174 research outputs found

    Multipacket reception in LTE femtocell networks

    Get PDF
    Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresDriven by the growing demand for high-speed broadband wireless services, LTE technology has emerged and evolve, promising high data rates to the demanding mobile users. Based on the 3rd Generation Partnership Project (3GPP) speci cations,Long Term Evo- lution Advanced (LTE-A) telecommunication services predict the existence of macro base stations, Enhanced Node B (eNB) and micro stations HeNB with low power that complements the network's coverage. This dissertation studies the complementary use of HeNBs (femtocells 3GPP terminology) to provide broadband services. It is essential to maintain the networks performance with the network densi cation phenomenon, which brings signi cant interference problems and consequently more collisions and lost packets. The use of SC-FDE in the downlink of a LTE-A femtocell network - speci cally multipacket reception (MPR), with an IB-DFE receiver employing Multipacket Detection (MPD) and SIC techniques is proposed. A new telecommunications concept named GC emerged with the increasing environmental concerns. This dissertation shows the performance results of an iterative MPR and proposes a green association algorithm to change the network layout according to the mobile users demands reducing the Base Station (BS)'s negative contribution to the network total energy consumption. The overall results show that the technologies employed are a solution to achieve a favorable trade-o between performance and Energy E ciency (EE), responding to the global demands (high data rates) and concerns (low energy consumption and carbon footprint reduction). Keywords: Long Term Evolution(LTE), Single Carrier with Frequency Domain Equalization (SC-FDE), Iterative Block-Decision Feedback Equalizer (IB-DFE), Home enhanced Node B (HeNB), Successive Interference Cancellation(SIC),Multipacket Reception(MPR), Green Communications (GC)FCT/MEC Femtocells(PTDC/EEATEL/120666/2010), OPPORTUNISTIC CR(PTDC/EEA-TEL/115981/2009) and ADIN(PTDC/EEI-TEL/2990/2012) project

    Simultaneous Wireless Information and Power Transfer in 5G communication

    Get PDF
    Green communication technology is expected to be widely adopted in future generation networks to improve energy efficiency and reliability of wireless communication network. Among the green communication technologies,simultaneous wireless information and power transfer (SWIPT) is adopted for its flexible energy harvesting technology through the radio frequency (RF) signa lthati sused for information transmission. Even though existing SWIPT techniques are flexible and adoptable for the wireless communication networks, the power and time resources of the signal need to be shared between infor- mation transmission and RF energy harvesting, and this compromises the quality of the signal. Therefore,SWIP Ttechniques need to be designed to allow an efficient resource allocation for communication and energy harvesting. The goal oft his thesisis to design SWIP Ttechniques that allow efficient,reliable and secure joint communications and power transference. A problem associated to SWIPT techniques combined with multi carrier signals is that the increased power requirements inherent to energy harvesting purposes can exacerbate nonlinear distortion effects at the transmitter. Therefore, we evaluate nonlinear distortion and present feasible solutions to mitigate the impact of nonlinear distortion effects on the performance.Another goal of the thesisis to take advantage of the energy harvesting signals in SWIP Ttechniques for channel estimation and security purposes.Theperformance of these SWIPT techniques is evaluated analytically, and those results are validated by simulations. It is shownthatthe proposed SWIPT schemes can have excellent performance, out performing conventional SWIPT schemes.Espera-se que aschamadas tecnologiasde green communications sejam amplamente ado- tadas em futuras redes de comunicação sem fios para melhorar a sua eficiência energética a fiabilidade.Entre estas,encontram-se as tecnologias SWIPT (Simultaneous Wireless Information and Power Transference), nas quais um sinal radio é usado para transferir simultaneamente potência e informações.Embora as técnicas SWIPT existentes sejam fle- xíveis e adequadas para as redes de comunicações sem fios, os recursos de energia e tempo do sinal precisam ser compartilhados entre a transmissão de informações e de energia, o que pode comprometer a qualidade do sinal. Deste modo,as técnicas SWIPT precisam ser projetadas para permitir uma alocação eficiente de recursos para comunicação e recolha de energia. O objetivo desta tese é desenvolver técnicas SWIPT que permitam transferência de energia e comunicações eficientes,fiáveis e seguras.Um problema associado às técnicas SWIPT combinadas com sinais multi-portadora são as dificuldades de amplificação ine- rentes à combinação de sinais de transmissão de energia com sinais de transferência de dados, que podem exacerbar os efeitos de distorção não-linear nos sinais transmitidos. Deste modo, um dos objectivos desta tese é avaliar o impacto da distorção não-linear em sinais SWIPT, e apresentar soluções viáveis para mitigar os efeitos da distorção não-linear no desempenho da transmissão de dados.Outro objetivo da tese é aproveitar as vantagens dos sinais de transferência de energia em técnicas SWIPT para efeitos de estimação de canal e segurança na comunicação.Os desempenhos dessas técnicas SWIPT são avaliados analiticamente,sendo os respectivos resultados validados por simulações.É mostrado que os esquemas SWIPT propostos podem ter excelente desempenho, superando esquemas SWIPT convencionais

    Massive MIMO transmission techniques

    Get PDF
    Next generation of mobile communication systems must support astounding data traffic increases, higher data rates and lower latency, among other requirements. These requirements should be met while assuring energy efficiency for mobile devices and base stations. Several technologies are being proposed for 5G, but a consensus begins to emerge. Most likely, the future core 5G technologies will include massive MIMO (Multiple Input Multiple Output) and beamforming schemes operating in the millimeter wave spectrum. As soon as the millimeter wave propagation difficulties are overcome, the full potential of massive MIMO structures can be tapped. The present work proposes a new transmission system with bi-dimensional antenna arrays working at millimeter wave frequencies, where the multiple antenna configurations can be used to obtain very high gain and directive transmission in point to point communications. A combination of beamforming with a constellation shaping scheme is proposed, that enables good user isolation and protection against eavesdropping, while simultaneously assuring power efficient amplification of multi-level constellations

    Millimeter-wave Wireless LAN and its Extension toward 5G Heterogeneous Networks

    Full text link
    Millimeter-wave (mmw) frequency bands, especially 60 GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60 GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60 GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase the total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is the distributed antenna type architecture to realize centralized coordination, while the other is an autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.Comment: 18 pages, 24 figures, accepted, invited paper

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Esquemas de pré-codificação IA com IB-DFE para sistemas MC-CDMA

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesTo achieve high bit rates, needed to meet the quality of service requirements of future multimedia applications, multi-carrier code division multiple access (MC-CDMA) has been considered as a candidate air-interface. Interference alignment (IA) is a promising technique that allows high capacity gains in interfering channels. On the other hand, iterative block decision feedback equalization (IB-DFE) based receivers can efficiently exploit the inherent space-frequency diversity of the MIMO MC-CDMA systems. In this thesis we proposed an IA precoding at the transmitter with IB-DFE based processing at the receiver for MC-CDMA systems. The IA precoding is applied at chip level instead of the data symbols level, as in the conventional IA based systems. The receiver is designed in two steps: first the equalizers based on zero forcing (ZF) or minimum mean square error (MMSE) are used to remove the aligned users´ interference. Then and after a whitening noise process, an IB-DFE based equalizer is designed to remove both the residual inter-user aligned and inter-carrier interferences. The results have shown that the obtained performance is very close to the one obtained by the optimal matched filter, with few iterations at the receiver side.Para atingir maiores ritmos de transmissão, as futures aplicações multimédia necessitam de atingir a qualidade de serviço necessária. Para isso, o multi-carrier code division multiple access (MC-CDMA) tem sido apontado como um forte candidato para interface ar dos futuros sistemas celulares. O Interference Alignment (IA) ou alinhamento de interferência é uma técnica promissora que permite ter altos ganhos de capacidade em canais com interferência. Por outro lado, temos receptores baseados no conceito iterative block decision feedback equalization(IB-DFE) que conseguem tirar partido, de uma forma eficiente, da inerente diversidade espaço-frequência dos sistemas MIMO MC-CDMA. Nesta dissertação é implementada uma pré-codificação baseada no conceito de IA considerando três transmissores (ou estações base) juntamente, com um processamento IB-DFE no receptor para sistemas MC-CDMA.A pré-codificação é aplicada ao nível de chip em vez de ser aplicado ao nível dos dados. O receptor é projectado em dois passos: em primeiro lugar equalizadores baseados em ZF ou em MMSE são utilizados para remover a interferência alinhada dos restantes utilizadores. De seguida, e após aplicar um processo de branqueamento do ruído ao sinal à saída do primeiro equalizador, um segundo equalizador baseado em IB-DFE é projectado para remover a interferência inter-utilizador residual e também a interferência residual entre portadoras. Os resultados obtidos mostraram-se satisfatórios na remoção da interferência obtendo-se um desempenho muito próximo do obtido considerando um filtro adaptado
    corecore