42,870 research outputs found

    Designing a multi-hop regular virtual topology for ultrafast optical packet switching : node placement optimisation and/or dilation minimisation?

    Get PDF
    This paper studies the design of multi-hop regular virtual topologies to facilitate optical packet switching in networks with arbitrary physical topologies. The inputs to the virtual topology design problem are the physical topology, the traffic matrix and the regular topology. In this paper, this problem is tackled directly and also by decomposition into two sub-problems. The first sub-problem, dilation minimisation, uses only the physical topology and the virtual topology as optimisation inputs. The second sub-problem considers the traffic matrix and virtual topology as optimisation inputs. The solutions of these two sub-problems are compared with each other and against the results obtained when the global problem is optimised (using all three possible input parameters) for a variety of traffic scenarios. This gives insight into the key question of whether the physical topology or the traffic matrix is the more important parameter when designing a regular virtual topology for optical packet switching. Regardless of the approach taken the problem is intractable and hence heuristics must be used to find (near) optimal solutions in reasonable time. Five different optimisation heuristics, using different artificial intelligence techniques, are employed in this paper. The results obtained by the heuristics for the three alternative design approaches are compared under a variety of traffic scenarios. An important conclusion of this paper is that the traffic matrix plays a less significant role than is conventionally assumed, and only a marginal penalty is incurred by disregarding it in several of the traffic cases considered

    Logical topology design for IP rerouting: ASONs versus static OTNs

    Get PDF
    IP-based backbone networks are gradually moving to a network model consisting of high-speed routers that are flexibly interconnected by a mesh of light paths set up by an optical transport network that consists of wavelength division multiplexing (WDM) links and optical cross-connects. In such a model, the generalized MPLS protocol suite could provide the IP centric control plane component that will be used to deliver rapid and dynamic circuit provisioning of end-to-end optical light paths between the routers. This is called an automatic switched optical (transport) network (ASON). An ASON enables reconfiguration of the logical IP topology by setting up and tearing down light paths. This allows to up- or downgrade link capacities during a router failure to the capacities needed by the new routing of the affected traffic. Such survivability against (single) IP router failures is cost-effective, as capacity to the IP layer can be provided flexibly when necessary. We present and investigate a logical topology optimization problem that minimizes the total amount or cost of the needed resources (interfaces, wavelengths, WDM line-systems, amplifiers, etc.) in both the IP and the optical layer. A novel optimization aspect in this problem is the possibility, as a result of the ASON, to reuse the physical resources (like interface cards and WDM line-systems) over the different network states (the failure-free and all the router failure scenarios). We devised a simple optimization strategy to investigate the cost of the ASON approach and compare it with other schemes that survive single router failures

    Optimized Design of Survivable MPLS over Optical Transport Networks. Optical Switching and Networking

    Get PDF
    In this paper we study different options for the survivability implementation in MPLS over Optical Transport Networks in terms of network resource usage and configuration cost. We investigate two approaches to the survivability deployment: single layer and multilayer survivability and present various methods for spare capacity allocation (SCA) to reroute disrupted traffic. The comparative analysis shows the influence of the traffic granularity on the survivability cost: for high bandwidth LSPs, close to the optical channel capacity, the multilayer survivability outperforms the single layer one, whereas for low bandwidth LSPs the single layer survivability is more cost-efficient. For the multilayer survivability we demonstrate that by mapping efficiently the spare capacity of the MPLS layer onto the resources of the optical layer one can achieve up to 22% savings in the total configuration cost and up to 37% in the optical layer cost. Further savings (up to 9 %) in the wavelength use can be obtained with the integrated approach to network configuration over the sequential one, however, at the increase in the optimization problem complexity. These results are based on a cost model with actual technology pricing and were obtained for networks targeted to a nationwide coverage

    Optical packet switching over arbitrary physical topologies using the Manhattan street network : an evolutionary approach

    Get PDF
    Published in "Towards an Optical Internet", A. Jukan (Ed.). Optical packet switching over arbitrary physical topologies typically mandates complex routing schemes and the use of buffers to resolve the likely contentions. However, the relatively immature nature of optical logic devices and the limitations with optical buffering provide significant incentive to reduce the routing complexity and avoid optical domain contentions. This paper examines how the Manhattan Street Network (MSN) and a particular routing scheme may be used to facilitate optical packet switching over arbitrary physical topologies. A novel approach, genetic algorithms (GA), is applied to the problem of deploying the MSN (near) optimally in arbitrary physical topologies. A problem encoding is proposed and different implementations of GA described. The optimum GA parameters are empirically selected and GA is successfully used to deploy the MSN in physical topologies of up to 100 nodes. Favourable results are obtained. GA are also seen to out-perform other heuristics at deploying the MSN in arbitrary physical topologies for optical packet switching

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions
    corecore