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ABSTRACT 

In human beings, the joint development of the body and cognitive 

system has been shown to facilitate the acquisition of new skills 

and abilities. In the literature, these natural principles have been 

applied to robotics with mixed results and different authors have 

suggested several hypotheses to explain them. One of the most 

popular hypotheses states that morphological development 

improves learning by increasing exploration of the solution space, 

avoiding stagnation in local optima. In this article, we are going to 

study the influence of growth-based morphological development 

and its nuances as a tool to improve the exploration of the solution 

space. We will perform a series of experiments over two different 

robot morphologies which learn to walk. Furthermore, we will 

compare these results to another optimization strategy that has been 

shown to be useful to favor exploration in learning algorithms: the 

application of noise during learning. Finally, to check if the 

increased exploration hypothesis holds, we visualize the genotypic 

space during learning considering the different optimization 

strategies by using the Search Trajectory Network representation. 

The results indicate that noise and growth increase exploration, but 

only growth guides the search towards good solutions. 
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1 INTRODUCTION 

In humans and animals, morphological development from 

infancy to adulthood has been shown to facilitate learning [1], [2]. 

To improve the learning performance of different robotic 

morphologies, some of the developmental principles observed in 

nature have been tested in different robots and scenarios. The 

application of these morphological development principles to 

robotics has led to mixed results being, depending on the case, 

helpful [3]–[5], irrelevant [6], [7], or even detrimental [8], [9] for 

learning. 

It is not easy to extract a clear notion of the effects of 

morphological development on the learning abilities of robots and 

why they are influenced by such morphological change. 

Nevertheless, some authors have provided some indications based 

on the conclusions provided by the results of their experiments. 

For example, using a three-finger hand learning to grasp 

different geometric objects, Bongard [7] related the influence of 

morphological change when learning to task complexity. When the 

hand had to grasp two or three different kinds of object 

morphologies, the learning performances of morphological 

development increased compared to the no-development case. 

Similar conclusions were extracted from Bongard and Buckingham 

[10] in a four-wheeled robot in two simulators with different levels 

of fidelity with respect to reality. Another factor that is claimed to 

influence learning are abrupt changes in morphology. In an 

experiment with quadruped and hexapod robots that learn to walk, 

Bongard [11] hypothesizes that an abrupt change in the controller-

morphology relationship decreases the performance because the 

learning algorithm needs time to adapt the controller to the new 

morphology. Similar conclusions were reported by Lungarella and 

Berthouze [12] in a bipedal mechanism that was learning to swing 

under an external perturbation. The morphological development 

mechanism that implied freezing and freeing Degrees of Freedom 

(DOF) led to instabilities in the system, making it harder to find 

adequate robotic swinging behavior. Finally, in a bipedal walking 

example, Zhu et al. [13] observed how morphological development 

has helped to learn to walk thanks to the initial stability that a tripod 

configuration confers to the body and the early stages of learning. 

Such an increase in stability was also mentioned as a relevant factor 

by Naya-Varela et al. both in a quadruped [14] and bipedal 

morphology [15]. 
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In the literature, one of the most predominant hypotheses about 

why learning in morphological development-based experiments 

outperforms the no-development ones is attributed to the fact that 

morphological development favors the exploration of the solution 

space, avoiding stagnation in local optima. This was suggested by 

Lungarella and Berthouze [12] and also by Naya-Varela et al. [16] 

who reported similar conclusions in a growth-based morphological 

development quadruped robot experiment. On the other hand, 

Benureau and Tani [17], consider that morphological wobbling 

helps to avoid getting trapped in local optima of the behavioral 

space, presenting some qualitative results that support their 

hypotheses. 

In this article, we are going dig deeper into the implications of 

morphological development as a tool to improve learning. 

Concretely, we will analyze whether morphological development 

is just another optimization technique that helps to avoid stagnation 

thanks to increasing the random exploration of the solution space, 

or whether it presents some nuances that makes it different 

compared to other optimization techniques. Thus, in a group of 

experiments over two different morphologies, we will compare the 

results obtained selecting growth as a morphological development 

strategy during learning to the learning results with no growth while 

noise is added during learning to the same morphologies. The 

application of noise was selected to compare with morphological 

development because it is a straightforward manner of introducing 

random exploration of the solution space that has already been used 

in the literature, with good results, to improve learning by avoiding 

stagnation in local optima [18]–[20], leading to more robust 

learning by favoring the adaptation of the algorithm to the 

environmental conditions [21]. Furthermore, the results and 

implications of both morphological development and noise will be 

compared and analyzed by means of their impact on a 

representation using Search Trajectory Networks (STN) [22] to 

provide the possibility of visual and quantitative analysis of the 

different learning trajectories followed by each type of experiment. 

A first approximation to the comparison between morphological 

development and noise was carried out by Naya-Varela et al. [23]. 

However, in that article, the authors only considered one type of 

morphology and noise implementation. They did not go into details 

about the implications of noise on the learning process and how it 

affects the evolution of the robot controllers. 

Thus, here we have carried out a series of experiments over 

growth-based morphological development using two morphologies, 

a quadruped and a bipedal robot, several types of noise, including 

morphological noise, and visualized how they explore the search 

space. 

2 EXPERIMETAL SETUP 

In the following, we describe the morphology of each robot that 

was considered in this study, as well as the different experiments 

carried out with them and their characteristics. 

2.1 Morphology 

The experimental framework was set up in simulation, and 

considered simplified morphological changes. In it, two different 

morphologies have been used, a quadruped and a modified version 

of the NAO robot [24] that allows the NAO to grow. 

On the one hand, the quadruped morphology (Figure 1) is 

composed of a central body and four limbs attached to it. The limbs 

are constructed from an upper link and a lower link with their 

revolute joints. The upper link measures 5x2.5x0.5 cm and has a 

mass of 250 g, while the lower link is made up of two elements, 

with the same dimensions and mass as in the upper link, joined by 

a prismatic joint. This prismatic joint is the element of the 

morphology that allows the robot to grow. The prismatic joint can 

apply a maximum force of 50 N and it is controlled by a 

proportional controller (P = 0.1). All the prismatic joints of the legs 

have a maximum stroke of 7.5 cm, which means that the length of 

the lower link may vary from 10 cm (lower link fully contracted) 

to 17.5 cm (lower link fully extended). In addition, there are two 

revolute joints in each limb that join the central body and the upper 

link, and the upper link and the lower link, respectively. All the 

revolute joints are actuated and have a maximum Range of Motion 

(ROM) of [−90°, 90°]. Their maximum torque is 2.5 Nm and they 

are also controlled through a proportional controller (P = 0.1). 

On the other hand, the morphology of the bipedal robot is based 

on the simulation model of the real NAO robot in the CoppeliaSim 

simulator [25]. However, several changes have been made to this 

simulation model, both to simplify the simulation model and to 

allow changes in the morphology of the robot while it develops:  

Upper link: The upper part of the legs was changed from a single 

mesh to two cuboids, to allow for the growth of this part. Both 

cuboids have the same dimensions and weight, 8x8x7.2 cm. They 

are joined by a prismatic joint, which performs the extension of the 

upper part of the leg. It has a maximum force of 50 N. The 

maximum extension of the prismatic joint is 4.0 cm, which is 

almost a third of the size of the upper link when not extended. When 

fully contracted, the leg matches the original dimensions of the 

NAO. The mass of the upper link is 458 g * 2 = 916 g. 

Lower link: The lower part of the legs was also changed to two 

different cuboids. The upper cuboid presents a size of 8x3x8 cm 

with a mass of 192 g and the lower one has a size of 9x8x3 cm with 

a mass of 216 g. Again, the properties of the cuboids and their 

geometric orientation were selected to preserve the original NAO 

design. The prismatic joint presents the same functionality and 

 
Figure 1. Quadruped with 8 DOF and detail of the different parts 

of the morphology with the name of the joints. 
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properties as the one of the upper link: a maximum force of 50 N 

and a maximum extension of 4.0 cm. 

Foot: The foot size and weight have also been modified with 

respect to the native design of the NAO robot of the CoppeliaSim. 

The simulation model was simplified, reducing the number of 

cuboids that constitute the original foot of the NAO. Now, each foot 

is 18.4x10x1.5 cm in size and weighs 276 g. 

2.2 Controller 

The controller of the robots is a Neural Network (NN) with a 

sigmoid activation function. Learning is achieved through a 

neuroevolutionary process using the NEAT algorithm [26], 

concretely, the MultiNEAT implementation [27]. The initial 

configuration of the NN is different for each morphology. For the 

quadruped, the NN has one input plus bias and 8 outputs, one for 

each joint of the robot. For the NAO, the NN has 3 inputs plus bias 

and 14 outputs. These outputs control the different movements of 

the NAOs legs as well as the shoulders. The weights and structure 

of the NN represent the genome of the learning algorithm. The 

inputs of the NN are only sinusoidal signals, as pattern generators, 

to simplify the study on the influence of morphological 

development and noise addition during learning, avoiding the cross 

influence that they may cause over the sensory system. For the 

quadruped, the sinusoidal function has an amplitude of 2 and an 

angular velocity of 10 rad/s. For the NAO, the sinusoidal functions 

have an amplitude of 2 and a frequency of 2.21*π rad/s, with phases 

0, π⁄3, and π⁄5 rad respectively. The outputs of the NN are 

denormalized from the sigmoid output interval [0, 1] to the ROM 

available for each joint. In the case of the quadruped, this ROM is 

defined by the interval [−90°, 90°], as already mentioned. In the 

case of the NAO, this denormalization also depends on the 

maximum ROM available for each joint, displayed in Table I. 

2.3 Simulator and evolutionary setup 

The experiments are performed in the CoppeliaSim simulator 

with the Open Dynamics Engine [28] as the physics engine. Every 

independent run of NEAT starts from an artificial neural network 

with a full connection between the input neurons and the output 

neurons and without any hidden layers. NEAT evolves a population 

of 50 individuals for 300 generations. To gather statistical data, 50 

independent runs were carried out for each experiment. The fitness 

of an individual is calculated directly as the straight-line distance 

traveled by the head of the robot in the horizontal plane. Each 

individual of the population is tested for 3s in the case of the 

quadruped and 5 s in the case of the NAO, with a simulation time 

step of 50 ms and a physics engine time step of 5 ms. For the 

quadruped, the NN is updated every two simulation time steps (100 

ms). For the NAO, the NN is updated each time step (50 ms). This 

difference is motivated by the morphological differences between 

both robots, which implies that the quadruped needs more time to 

perform the movement of the joints, leading to strange solutions 

when only one simulation time step is considered. 

2.4 Experiments 

Two different kinds of experiments have been performed over 

these two morphologies: the reference experiments and the 

gaussian noise ones.  

No development experiment: A fixed morphology 

corresponding to the final morphology for the rest of the 

experiments (maximum length of the limbs) was used for the whole 

neuroevolutionary process in the case of each morphology. 

Growth experiment: The robot morphology grows during the 

learning process starting from the shortest version of the links in 

generation 0 (fully contracted) until reaching the final morphology 

    

 
Figure 2. Top left: frontal view of the original NAO robot model 

in CoppeliaSim with the different meshes (links) of the model. Top 

right: frontal view of the developmental model of the NAO. In 

green, the default meshes of the original robot. In grey, the 

modified parts: the cuboids added to the robot to create the 

extendible upper and lower link and simplified feet. In red, the 

rotational and prismatic joints. Bottom: side view of the NAO 

model where its different parts are indicated. 

 

Table I. Values of the maximum ROM available for 

each joint of the bipedal robot in degrees. 

Joint ROM 

Right and Left Shoulder Pitch [-20.0, 50.0] 

Right and Left Ankle Roll [-30.0, 30.0] 

Right and Left Ankle Pitch [-65.0, -5.0] 

Right and Left Knee Pitch [25.0, 85.0] 

Right and Left Hip Pitch [-50.0, 10.0] 

Right and Left Hip Roll [-20.0, 20.0] 

Right and Left Hip Yaw Pitch [0.0, 0.0] 

 



GECCO’23, July 15-19, 2023, Lisbon, Portugal Martín Naya-Varela, Andrés Faíña, Richard J. Duro. 

 

 

 

(fully extended). For the quadruped, the fully contracted link length 

is 10 cm, while when fully extended it is 17.5 cm. In this case, link 

length is grown linearly and simultaneously for all the legs for 60 

generations until it reaches the final morphology. After that, 

neuroevolution may continue, but without changes in the 

morphology. For the NAO, the upper link length when fully 

contracted is 14.4 cm, while when fully extended is 18.4 cm. The 

fully contracted lower link length is 11 cm, which when fully 

extended goes up to 15 cm. The links grow linearly until generation 

150 when they reach the final morphology. The robots do not grow 

during the individual evaluations, that is, each growth step is 

applied before the beginning of each evaluation. 

Noise experiments: Three types of noise experiments have been 

constructed to perform controlled perturbations to the system, in 

consonance with our experimental setup: (1) Noise addition at the 

input of the NN, (2) noise addition at the output of the NN, and (3) 

noise addition to the robot morphology, concretely to the size of the 

leg, over the same actuator that performs the growth of the 

morphology. These experiments are applied over the final and fixed 

morphology of each experiment. Noise is generated by a Gaussian 

Function (GF), with μ = 0. Several σ values have been selected to 

adjust the noise level according to the position where it is added 

(input to the NN, output to the NN and in the leg extension of the 

final morphology for each one) and also to provide different noise 

levels according to the magnitude they perturb, having the 

possibility of even doubling its value. Table II summarizes the 

different σ for each case and experiment. Thus, noise is added in 

the following forms: 

 

• Input to the NN (Input noise): 

𝐼𝑛𝑝𝑢𝑡 = 2.0 ∗ sin(𝜔 ∗ 𝑡) + 𝐺𝐹(0, 𝜎𝑖𝑛𝑝𝑢𝑡) 

• Output to the NN (Output noise): 

𝑂𝑢𝑡𝑝𝑢𝑡 = NN  output + 𝐺𝐹(0, 𝜎𝑜𝑢𝑡𝑝𝑢𝑡) 

• In the morphology (morphological noise): 

𝐿𝑒𝑔 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 = Leg size + 𝐺𝐹(0, 𝜎𝑚𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑦) 

As the objective of these perturbations is to analyze the effects 

of noise over the learning process and compare it to the effects of 

growth-based morphological development, the noise was applied 

to the quadruped and NAO during the same number of generations 

as in the case of growth for each morphology. After that, learning 

continues without noise, similar to what happens in the growth 

experiment. 

 

2.5 Search Trajectory Networks 

Search Trajectory Networks (STN) is a graph-based tool to 

analyze and visualize the behavior of population-based algorithms. 

It describes the trajectory of the best solution over time. The 

visualizations and metrics of STNs provide an additional tool for 

analyzing algorithm behavior that may provide insights that are not 

captured by the traditional representation of the fitness value during 

 
1 https://github.com/GII/morphological_development/tree/main/publications/2023_gecco 

the evolutionary process and the statistical analysis. We utilize 

STNs to study the trajectory described by the best solution obtained 

in each generation on 5 independent and randomly selected 

executions for each experiment, with the aim of evaluating the 

exploration ability of the learning algorithm in each of the 

experimental conditions and to relate it with the performance 

obtained. To that end, for each best solution we consider its fitness 

value and the genotype. The genotype includes the topology of the 

NN in the following form: 

 

𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = [𝑠𝑛1, 𝑡𝑛1, 𝑤𝑣1 … 𝑠𝑛𝑛, 𝑡𝑛 𝑛, 𝑤𝑣𝑛] 

 

Where: 

• sn: means “source neuron” and it is the neuron from 

which the synapsis for that weight starts. 

• tn: means “target neuron” and it is the neuron where 

the synapsis for that weight ends. 

• wv: means “weight value” and it is the value of the 

weight that connects two neurons. 

• And 1, 2, …n, is the number of weights in the NN.  

In order to visualize the graphs, we used the Fruchterman-

Reignold [29] implementation. In it, a node represents an area of 

the search space of similar genomes from a predefined partitioning 

of the search space. Edges represent interconnections among nodes. 

The size of the nodes is proportional to how many times a node is 

reached by the algorithm. More information about how the STNs 

are constructed can be found in the articles of the authors of this 

type of representation [22], [30]. 

3 RESULTS 

In this section, we present the results of the learning process for 

each kind of experiment and the statistical analysis of the 

performance achieved at the end of learning, as well as the STN 

study for each morphology and experiment. The source code for the 

different experiments can be found in the repository1. 

3.1 Learning process 

The top rows of Figures 3 and 4 represent in solid and dashed 

lines, the median of the best individual obtained in each 

independent execution for each type of experiment, being the 

growth experiment the blue one, and the black dashed lines 

represent the no development case. The red, orange, and green lines 

correspond to the different noise experiments, which are performed 

over the fixed and no development morphology. The shaded areas 

represent the interval between the 25 and 75 percentile. The bottom 

row displays the statistical results of the no development 

Table II. Sigma values for the perturbations generated at 

the input and output of the NN and in the morphology. 
 Input Output Morphology 

𝝈𝟏 1 0.3 0.01 

𝝈𝟐 2 0.5 0.1 

𝝈𝟑 3 1 0.2 
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experiment and the growth one compared to the noisy experiments 

at the end of learning. Each boxplot corresponds to the median and 

the 75 and 25 quartiles. The whiskers are extended to 1.5 of the 

interquartile range (IQR). Single points are values that are out of 

the IQR. The statistical analysis has been carried out using the two-

tailored Mann-Whitney U test [31]. We consider a p-value of 0.05 

as the significant value for accepting or rejecting the null 

hypothesis (the compared samples are equal). The numerical values 

of the statistical analysis have been replaced by asterisks for 

simplicity. A Bonferroni correction [32] has been applied to the 

statistical analysis. 

Regarding the quadruped morphology, we can first observe how 

growth-based morphological development has outperformed the no 

development case, achieving a p-value of 0.01 (Figure 3 bottom 

row) and during the learning period, the median of the growth 

experiment is always above the median of the no development 

experiment (Figure 3 top row). On the other hand, Figure 3A and 

Figure 3D show how the application of noise at the input of the NN 

has only improved learning with respect to the no development case 

in one instance (σ=2 with p-value of 0.0221), being irrelevant when 

compared to growth. The application of noise to the morphology 

has been shown to be favorable for learning in the case of σ=0.1, 

compared to the no development case (Figure 3E, p-value of 

0.0117). On the other hand, noise with σ=0.01 has been shown to 

be detrimental for learning when compared to growth (p-value of 

0.0048). Finally, the application of noise at the outputs of the NN 

has turned out to be irrelevant compared to the no development case 

(Figure 3F). On the other hand, it was clearly detrimental when 

compared to growth, presenting p-values of 0.0085, 0.0001 and 

0.0002. For this group of experiments, it can be observed how as 

the level of the perturbation increases, the performance of the noise 

experiments decreases, indicating that such strong perturbations in 

the controller-morphology relationship in morphological 

development negatively influence learning, as other authors have 

mentioned before [8], [9]. 

Regarding the NAO morphology, the growth experiment clearly 

outperforms the no development one, as  displayed in the bottom 

row of Figure 4, achieving a p-value of 7 ∗ 10−5. The input noise 

(Figure 4J) and morphological noise (Figure 4K) experiments have 

been shown to be irrelevant for learning compared to the no 

development case. On the other hand, the application of noise at the 

output of the NN (Figure 4N) has been clearly detrimental, leading 

to the worst results, (p-values of 3 ∗ 10−5, 0.0003 and 0 for the 

σ=0.3, σ=0.5 and σ=1 experiments respectively) especially during 

the noise phase, where there is not any value different from 0. These 

results show how perturbations in the output of the NN, or at least 

such a level of perturbations, are not suitable exploratory 

techniques in this case. On the other hand, growth-based 

morphological development has been shown to improve the 

learning results of all the noise experiments, although with different 

levels of significance. 

Once these results were obtained, we asked what would happen 

if we combined growth with noise, because in the previous cases, 

growth was performed without any perturbation of the system. To 

answer that, we selected the already deployed growth experiment 

for each morphology and combined it with the noise strategy that 

 

    
Figure 3. Quadruped morphology. Top: Results of the learning process during 300 generations for each experiment. Bottom: Statistical 

analysis at generation 300 comparing the growth experiment (blue) and the no development one (grey) with the other experiments. Left: 

Noise addition at the input of the NN. Middle: Noise addition to the leg size. Right: Noise addition at the output of the NN.  
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gave the best results for each type of noise experiment in the 

quadruped morphology. We have selected the morphology of the 

quadruped as a reference because it is the one in which there are 

noise experiments that outperform the no development ones. Thus, 

the selected noise experiments are: σ=2 for the noise input 

experiment, σ=0.1 for the noisy morphology experiment, and σ=0.3 

for the noise output experiment. Results (Figure 5) show how the 

combination of growth and noise did not outperform  the 

experiment that considered only growth. Nevertheless, in the 

quadruped morphology, such a combination has yielded good 

results in the case of input noise and growth when compared to the 

no development experiment. In this case, a higher statistical 

difference is achieved instead of only growth (p-value of 10−5 for 

the combined experiment against 0.01 for only growth). For the 

NAO morphology, the combination of noise and growth has 

yielded mixed results. On the one hand, the combination of output 

noise and growth has been detrimental to learning, which seems to 

indicate that the addition of noise at the outputs of the NN is clearly 

detrimental to learning in view of the results of Figure 4L and 

Figure 5P. On the other hand, the combination of growth and noise 

in the morphology has led to better results than applying only noise 

compared to the no development case. For the rest of the 

experiments, there is no improvement using the combination of 

both optimization strategies. 

3.2 Search Trajectory Network representation 

Figure 6 represents the STN representation of 5 independent 

executions for each experiment: growth, no development, and noise 

for each morphology and Table III displays the number of nodes 

and edges for each STN representation. From Figure 6 and Table 

III, we can observe how the same type of experiment shares 

similarities between morphologies. On the one hand, the 

experiment with the lowest number of nodes and edges for each 

morphology is the no-development experiment (Figure 6R and 

Figure 6U). On the other hand, the experiment with the highest 

      

     
Figure 4. Bipedal morphology. Top: Results of the learning process during 300 generations for each experiment. Bottom: Statistical analysis 

at generation 300 comparing the growth experiment (blue) and the no development one (grey) to the other experiments. Left column: Noise 

addition at the input of the NN. Middle column: Noise addition in the leg size. Right column: Noise addition at the output of the NN. 
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Figure 5. Results combining the growth-based morphological development with the noise ones. M and N figures: experiments with the 

quadruped morphology. O and P figures: experiments with the bipedal morphology. 
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number of nodes is the noise experiment (Figure 6S and Figure 6V), 

being the growth experiment the intermediate one (Figure 6Q and 

Figure 6T). Comparing the number of nodes of the growth and 

noise experiment against the no development one, we can observe 

how the number of nodes increases to 193% and 258% respectively 

for the quadruped, and 236% and 213% for the NAO. Furthermore, 

the STNs of Figure 6R, and Figure 6U show more than one node 

that represents the best solution. However, by paying attention to 

the figure, these different best nodes are connected by blue lines, 

meaning that the fitness value of the best solutions does not change. 

That is, in those experiments, the same fitness value can be 

achieved by different genomes. Finally, the no-development 

experiments of each morphology are characterized by displaying 

only blue and grey lines, while the growth and the noise one also 

display green lines, indicating a reduction in the fitness value. 

4 DISCUSSION 

In the quadruped morphology, noise has been shown to be 

relevant for learning only when it is applied at the input of the 

neural network, and to the morphology (Figure 3A and Figure 3B). 

For the NAO morphology, noise has not been shown to be 

favorable compared to no development, and only relevant when it 

was combined with growth (Figure 5P). 

These differences among the noise, the no development, and the 

growth experiments can be explained using the different STN 

representations. The STNs of the no-development experiments for 

each morphology display the lowest number of nodes and edges. 

That is, for the same number of generations the no developmental 

experiments result in the lowest degree of disparity in the solutions 

found, i.e. least exploration. The NAO experiment displays a higher 

disparity than the quadruped motivated by two reasons: 1) STNs 

are highly influenced by the number of weights of each NN: we 

have 16 weights at the beginning of learning for the quadruped and 

56 for NAO, which facilitates the emergence of different genomes 

during the neuroevolutionary process. 2) The “needle in the 

haystack problem” [33] that finding solutions in the NAO problem 

seems to represent, often leads to a higher exploration of the search 

space, due to the lack of good guides to exploit. Such a low level 

of disparity in the population can be related to the learning 

stagnation displayed in Figure 3 and Figure 4.  

For the quadruped the highest number of nodes and edges are 

found in the noise experiment. For the NAO, it was found for the 

growth experiment. This means that the solutions found of these 

experiments display the highest level of disparity during learning, 

i.e. highest level of exploration. Such a level of disparity is well 

represented in Figure 6T and Figure 6V, in which the program that 

automatically performs the STN representation is not able to 

manage such a number of nodes and edges as easily as it manages 

them for the other experiments. This level of disparity is motivated 

by the continuous change of the morphology that noise and growth 

produce, meaning an increment or decrement of the fitness values, 

something that does not happen in the case of no development, 

where the fitness value is always improved or preserved (as there 

is elitism in the evolutionary algorithm). This level of disparity can 

be comparable to an increase in the exploratory behavior of the 

learning algorithm to avoid stagnation in local optima. 

Thus, although growth and noise experiments display a high 

level of exploration of the solution space, it seems that the 

relevance of the growth-based experiments cannot be only 

attributable to the fact that it increases the exploratory behavior, 

otherwise, we would presume that both learning strategies should 

present similar results. Then, there must be other causes that make 

morphological development improve learning. These causes can be 

explained by observing the differences between learning with the 

NAO and the quadruped. These differences are motivated by the 

complexity of learning to walk with each morphology. As 

mentioned, learning to walk with the NAO is much more difficult 

             Quadruped        Biped 

 

 

 
Figure 6. Search Trajectory Network representations using 

growth, no development and morphological noise experiments 

(σ=1) for 5 runs. Red dots indicate the best genomes for the group 

of experiments, the yellow ones, the starting genomes and the grey 

ones, intermediate genomes. Green arrows indicate a reduction of 

the fitness value between genomes, and blue arrows indicate that 

the fitness value is maintained between genomes.  
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than learning with the quadruped. Due to its morphological 

configuration, the quadruped presents an intrinsic stability that the 

NAO does not display. Such higher stability allows the quadruped 

to be more tolerant to system perturbations. These perturbations 

may decrease the efficiency of the gaits obtained, reducing the 

fitness values, but it is harder to find perturbations that cause 

dramatic falls leading to the impossibility of continuing walking. 

However, in the NAO, small perturbations can cause the failure of 

the walking behavior, ending up with the NAO sprawled on the 

ground. Hence, the NAO requires a more precise controller to 

displace that permits always preserving its upright position, 

something that seems to be very challenging in view of the results. 

As a consequence, the application of noise to the robot 

controller or morphology, which implies random perturbations, 

does not lead to the effect that growth based morphological 

development produces. Growth implies a controlled development 

of the morphology from an initial and more stable morphology, that 

presumably simplifies learning at the beginning, to the final and 

more unstable one. This simplification of learning at the beginning 

is translated into a modification of the solution space, allowing a 

greater number of valid and informative solutions than can be 

obtained when considering the final morphology. During the 

developmental phase, the robot morphology gradually changes, 

smoothly modifying the characteristics of the solution space, 

progressively reducing the number of solutions available. Such 

gradual modification of the solution space sets a "developmental 

path" that guides the optimal solution throughout the different 

developmental stages, from easier stages to more complex ones. 

That is, at the beginning, morphological development helps to 

widen the attractor basin of the optimal solutions, facilitating the 

task of the learning algorithm to find it. As development takes place, 

the attractor basin is gradually reduced, and the developmental 

process itself pushes the learning algorithm toward the optimum of 

each developmental stage, until reaching the optimum in the final 

one, setting the “developmental path”. Furthermore, during 

development the solution space is constantly changing, helping to 

prevent learning stagnation. Such guidance does not happen when 

just adding noise. Due to the gaussian noise selected, exploration is 

increased around the parameters that define the genotype of the 

individual in the solution space, but it suffers from the lack of the 

“developmental path” set by growth and its gradual modifications 

of the solution space, hypothesis supported by the work of Naya-

Varela et al. [15]. Hence, the developmental process is less relevant 

in the case of the quadruped due to its intrinsically more stable 

morphology, simplifying the task of finding optimal solutions in 

the solution space, but it is determinant in the NAO due to the 

difficulty of finding the attractor basing of optimal solutions in the 

“needle in a haystack” problem we have. 

Furthermore, we consider that learning strategies based on the 

variation of the morphology such as morphological wobbling [17] 

or adaptive morphology [34] should not be considered 

morphological development strategies. We argue that those 

strategies suffer from the lack of guide that the learning algorithm 

has in a morphological development process, with all the nuances 

that it involves. Hence, those optimization strategies which also 

reported good results would be closer to the characteristics of our 

noise experiments, in terms of increasing exploration and avoiding 

stagnation. 

5 CONCLUSIONS 

Throughout this article, we have studied the implications of 

growth-based morphological development as a strategy to improve 

learning by means of analyzing its exploration ability and guidance 

of the learning algorithm. We have found how different results are 

obtained for a quadruped and a NAO biped morphology. Such 

disparity is related to the difficulty of the problem each morphology 

has to face and with the characteristics of their solution spaces. 

Learning to walk with the quadruped is easier than learning to walk 

with the biped, which implies that optimal solutions in the solution 

space are harder to find for the latter. In this context, the quadruped 

is more amenable to perturbations that may lead to finding areas in 

the solution space that improve the performance of standard 

learning. However, due to the higher complexity of learning to walk 

with the NAO, the system is more rigid to external perturbations, 

which have not led to any improvement over the standard learning 

experiment. Only growth development and also its combination 

with noise have led to good results, motivated by the induced 

stability of the growth process and the simplification of the solution 

space that it obtains for the initial morphologies. Furthermore, the 

exploration ability of both strategies has been displayed in the STN 

representation. It was shown how, although both strategies have led 

to increasing the exploration of the solution space compared to the 

reference experiment, increasing only exploration and avoiding 

stagnation is not enough to improve performance. Other nuances, 

related to choosing an appropriate path from a simpler and more 

stable morphology, allowing a precise exploration of gaits, to the 

final one, as provided by growth in this case, are required. 
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Table III. Number of nodes and edges obtained for each 

kind of experiment for the 5 independent executions. The no 

development experiment has been abbreviated by “No dev.” 
  Nodes Edges 

 

Quadruped 

No dev. 333 421 

Growth 643 749 

Noise 858 964 

NAO 

No dev. 502 632 

Growth 1187 1253 

Noise 1067 1141 
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