-
tion was set at the ICA outlet.

The walls of the model were assumed as rigid, as commonly
used for the biomechanical analysis of healthy and stenotic carotid
arteries [27]. Blood was modeled as a Newtonian fluid [28,29]
with kinematic viscosity � ¼ 3:3� 10�6 m2=s, and we simulated
three cardiac cycles using the second-order finite element
Navier–Stokes solver Oasis [30]. The waveform was taken from

Hoi et al. [25], but scaled to match the average inlet flowrate, and
set as Womersley flow with 20 modes. The time-step was set to
5� 10�5 s, i.e., five times smaller than the time-step size at which
we noticed effects of time resolution on the flow field, based on a
spatio-temporal refinement study focused on turbulent-like flow
[18]. The chosen time-step size matched the sampling frequency
of the LDV in the experimental studies (20 kHz) [16].

2.2 Postprocessing of Computational Data. The postpro-
cessing workflow is depicted in Fig. 2 and can be described by the
following steps:

(a) We extracted the pressure during the two last cardiac cycles
at a point P, located on the centerline of the ICA, 8 mm
downstream of the stenosis (see Fig. 1), as it was find to be
the most relevant measuring location among the ones tested
in vitro.

(b) The power of the pressure trace (P) was then computed in
LabChart Pro v8. The fast Fourier transform was calculated
from 1000 points with Hann windowing with 50% overlap.

(c) The integral of P was computed in Excel (Microsoft, 2016)
using the trapezoidal rule within the frequency range of
interest ½fmin; fmax�. Unless otherwise reported in the contex-
tual section, the default fmin value was set to 20 Hz to
exclude the pulsatility of the inlet waveform only, and fmax

was set to 10 kHz to encompass the entire available fre-
quency range.

(d) Finally, we computed the logarithm of the integral, equiva-
lent to a metric of the intensity of flow instabilities
(IFI½fmin ; fmax�), that can be mathematically expressed as in
the following equation:

IFI½fmin; fmax� ¼ Log10

ðfmax

fmin

P

 !
(1)

Furthermore, for visualization purposes only, we performed a
high-pass filter on the pressure trace with cut-off frequency at
20 Hz, in order to provide a qualitative representation of the pres-
sure fluctuations. The method was previously explained in Ref.
[18] and based on the study reported by Khan et al. [31].

For volumetric visualization, we also computed the Q-criterion,
which identifies spatial regions in the velocity field where the
Euclidean norm of the vorticity tensor (X) dominates the strain
rate tensor (S) [32], as defined in the following equation:

Q ¼ 1

2
jXj2 � jSj2
� �

(2)

2.3 Validation Against Experimental Data. A brief over-
view of the experimental methodology is reported to allow a bet-
ter understanding of the validation strategy; details are found in
Mancini et al. [16]. The in vitro setup consisted of a compliant

Fig. 2 Postprocessing workflow applied to both computational and experimental data

Table 1 List of inflow and flow split set for each CFD simula-
tion with several degrees of stenosis

Stenosis degree
(%)

QCCA

(ml=min)
(QICA=QCCA)

(%) Category

None 389 65.5 Degree of stenosis
56 337 58.8

66 337 57.8

76 337 45.0

86 337 28.0

96 152 11.9

76 145 45.0 Flow rate
76 241 45.0
76 433 45.0
76 529 45.0

76 337 18.0 Flow split
76 337 32.0

76 337 58.0

76 337 72.0

None 315 54.5

None 315 65.5 Healthy flow split

56 241 70.8 combination
66 337 44.4

76 279 45.0

86 337 28.8

86 433 28.0

The text in bold is the parameters changed in each category. Note that the
average flowrate and flow split changes with degree of stenosis, and is
therefore not constant in the “degree of stenosis” category.
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replica of a 76% stenosed patient-specific carotid bifurcation, the
same geometry used in this study, embedded in a soft-tissue mim-
icking gel and a skin-mimicking polyurethane foil on top of it.
LDV measurements were acquired at several locations upstream
and downstream the stenosis. The displacement recorded using
LDV in the in vitro experiments is, from now on, referred to as
EXP. The LDV was found to be most sensitive to flowrate
changes at a location corresponding to point P, which was there-
fore deemed the most relevant.

For comparison with the CFD data, we chose a subset of the
in vitro experiments where the CCA flowrate was within
mean62 SD of clinically observed flow rates [23] and mean ICA
flow split [24] (see Table 2) in order to compare them with the
simulations in the “flowrate” category. Note that the CCA flow-
rate of the two datasets is in the same range, but not exactly
matching because of the difficulty of controlling the flow rates
during the in vitro experiments.

It is worth noticing that the two datasets are not directly compa-
rable, as the experimental displacement was measured at the sur-
face of a deformable and gel-surrounded model, while the intra-
arterial pressure traces are obtained in a rigid model by a CFD solver.
Therefore, a measure of the power of the two signals, i.e.,
IFI½20 Hz� 10 kHz�, was computed for the experimental data as well,
with the same postprocessing process applied to the CFD data (sum-
marized in Eq. (1)). We assessed the similarity of the skin-mimicking
foil displacement and intra-arterial computational pressure by com-
puting the correlation of IFI½20 Hz�10 kHz� at point P in the two datasets
and, therefore, obtaining a concordance correlation coefficient.

2.4 Metrics Correlating With Flow Instabilities. To assess
which metric best correlates with the level of flow instabilities, we
performed six linear regression analyses between IFI½20 Hz� 10 kHz�
of the stenosed geometries (IFIstenotic

½20 Hz� 10 kHz�) and a total of six
parameters, specifically the three imposed parameters (QCCA,
QICA=QCCA, and Areastenosis, the area of the stenosis) and three
derived quantities, i.e., QICA, the velocity ,and Reynolds number
at the throat of the stenosis (Velocitystenosis and Restenosis, respec-
tively). The derived quantities were chosen based on their rele-
vance in a fluid dynamical context. The quantity that was found to
best correlate with the presence of flow instabilities is now
referred to as metric. The regression analysis between the six
quantities and IFI

healthy

½20 Hz� 10 kHz� was also computed for the healthy
geometry, allowing us to identify the key indicators to distinguish
a normal carotid from a stenotic.

2.5 Proof-of-Concept for Sensitivity, Specificity, and
Accuracy of an Laser Doppler Vibrometer Device for Stenosis
Detection. Sensitivity, specificity, and accuracy are commonly
used to assess the predictive performance of a device or a method
based on data of patients enrolled in a clinical trial. Clinical meas-
urements, however, are subject to many disturbing cofounders,
which is something that simulated data are immune to. Therefore,

we took advantage of the computational data to provide a proof-
of-concept on the feasibility of LDV to differentiate a stenosis
from the normal setting in the tested geometry using power spec-
tral features. Specifically, we used the IFI metrics within the fre-
quency range identified by the in vitro experiments (0� 200 Hz).
Preliminary analysis of CFD results demonstrated that the IFI of a
stenosis was low (absence of flow instabilities) either because of the
geometry that was insufficiently stenosed, or because of how limiting
severe stenosis act on the flowrate. We, therefore, choose to investi-
gate two sets of frequency ranges, specifically the 0 – 40 Hz and the
80 – 200 Hz ranges, where the former would allow us to assess
the flowrate level, and the latter the intensity of flow instabilities.
The choice of the frequency ranges is properly addressed in the
Results section under “Frequency-based stenosis indicators.”

Furthermore, to enable a sensitivity and specificity analysis,
additional data are required beyond the data obtained from the 21
CFD simulations. Therefore, we used the data from the 21 simula-
tions to create a regression model that allowed us to create a ficti-
tious population of 50,000 subjects, varying the parameters (CCA
flowrate and ICA flow split) with five equally large subgroups for
each degree of stenosis, and an additional 10,000 fictitious sub-
jects without any ICA stenosis. For each fictitious subject, we
drew a random point with coordinates x; yð Þ from a multivariate
distribution, with covariate matrix equal to identity matrix
and null mean, and assigned a CCA flowrate and an ICA flow
split as QCCA ¼ QCCAð Þmean þ x � QCCAð ÞSD and QICA=QCCA ¼
ðQICA=QCCAÞmean þy � ðQICA=QCCAÞSD, respectively. The distri-
bution coordinates x and y vary between �2 and þ2 units in order
to represent a population varying between 62 SD. The mean and
standard deviation values are dependent on the degree of stenosis,
following [23–25], and reported in Table 1 category “degree of
stenosis.” Physiologically nonplausible conditions (i.e., QCCA < 0
and QICA=QCCA < 0) were omitted, giving a final fictitious popu-
lation of 45,756 patients and 9116 controls with QCCA ¼ 2986
107 ml=min and QICA=QCCA ¼ 0:4060:21 across all degrees of
stenosis, and QCCA ¼ 388665 ml=min and QICA=QCCA ¼
0:65560:1 for the healthy model.

Based on the geometrical and flowrate information of each ficti-
tious subject, we could compute all the potential metrics for the
entire fictitious population. We then correlated the metric with
IFI½fmin ; fmax� to obtain the regression coefficients for each frequency
range, and therefore computed an approximation of IFI½fmin ; fmax�
( ~IFI½fmin; fmax�) for each fictitious subject without running a full CFD
simulation. Of note is that the regression coefficients were com-
puted separately for the 18 stenotic models and for the three
healthy ones, for each relevant frequency range.

Finally, we performed a receiver operator characteristic (ROC)
analysis [33] to evaluate the ability of ~IFI ½fmin; fmax�, evaluated at
both frequency ranges, to infer the presence of a carotid artery ste-
nosis. We varied the cut-off value from min to max of each
~IFI½fmin; fmax� and computed the rate of true positives (TPrate), and the

rate of false positives (FPrate), equivalent to sensitivity (Sn)
and 1–specificity (Sp), respectively. The accuracy of the test
was calculated as the area under the curve (AUC) of the ROC
curve by means of the trapezoidal rule. We chose the optimal
cut-off value based on the Youden Index [34], defined as
J ¼ maxc ðSn cð Þ þ Sp cð Þ � 1Þ.

3 Results

3.1 Computational Findings. An overview of the velocity
field of the “flowrate” category is shown in Fig. 3 to allow for a
qualitative analysis of the well-resolved physics of our computa-
tional methodology.

The velocity traces in point P (Fig. 3(a)) and the volumetric
rendering of the instantaneous velocity magnitude field at t ¼
T=4 (Fig. 3(b)) are reported for increasing QCCA (Fig. 3(c)). The
pressure fluctuations in the ICA increase proportionally to the
CCA flowrate, as highlighted by the high velocity jet emerging
from the throat of the stenosis. The increased velocity leads to the

Table 2 List of inflow and flow split set during the in vitro
experiments to allow validation of the CFD approach by com-
paring the simulations in the “flowrate” and the “degree of
stenosis” categories, for the 76% stenosis only

Stenosis degree (%) QCCA (ml=min)

QICA

QCCA

(%)
Category

76 107 36.4 EXP
76 225 44.8
76 334 47.1
76 448 48.1
76 601 48.7

In the experiments, the ICA flow split was kept as close as possible to the
mean physiological value, while the CCA flowrate was varied as within
the physiological range by setting it at mean, 6 1 SD and 6 2 SD ml/min.
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formation of flow instabilities in the more distal ICA. The com-
bined effect of increased velocity magnitude and its subsequent
effect on the intensity of flow instabilities are clearly noticeable in
the velocity traces of Fig. 3(a).

3.2 Validation Against In Vitro Experiments. The traces of
normalized computational pressure data and normalized experi-
mental displacement obtained using LDV recordings are com-
pared in Fig. 4(a) where we can observe an increase in pressure
drop and displacement magnitude with increasing flow rates. As
expected, the raw data of the two datasets are not directly compa-
rable one to the other.

The instabilities in the LDV signal are masked by its high
amplitude. We, therefore, report the high-pass filtered signals in
Fig. 4(b) for a visual proof of the presence of flow instabilities.
From the high-pass filtered pressure signals, we observe that for
the two lowest flow rates there are little to no high-frequency
instabilities. In contrast, the high-pass filtered displacement traces
for the three higher flow rates contain an increasing level of fluc-
tuations. However, for both datasets, the fluctuations are present
and increase with the flowrate, and the same applies to their
power, shown in Fig. 4(c). Furthermore, the logarithm of their
integral in the 20 Hz–10 kHz range, shown in Fig. 4(d), displays a
similar linear trend, increasing with QICA, suggesting that the

intensity of the pressure fluctuations, as obtained from the CFD
simulations, can be used as a proxy for the intensity of wall vibra-
tions as measured with LDV. It is worth noticing that the data
points in Fig. 4(d) are plotted on separate y-axes, since we are
comparing two different physical quantities. The two datasets
were found to be in good agreement, with a concordance correla-
tion coefficient of 0:9819. We can, therefore, conclude that our
computational methodology provides plausible results for the
patient-specific 76% stenotic model. We could hence use CFD
simulations to investigate a larger set of parameters.

3.3 Metrics Correlating With Flow Instabilities in
Stenosed and Healthy Models. In this section, we report the
results of the correlation between the IFI½20 Hz� 10 kHz� and
six parameters describing the flow and stenosis geometry.
Specifically, Figs. 5(a)–5(c) show the correlation of the three
imposed parameters (QCCA; QICA=QCCA and Areastenosis)
with IFI½20 Hz� 10 kHz�. Figures 5(d)–5(f) show the correlation of
IFI½20 Hz� 10 kHz� with the three obtained parameters (QICA,
Velocitystenosis; and Restenosis). The stenotic and the healthy models
are analyzed separately to ease comparison between them. An
increase in any of these parameters generally leads to an increase
of the intensity of flow instabilities. Focusing first on the stenotic
models, the stenosis area was the only factor where the slope of

Fig. 3 An increase in QCCA (a) leads to noticeable increase of velocity magnitude (b) and of flow instabilities
(c) for the 76% stenosis. The velocity traces in (c) were sampled in point P (yellow square), and the volumet-
ric velocity magnitude in (b) was sampled at a fourth of the cardiac cycle (red dot). Higher QCCA implies
higher velocity values at the stenosis throat, which trigger vortexes in the downstream region.
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the regression line was not significantly different from zero with
p� value > 0:05 and was a poor metric for IFI, accounting for
only 15% of the variation in the data. The correlation improved
for QCCA; Velocitystenosis; and QICA=QCCA, with R2 ¼ 0:39, 0:56,
and 0:54, respectively; but only QICA and Restenosis have an R2

value of 0:90. For the sake of conciseness, we here report the
results of the following analysis performed only for QICA as met-
ric, as QICA is more relatable to measurements in the existing liter-
ature and clinical practice. The QICA was also found to be the best
metric for the increase of IFI for the healthy models as well, com-
parable to Velocitystenosis and Restenosis.

It is worth noticing that the linear correlation between most of
the considered flow metrics and the IFI, computed as the loga-
rithm of the energy integral, suggests that the parameters
actually correlate exponentially with the intensity of flow
instabilities.

A qualitative evaluation of the intensity of flow instabilities is
provided using the high-pass filtered pressure signals, shown with
the corresponding QICA value in Fig. 6. The simulations are
depicted for increasing QICA values. Of note is that the 96% steno-
sis does not harbor flow instabilities, because of our physiology-
based boundary conditions. The 86% stenosis harbors weak
instabilities only if the flowrate is above average, while the fluctu-
ations harbored with average QCCA are negligible. The 76% ste-
nosis simulations exhibit a phenotypically different behavior
depending on the flow split and inlet flowrate. More specifically, a
high flow split or inlet flowrate (averageþ 2 SDs) produced the
most unstable flows, while the simulations with a reduction below
the average of these parameters did not harbor high-frequency
pressure fluctuations. The 66% and 56% are slightly unstable
through the entire range of physiological CCA flowrate or flow
split used in this study. The high-pass filtered pressure traces of

Fig. 4 (a) The pressure obtained from the computational simulations is compared to the LDV displacement obtained
from experimental tests at increasing QICA (whose values are reported in the legends of panel c). The displacement
increased in amplitude as the flowrate in the stenosed vessel increased, which lead as well to an increase of instabilities
in the pressure field. The increase of instabilities with ICA flowrate is highlighted by the high-pass filtered time traces (b)
and their power (c) of both the CFD and EXP data. Similarly, the scatter plot (d) shows that IFI½20 Hz210 kHz� from both CFD
and EXP data tend to increase together with QICA. The gray box in (c) highlights the frequency range (20 Hz to 10 kHz) in
which the IFI shown in (d) is calculated.
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the healthy model simulations are highlighted with a gray box.
The healthy model does not show any flow instabilities, even
though the QICA would have been high enough to trigger flow
instabilities in any of the stenotic models (QICA ¼ 257 ml=min).
Similar considerations can be drawn when evaluating the high-
pass filtered pressure traces (a) and the Q-criterion (b) in the
healthy model simulation, together with QICA (c) for each stenosis
degree in Fig. 7. Shifting our attention to the 56–76% stenosis
models, it is possible to see flow vortexes both upstream, at, and
downstream of the stenosis throat. The differences with the
healthy model in both high-frequency pressure traces and vortexes
are clearly noticeable. We find the lowest QICA in the most severe
stenoses (86% and 96%), where weak or no instabilities are pres-
ent. The QICA is hence a good metric for the presence of flow

instabilities if a stenosis is present; otherwise, the geometrical fac-
tors have a predominant impact.

3.4 Frequency-Based Stenosis Indicators. Figures 6 and 7
suggest that the high-frequent flow instabilities can be used as
indicator for the presence of the moderate stenoses (56–76%), but
not for severe stenosis as a result of the reduced flow, which was
too low to induce instabilities. Analysis of the high-frequency
contents of the signal in itself, therefore, would be insufficient to
infer the presence of stenosis. Additional information may be
found in a metric that would indicate the flow level in itself, which
will be markedly lower in case of severe stenosis (86% and 96%).
Therefore, the power spectrum in the lower frequency range may

Fig. 5 The impact of the physiologically relevant factors (QCCA, QICA/QCCA, Areastenosis, QICA, Velocitystenosis,
and Restenosis) on the intensity of flow instabilities is depicted in separated plots. The regression analysis was
performed for the stenotic and the healthy models separately. All factors are positively related with
IFI½20 Hz210 kHz� but their correlation varies between a minimum of 0:15 for Areastenosis and a maximum of 0:90 for
QICA and Restenosis.
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provide this information. The left side of Fig. 8(a) illustrates that
the majority of the energy related to the bulk flow is mostly pres-
ent in the 0–40 Hz range, which was therefore chosen as the rele-
vant frequency range for discerning severe stenoses from healthy
carotid arteries. Furthermore, we observe that the power of the
healthy and the severe stenoses reaches approximately 0 at 80 Hz,
while the energy content of the moderate stenoses is non-
negligible until 200 Hz. Therefore, the IFI½80�200 Hz� could be used
as indicator for the presence of moderate stenoses. The sensitivity
and specificity of IFI½0�40 Hz� and IFI½80�200 Hz� for the detection of
severe and moderate stenoses, respectively, were investigated in
the following chapters.

3.5 Laser Doppler Vibrometer for Stenosis Detection:
Proof-of-Concept. Based on these preliminary findings, we per-
formed a total of four linear regression analyses between QICA

and the CFD-based IFIs, for stenotic and healthy models sepa-
rately, with IFIs evaluated at both frequency ranges. The correla-
tion was found to be high for all cases, with R2 > 0:89, as
reported in Table 3. The regression coefficients (Table 3) were
used to obtain ~IFI½0�40 Hz� and ~IFI ½80�200 Hz� from QICA of the ficti-
tious population.

The probability density functions of the fictitious population
were evaluated for both frequency ranges and reported in
Fig. 8(b). The probability density functions represent the distribu-
tion of the diseased and healthy groups, therefore, providing
insights on the forecast probability of each classifier, i.e.,
~IFI½0�40 Hz� and ~IFI½80�200 Hz�. On the left side, the distribution of

the healthy fictitious population overlaps only partially on the
86% stenosis, and not at all on the 96%, showing promising possi-
bilities for the ~IFI½0�40 Hz� as indicator for severe stenoses, but less
so for moderate stenoses. On the other hand, the distribution of
the healthy population obtained for ~IFI½80�200 Hz� (Fig. 8(b), right
side) overlaps only marginally with the moderate stenoses but
almost completely the severe stenoses, showing that ~IFI ½80�200 Hz�
could be used to identify moderate stenoses but not severe ones.
Therefore, the probability density functions suggest that it could
be possible to infer the presence of moderate and severe stenoses
by using the ~IFIs evaluated at high and low frequency ranges,

respectively, as classifiers. We, therefore, based our ROC analysis
by evaluating ~IFI in the 80 – 200 Hz and 0 – 40 Hz range, see
Fig. 8(c), left and right panel, respectively. The reference proba-
bility line is added to both plots, showing that the accuracy of the
~IFI s is higher than a predictor which makes random guesses

(AUC ¼ 0:50). As expected from the probability density func-
tions plots, the ROC analysis shows that ~IFI½0�40 Hz� infers
the presence of severe stenoses with AUC ¼ 0:97, while
~IFI½80�200 Hz� infers the presence of moderate stenosis with

AUC ¼ 0:84. The AUC of each curve is reported in Table 4.
From Youden index, we have that the optimal cut-off value is
~IFI½0�40 Hz� ¼ �3:96 with Sp ¼ 92% and Sn ¼ 99%, and
~IFI½80�200 Hz� ¼ �6:91 with Sp ¼ 73% and Sn ¼ 96%.

4 Discussion

Combining an experimental and a computational approach, we
theoretically assessed the feasibility of stenosis detection with a
device capable of measuring signals induced by flow instabilities,
such as LDV, by evaluating their intensity in healthy and stenosed
models. Starting from 21 high-resolution CFD simulations in
models spanning a pathophysiological parameter range, we
obtained a fictitious population. The intensity of flow instabilities
was most strongly correlated with QICA, the flowrate in the ste-
nosed vessel (R2 ¼ 0:90). A ROC analysis suggests that vibrations
measured with an LDV device may reveal severe and moderate
stenoses with sensitivity and specificity> 73%, by evaluating the
IFI at two frequency ranges, i.e., 0 – 40 Hz and 80 – 200 Hz,
respectively. The use of two frequency bands is needed because
the flow-limiting character of severely stenosed models leads to
negligible flow instabilities and the low-frequency range power
amplitude would allow us to distinguish them from the healthy
models. Overall, this study supports the development of diagnos-
tic techniques relying on detecting and processing of signals aris-
ing from flow instabilities for the detection of moderate and
severe stenoses.

4.1 Validation Strategy. The results in this paper were based
on using the computed pressure traces as proxy for wall

Fig. 6 The incremental plot of QICA highlights the positive relationship between the QICA and the high-pass filtered
pressure signals which, on the other hand, are largely insensitive to other expectedly relevant parameters such as ste-
nosis severity, inlet flowrate and flow split. The IFI½20 Hz210 kHz� is reported to show the difference between stenotic and
healthy models’ values. The high-pass filtered pressure signals obtained using the healthy model are highlighted with a
gray box, showing that no flow instabilities arise even if their QICA is in the range in which the stenotic models harbor
intense instabilities.
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vibrations, which we validated against in vitro data. The correla-
tion between the two datasets is 98:19%.

Interestingly, the IFI was found to be unaffected by which
physical quantity it was calculated from. The experimental data
referred to displacement recorded using LDV on the surface of
a soft-tissue-mimicking gel, which embedded a compliant replica
of the carotid arteries. The computational data, on the other
hand, consisted of pressure fluctuations. During the experiments,
in vitro intra-arterial pressure was also measured. However, the
presence of pressure catheters significantly affected the flow field
and thereby made any comparison with the simulated flow field not
relevant.

Our findings also suggest that the material properties of the
compliant experimental model and the rigid-walls computational
model did not affect the turbulent flow field, as similar flow fields
were obtained from the two datasets. Note also that, despite the
mentioned differences, the characteristic frequencies for the
turbulent-like flow are in the <200 Hz region for both the numeri-
cal and experimental data [16].

4.2 Computational Model. Using our computational resour-
ces, we were able to evaluate the flow field of several stenosis
severities throughout 21 CFD simulations, specifically 18 for the
stenosed models and 3 for the healthy one.

There have been multiple CFD studies performed on a cohort
of patients affected by carotid stenosis [35,36]. However, they
mainly focused on wall shear stress and disease progression. To the
best of our knowledge, this is the first study focusing on how the
intensity of turbulent-like poststenotic flow varies with flowrate, flow
split, and degree of stenosis. This study was limited to a Newtonian
formulation of the blood, but the effect of using a non-Newtonian
fluid on the flow field of the carotid bifurcation was found to be neg-
ligible, due to the high shear rates that force the models to work in a
quasi-constant viscosity regime [37]. Furthermore, Khan et al.
[28,29] observed that assuming viscosity as a constant value has a
negligible practical impact on the turbulent flow field.

4.3 Healthy Control. Another important aspect of this paper
was the comparison between the healthy and diseased models.

Fig. 7 The used QICA is reported (a) in correspondence of the vortexes in the ICA region, identified using
the Q-criterion (b), of each model (category “degree of stenosis”). The volumetric rendering of the Q-
criterion was obtained at a fourth of the simulated cycle, highlighted by the red dot on the high-pass pres-
sure traces displaced in panel (c), which were obtained at point P (yellow square). As expected, the jet of the
flow does not break down when entering the stenosis in the healthy geometry, while numerous vortexes
arise in the 56%, 66%, and 76% stenoses. The flow in the 86% stenosis is also unstable but less than the
56276% stenoses. In the 96% geometry, on the other hand, the weak instabilities dissipate closely down-
stream of the narrowing.
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The healthy model did not harbor flow instabilities despite the rel-
atively high QICA, showing how strongly the presence of a steno-
sis affects the flow field. Of note is that the flow field in the
healthy model was different already upstream of the area where
the stenosis would occur, as due to the growth of the atheroscler-
otic plaques. The computer tomography angiography images [19]
showed the presence of hypo-cellular and calcified plaques spread
along the ICA since its attachment to the carotid bifurcation, high-
lighting that what we consider a stenosis is actually the location
with the most extreme narrowing. It is well known that the arteries
of patients affected by atherosclerosis are overall narrower than

the same artery prior to the growth of the plaque. Consequently,
the differences in fluid dynamics among a healthy and a stenotic
patient are even more marked, explaining the absolute absence of
vortexes in the healthy model despite the comparable QICA.

4.4 Reynolds Number. As expected, the linear regression
analysis between QICA and IFI½fmin; fmax� in the 20 Hz� 10 kHz
range showed that the Reynolds number is an equally good corre-
lation metric for the presence of flow instabilities as QICA. Despite
its limited use in the clinical practice, the Restenosis is still relevant

Fig. 8 The CFD data evaluated in the 040 Hz and in the 80200 Hz ranges are reported on the left and right side,
respectively. (a) The power of the pressure fluctuations obtained from the six CFD simulations in category
“degree of stenosis” (mean QCCA and QICA/QCCA) is plotted in two frequency ranges (identified by the gray boxes),
highlighting a difference in the energy content of the moderate (56%; 66%, and 76%) and severe (86% and 96%)
stenoses. (b) The probability density distributions, obtained from the extended population by means of regres-
sion analyses in each range, show that by evaluating IFI in two separate frequency ranges, it is possible to distin-
guish the moderate and severe stenoses from the healthy model. (c) The ROC curves show that the accuracy of
severe and moderate stenosis prediction using ~IFI ½0240 Hz� and ~IFI ½802200 Hz�, respectively, is higher than the one of a
random predictor with 50% chance of detection.
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from an engineering point of view. We therefore performed the
ROC analysis using Restenosis as metric for IFI evaluated at same
frequency ranges as QICA. We found that there was little to no
impact on sensitivity and specificity, as the results were in agree-
ment with those obtained with QICA, with AUC ¼ 0:82 and 0:85
for moderate and severe stenoses, respectively. Thus, as expected,
confirming the strong correlation between Restenosis and the inten-
sity of flow instabilities at any stenosis degree.

4.5 Fictitious Population. Using the linear regressions, we
could create a fictitious population and perform ROC analyses.
We did this considering two frequency bands: ~IFI½0�40 Hz� and
~IFI½80�200 Hz�. Of note is that nine additional frequency bands were

considered, ranging within the entire simulated frequency domain
(0 – 10 kHz), but our data indicates that the 0� 40 Hz range best
reveals information on the flowrate, while the higher 80� 200 Hz
frequency band finely reveals the presence of flow instabilities. In
our analysis, both were needed to discriminate a stenosed from a
nonstenosed vessel because of the flow limiting character of
severe stenosis. Indeed, when using ~IFI ½80�200 Hz�, the curve for
severe stenoses is consistently below the 50% probability refer-
ence line.

We found low sensitivity when detecting extremely severe sten-
oses using flow instabilities, which agrees with several clinical
studies. For instance, the sensitivity for auscultation of asymptom-
atic carotid stenosis was found to be 29% by Johannson and
Wester [38]. McColgan et al. also noticed that the likelihood of
carotid bruit does not increase with stenosis degree [9]. These
findings suggest that evaluations based on carotid bruits, i.e., flow
instabilities, and are not sufficient to exclude the presence of
extremely severe carotid stenosis.

However, it is worth noticing that by combining the
~IFI½80�200 Hz� and ~IFI½0�40 Hz� data, and using a simple linear classi-

fier, we were able to achieve a perfect classification of our ficti-
tious population, i.e., AUC ¼ 1:0 and a specificity and sensitivity
of 100%.

4.6 Future Work. Verification and validation of computer
models have been a subject of struggle for the modeling and simu-
lations community since the 1960s [39]. If applicable,

comparisons should be made using well-known benchmarks or
well-understood techniques in order to accurately quantify the
uncertainties [40]. The U.S. Food and Drug Administration (FDA)
designed a nozzle benchmark for the validation of CFD models
applied to generic medical devices [41], and asked the CFD com-
munity to perform validation simulations in 2008–2009. However,
a large interlaboratory disagreement was found in the predicted
breakdown location of turbulent jet for transitional flow regimes.
Several studies argued that the discrepancy was due to the lack of
measured boundary conditions, which prevented numerical repro-
ducibility [42], as the experimental noise could have triggered the
onset of turbulence whereas the idealized boundary conditions
would not [43]. It is indeed well established that the environment
in which validation experiments are conducted, as being the quan-
tification of the ability of a computer model to replicate the
physics of the investigated problem their primary purpose, should
be carefully controlled and measured in order to guarantee interla-
boratory repeatability [40]. In this context, our validation strategy
lacked on the numerical reproducibility as much as the FDA
benchmark did, as the computational boundary conditions set in
our models are based on idealized values as well. Our primary
purpose, however, was restricted to the validation of a single com-
puter model whose specific purpose was to obtain a set of inten-
sity of flow instabilities large enough to allow a statistically
significant analysis of the ability of an LDV device to detect ste-
nosis. As such, we were not interested in the absolute value of
IFI, but rather in the correlation to geometric and flowrate parame-
ters, i.e., QICA or Restenosis. In order to encourage further discus-
sion on the subject and promote openness in science, we point
out the availability of the experimental dataset in an online
repository [44].

The pressure traces show that flow instabilities are particularly
intense after the systolic peak, and almost never present in the dia-
stolic phase of the cardiac cycle. Future work may also consider
performing a temporal analysis of the traces, focusing on specific
moments during the cardiac cycle, to look for frequency-
dependent features.

We obtained the fictitious population on which the ROC analy-
sis was performed by using the correlation coefficients of the
QICA of 21 CFD simulations (18 stenotic, three healthy) and the
IFI. Obviously, the number of CFD simulations included in this
study had an immediate impact on the accuracy of the correlation.
The number of simulations was kept as small as possible due to
the surge of CPU hours demanded by each additional one. It is
practically unfeasible to run enough simulations to cover all com-
binations of CCA flowrate, ICA flow split, and stenosis degree. A
larger set of simulations run on a broader population could allow
for a more accurate estimate of the correlation coefficients. We
made sure to run at least two simulations per stenosis degree, in
order to improve the reliability of our regression model as predic-
tor for the presence of carotid stenosis. Exceptionally, we included
only one simulation run on the 96% stenosis model because no
difference in IFI was noticeable when increasing the QCCA to
2 SD (i.e., QICA ¼ 27 ml=minÞ, suggesting that the extremely
severe stenosis could not harbor flow instabilities in physiologi-
cally varying ICA flow rates. Furthermore, we run only three sim-
ulations with the healthy model as a consequence of the choice to
investigate only the flowrate levels appropriate for stenotic mod-
els. It is worth noticing, however, that small flow instabilities
were found in the healthy model for ICA flow rates on the high
side of its physiological range QICA ¼ 351:8, corresponding
toþ 2 SD.

The sensitivity and specificity measured in our fictitious feasi-
bility studies outperform clinical studies using auscultation. The
association between carotid bruit, related to the presence of flow
instabilities, and carotid stenosis was found to have an average
Sn ¼ 53% and Sp ¼ 83% over 26 clinical studies [9]. Although
our results are more encouraging than previous in vivo studies, we
have to point out that our study excludes all the variation from
patient-specific geometry and neck skin properties. The findings

Table 3 The correlation between QICA and IFI½fmin ; fmax � evaluated
at the two frequency ranges was found to be extremely high
(R2 � 0:89)

Frequency range Model R2 a B

fmin ¼ 0 Hz Stenotic 0.89 0.007386632 �5.016398344
fmax ¼ 40 Hz Healthy 0.99 0.002858473 �4.360716439
fmin ¼ 80 Hz Stenotic 0.89 0.028025848 �10.7696061
fmax ¼ 200 Hz Healthy 0.96 0.006015117 �9.095393066

The regression coefficients (a, b) were used to obtain the ~IFI values in
both frequency ranges and for each subject of the fictitious population
using the expression ~IFI ½fmin;fmax �¼a �QICAþb:

Table 4 The accuracy of the IFI in the 0240 Hz range shows
that it is a good predictor for severe stenoses, while it is poorly
accurate for moderate stenoses detection

Stenosis
degree

AUC based on
IFI½0�40 Hz�

AUC based on
IFI½80�200 Hz�

Moderate ð56 %; 66 %; 76 %Þ 0.559 0.843

Severe ð86 %; 96 %Þ 0.972 0.162
All ð56� 96 %Þ 0.726 0.569

In the 80�200 kHz range, on the other hand, the IFI can infer the presence
of moderate stenoses and, with lower accuracy, of the severe stenoses too.
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in this study are based on only one set of patient-specific clinical
images, with its unique tortuosity and plaque morphology.
Patient-specific anatomical aspects such as curvature, nonplanar-
ity and tortuosity of carotid arteries, and the distance of the ICA
stenosis from the carotid bifurcation, might have an impact on the
onset of flow instabilities, and on the identified frequency bands
and metrics. Caution is therefore warranted in interpreting the
findings and a further extension of the study with additional
patient-specific data would strengthen the theoretical basis. At the
same time, the proof-of-concept character of the work should be
kept in mind, where we wanted to explore the discriminative
power of a frequency-domain analysis of features induced by
poststenosis flow instabilities in an experimental and CFD model.
The effective sensitivity and specificity of the technique will
always have to be based on an in vivo study, irrespective of any
computational study.

In this study, we assess the interpatient variability of IFI values.
However, when performing in vivo measurements, it might be
more relevant to quantity the intrapatient variability of IFI values
by comparing the measurement obtained from both carotid
arteries. From a mathematical point of view, this would be a
“patient-specific” normalization of the data, which hopefully
would reduce the impact of geometry and neck skin properties.

Finally, caution is warranted when interpreting our results from
the collection of fictitious subjects. Our approach is only intended
as a rough estimate of the sensitivity and specificity for each
degree of stenosis. One cannot draw any direct clinical conclu-
sions from these results, but could help guiding future exploratory
clinical trials. Furthermore, given the intrinsic limitations of in sil-
ico and in vitro studies, the effective potential of this theoretically
validated technique should be followed up and validated by clini-
cal studies. If our feasibility results would be found to be applica-
ble in vivo, the use of such device in the clinical practice could
improve early carotid stenosis detection.

5 Conclusions

We have performed CFD simulations in a patient-specific
carotid bifurcation geometry in order to evaluate the feasibility of
LDV to infer carotid stenosis. Specifically, we evaluated the flow
field obtained by different degrees of stenosis in the internal
carotid artery, subjected to boundary conditions spanning the
physiological range. We introduced the IFI as a measure to quan-
tify the intensity of downstream fluctuations. We have demon-
strated that the flowrate in the stenosed artery is a major
determinant of downstream flow instabilities, which arise quite
intensely in moderate stenoses (56–76%). Interestingly, bulk flow
could also be used to identify the most stenotic carotid arteries.
The accuracy of moderate and severe stenoses detection by means
of an LDV device was found to be encouraging. Noticeably, the
pressure-based CFD analysis parallels the analysis of experimen-
tal data in the same geometrical model embedded in a gel, where
the relation between trans-stenotic flow and intensity of vibrations
at the gel surface was studied. These results support the feasibility
of the use of LDV to infer asymptomatic carotid stenosis, pending
validation via clinical trials.
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