459 research outputs found

    Morphological Development in robotic learning: A survey

    Get PDF

    Integration of Action and Language Knowledge: A Roadmap for Developmental Robotics

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”This position paper proposes that the study of embodied cognitive agents, such as humanoid robots, can advance our understanding of the cognitive development of complex sensorimotor, linguistic, and social learning skills. This in turn will benefit the design of cognitive robots capable of learning to handle and manipulate objects and tools autonomously, to cooperate and communicate with other robots and humans, and to adapt their abilities to changing internal, environmental, and social conditions. Four key areas of research challenges are discussed, specifically for the issues related to the understanding of: 1) how agents learn and represent compositional actions; 2) how agents learn and represent compositional lexica; 3) the dynamics of social interaction and learning; and 4) how compositional action and language representations are integrated to bootstrap the cognitive system. The review of specific issues and progress in these areas is then translated into a practical roadmap based on a series of milestones. These milestones provide a possible set of cognitive robotics goals and test scenarios, thus acting as a research roadmap for future work on cognitive developmental robotics.Peer reviewe

    A Study of Growth Based Morphological Development in Neural Network Controlled Walkers

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] In nature, the physical development of the body that takes place in parallel to the cognitive development of the individual has been shown to facilitate learning. This opens up the question of whether the same principles could be applied to robots in order to accelerate the learning of controllers and, if so, how to apply them effectively. In this line, several authors have run experiments, usually quite complex and heterogeneous, with different levels of success. In some cases, morphological development seemed to provide an advantage and in others it was clearly irrelevant or even detrimental. Basically, morphological development seems to provide an advantage only under some specific conditions, which cannot be identified before running an experiment. This is due the fact that there is still no agreement on the underlying mechanisms that lead to success or on how to design morphological development processes for specific problems. In this paper, we address this issue through the execution of different experiments over a simple, replicable, and straightforward experimental setup that makes use of different neural network controlled walkers together with a morphological development strategy based on growth. The morphological development processes in these experiments are analyzed both in terms of the results obtained by the different walkers and in terms of how their fitness landscapes change as the morphologies develop. By comparing experiments where morphological development improves learning and where it does not, a series of initial insights have been extracted on how to design morphological development processes.This work has been partially funded by the Ministerio de Ciencia, Innovación y Universidades of Spain/FEDER (grant RTI2018-101114-B-I00), Xunta de Galicia (EDC431C-2021/39) and the Centro de Investigación de Galicia “CITIC”, funded by Xunta de Galicia and the European Union (European Regional Development Fund- Galicia 2014-2020 Program), by grant ED431G 2019/01. Funding for open access charge: Universidade da Coruña/CISUG. We also want to thank CESGA (Centro de Supercomputación de Galicia. https://www.cesga.es/) for the possibility of using its resourcesXunta de Galicia; EDC431C-2021/39Xunta de Galicia; ED431G 2019/0

    Learning Bipedal Walking Through Morphological Development

    Get PDF

    An Experiment in Morphological Development for Learning ANN Based Controllers

    Get PDF
    Morphological development is part of the way any human or animal learns. The learning processes starts with the morphology at birth and progresses through changing morphologies until adulthood is reached. Biologically, this seems to facilitate learning and make it more robust. However, when this approach is transferred to robotic systems, the results found in the literature are inconsistent: morphological development does not provide a learning advantage in every case. In fact, it can lead to poorer results than when learning with a fixed morphology. In this paper we analyze some of the issues involved by means of a simple, but very informative experiment in quadruped walking. From the results obtained an initial series of insights on when and under what conditions to apply morphological development for learning are presented.Comment: 10 pages, 4 figures. arXiv admin note: text overlap with arXiv:2003.0581

    Guiding the Exploration of the Solution Space in Walking Robots Through Growth-Based Morphological Development

    Get PDF
    In human beings, the joint development of the body and cognitive system has been shown to facilitate the acquisition of new skills and abilities. In the literature, these natural principles have been applied to robotics with mixed results and different authors have suggested several hypotheses to explain them. One of the most popular hypotheses states that morphological development improves learning by increasing exploration of the solution space, avoiding stagnation in local optima. In this article, we are going to study the influence of growth-based morphological development and its nuances as a tool to improve the exploration of the solution space. We will perform a series of experiments over two different robot morphologies which learn to walk. Furthermore, we will compare these results to another optimization strategy that has been shown to be useful to favor exploration in learning algorithms: the application of noise during learning. Finally, to check if the increased exploration hypothesis holds, we visualize the genotypic space during learning considering the different optimization strategies by using the Search Trajectory Network representation. The results indicate that noise and growth increase exploration, but only growth guides the search towards good solutions

    Some Experiments on the influence of Problem Hardness in Morphological Development based Learning of Neural Controllers

    Get PDF
    Natural beings undergo a morphological development process of their bodies while they are learning and adapting to the environments they face from infancy to adulthood. In fact, this is the period where the most important learning pro-cesses, those that will support learning as adults, will take place. However, in artificial systems, this interaction between morphological development and learning, and its possible advantages, have seldom been considered. In this line, this paper seeks to provide some insights into how morphological development can be harnessed in order to facilitate learning in em-bodied systems facing tasks or domains that are hard to learn. In particular, here we will concentrate on whether morphological development can really provide any advantage when learning complex tasks and whether its relevance towards learning in-creases as tasks become harder. To this end, we present the results of some initial experiments on the application of morpho-logical development to learning to walk in three cases, that of a quadruped, a hexapod and that of an octopod. These results seem to confirm that as task learning difficulty increases the application of morphological development to learning becomes more advantageous.Comment: 10 pages, 4 figure

    An embodied approach to evolving robust visual classifiers

    Get PDF
    From the very creation of the term by Czech writer Karel Capek in 1921, a robot has been synonymous with an artificial agent possessing a powerful body and cogitating mind. While the fields of Artificial Intelligence (AI) and Robotics have made progress into the creation of such an android, the goal of a cogitating robot remains firmly outside the reach of our technological capabilities. Cognition has proved to be far more complex than early AI practitioners envisioned. Current methods in Machine Learning have achieved remarkable successes in image categorization through the use of deep learning. However, when presented with novel or adversarial input, these methods can fail spectacularly. I postulate that a robot that is free to interact with objects should be capable of reducing spurious difference between objects of the same class. This thesis demonstrates and analyzes a robot that achieves more robust visual categorization when it first evolves to use proprioceptive sensors and is then trained to increasingly rely on vision, when compared to a robot that evolves with only visual sensors. My results suggest that embodied methods can scaffold the eventual achievement of robust visual classification
    corecore