4,483 research outputs found

    Global Functional Atlas of \u3cem\u3eEscherichia coli\u3c/em\u3e Encompassing Previously Uncharacterized Proteins

    Get PDF
    One-third of the 4,225 protein-coding genes of Escherichia coli K-12 remain functionally unannotated (orphans). Many map to distant clades such as Archaea, suggesting involvement in basic prokaryotic traits, whereas others appear restricted to E. coli, including pathogenic strains. To elucidate the orphans’ biological roles, we performed an extensive proteomic survey using affinity-tagged E. coli strains and generated comprehensive genomic context inferences to derive a high-confidence compendium for virtually the entire proteome consisting of 5,993 putative physical interactions and 74,776 putative functional associations, most of which are novel. Clustering of the respective probabilistic networks revealed putative orphan membership in discrete multiprotein complexes and functional modules together with annotated gene products, whereas a machine-learning strategy based on network integration implicated the orphans in specific biological processes. We provide additional experimental evidence supporting orphan participation in protein synthesis, amino acid metabolism, biofilm formation, motility, and assembly of the bacterial cell envelope. This resource provides a “systems-wide” functional blueprint of a model microbe, with insights into the biological and evolutionary significance of previously uncharacterized proteins

    An evolutionary and functional assessment of regulatory network motifs.

    Get PDF
    BackgroundCellular functions are regulated by complex webs of interactions that might be schematically represented as networks. Two major examples are transcriptional regulatory networks, describing the interactions among transcription factors and their targets, and protein-protein interaction networks. Some patterns, dubbed motifs, have been found to be statistically over-represented when biological networks are compared to randomized versions thereof. Their function in vitro has been analyzed both experimentally and theoretically, but their functional role in vivo, that is, within the full network, and the resulting evolutionary pressures remain largely to be examined.ResultsWe investigated an integrated network of the yeast Saccharomyces cerevisiae comprising transcriptional and protein-protein interaction data. A comparative analysis was performed with respect to Candida glabrata, Kluyveromyces lactis, Debaryomyces hansenii and Yarrowia lipolytica, which belong to the same class of hemiascomycetes as S. cerevisiae but span a broad evolutionary range. Phylogenetic profiles of genes within different forms of the motifs show that they are not subject to any particular evolutionary pressure to preserve the corresponding interaction patterns. The functional role in vivo of the motifs was examined for those instances where enough biological information is available. In each case, the regulatory processes for the biological function under consideration were found to hinge on post-transcriptional regulatory mechanisms, rather than on the transcriptional regulation by network motifs.ConclusionThe overabundance of the network motifs does not have any immediate functional or evolutionary counterpart. A likely reason is that motifs within the networks are not isolated, that is, they strongly aggregate and have important edge and/or node sharing with the rest of the network

    Comparative Analysis of the Saccharomyces cerevisiae and Caenorhabditis elegans Protein Interaction Network

    Get PDF
    Protein interaction networks aim to summarize the complex interplay of proteins in an organism. Early studies suggested that the position of a protein in the network determines its evolutionary rate but there has been considerable disagreement as to what extent other factors, such as protein abundance, modify this reported dependence. We compare the genomes of Saccharomyces cerevisiae and Caenorhabditis elegans with those of closely related species to elucidate the recent evolutionary history of their respective protein interaction networks. Interaction and expression data are studied in the light of a detailed phylogenetic analysis. The underlying network structure is incorporated explicitly into the statistical analysis. The increased phylogenetic resolution, paired with high-quality interaction data, allows us to resolve the way in which protein interaction network structure and abundance of proteins affect the evolutionary rate. We find that expression levels are better predictors of the evolutionary rate than a protein's connectivity. Detailed analysis of the two organisms also shows that the evolutionary rates of interacting proteins are not sufficiently similar to be mutually predictive. It appears that meaningful inferences about the evolution of protein interaction networks require comparative analysis of reasonably closely related species. The signature of protein evolution is shaped by a protein's abundance in the organism and its function and the biological process it is involved in. Its position in the interaction networks and its connectivity may modulate this but they appear to have only minor influence on a protein's evolutionary rate.Comment: Accepted for publication in BMC Evolutionary Biolog

    Transcriptional Regulation: a Genomic Overview

    Get PDF
    The availability of the Arabidopsis thaliana genome sequence allows a comprehensive analysis of transcriptional regulation in plants using novel genomic approaches and methodologies. Such a genomic view of transcription first necessitates the compilation of lists of elements. Transcription factors are the most numerous of the different types of proteins involved in transcription in eukaryotes, and the Arabidopsis genome codes for more than 1,500 of them, or approximately 6% of its total number of genes. A genome-wide comparison of transcription factors across the three eukaryotic kingdoms reveals the evolutionary generation of diversity in the components of the regulatory machinery of transcription. However, as illustrated by Arabidopsis, transcription in plants follows similar basic principles and logic to those in animals and fungi. A global view and understanding of transcription at a cellular and organismal level requires the characterization of the Arabidopsis transcriptome and promoterome, as well as of the interactome, the localizome, and the phenome of the proteins involved in transcription

    Deciphering Protein–Protein Interactions. Part II. Computational Methods to Predict Protein and Domain Interaction Partners

    Get PDF
    Recent advances in high-throughput experimental methods for the identification of protein interactions have resulted in a large amount of diverse data that are somewhat incomplete and contradictory. As valuable as they are, such experimental approaches studying protein interactomes have certain limitations that can be complemented by the computational methods for predicting protein interactions. In this review we describe different approaches to predict protein interaction partners as well as highlight recent achievements in the prediction of specific domains mediating protein-protein interactions. We discuss the applicability of computational methods to different types of prediction problems and point out limitations common to all of them

    Inferring modules of functionally interacting proteins using the Bond Energy Algorithm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-homology based methods such as phylogenetic profiles are effective for predicting functional relationships between proteins with no considerable sequence or structure similarity. Those methods rely heavily on traditional similarity metrics defined on pairs of phylogenetic patterns. Proteins do not exclusively interact in pairs as the final biological function of a protein in the cellular context is often hold by a group of proteins. In order to accurately infer modules of functionally interacting proteins, the consideration of not only direct but also indirect relationships is required.</p> <p>In this paper, we used the Bond Energy Algorithm (<it>BEA</it>) to predict functionally related groups of proteins. With <it>BEA </it>we create clusters of phylogenetic profiles based on the associations of the surrounding elements of the analyzed data using a metric that considers linked relationships among elements in the data set.</p> <p>Results</p> <p>Using phylogenetic profiles obtained from the Cluster of Orthologous Groups of Proteins (<it>COG</it>) database, we conducted a series of clustering experiments using <it>BEA </it>to predict (upper level) relationships between profiles. We evaluated our results by comparing with <it>COG's </it>functional categories, And even more, with the experimentally determined functional relationships between proteins provided by the <it>DIP </it>and <it>ECOCYC </it>databases. Our results demonstrate that <it>BEA </it>is capable of predicting meaningful modules of functionally related proteins. <it>BEA </it>outperforms traditionally used clustering methods, such as <it>k</it>-means and hierarchical clustering by predicting functional relationships between proteins with higher accuracy.</p> <p>Conclusion</p> <p>This study shows that the linked relationships of phylogenetic profiles obtained by <it>BEA </it>is useful for detecting functional associations between profiles and extending functional modules not found by traditional methods. <it>BEA </it>is capable of detecting relationship among phylogenetic patterns by linking them through a common element shared in a group. Additionally, we discuss how the proposed method may become more powerful if other criteria to classify different levels of protein functional interactions, as gene neighborhood or protein fusion information, is provided.</p

    Comparative genomic analysis of novel Acinetobacter symbionts : A combined systems biology and genomics approach

    Get PDF
    Acknowledgements This work was supported by University of Delhi, Department of Science and Technology- Promotion of University Research and Scientific Excellence (DST-PURSE). V.G., S.H. and U.S. gratefully acknowledge the Council for Scientific and Industrial Research (CSIR), University Grant Commission (UGC) and Department of Biotechnology (DBT) for providing research fellowship.Peer reviewedPublisher PD

    Computational inference and experimental validation of the nitrogen assimilation regulatory network in cyanobacterium Synechococcus sp. WH 8102

    Get PDF
    Deciphering the regulatory networks encoded in the genome of an organism represents one of the most interesting and challenging tasks in the post-genome sequencing era. As an example of this problem, we have predicted a detailed model for the nitrogen assimilation network in cyanobacterium Synechococcus sp. WH 8102 (WH8102) using a computational protocol based on comparative genomics analysis and mining experimental data from related organisms that are relatively well studied. This computational model is in excellent agreement with the microarray gene expression data collected under ammonium-rich versus nitrate-rich growth conditions, suggesting that our computational protocol is capable of predicting biological pathways/networks with high accuracy. We then refined the computational model using the microarray data, and proposed a new model for the nitrogen assimilation network in WH8102. An intriguing discovery from this study is that nitrogen assimilation affects the expression of many genes involved in photosynthesis, suggesting a tight coordination between nitrogen assimilation and photosynthesis processes. Moreover, for some of these genes, this coordination is probably mediated by NtcA through the canonical NtcA promoters in their regulatory regions

    Phylogenetic correlations can suffice to infer protein partners from sequences

    Get PDF
    International audienceDetermining which proteins interact together is crucial to a systems-level understanding of the cell. Recently, algorithms based on Direct Coupling Analysis (DCA) pairwise maximum-entropy models have allowed to identify interaction partners among paralogous proteins from sequence data. This success of DCA at predicting protein-protein interactions could be mainly based on its known ability to identify pairs of residues that are in contact in the three-dimensional structure of protein complexes and that coevolve to remain physicochemically complementary. However, interacting proteins possess similar evolutionary histories. What is the role of purely phylogenetic correlations in the performance of DCA-based methods to infer interaction partners? To address this question, we employ controlled synthetic data that only involve phylogeny and no interactions or contacts. We find that DCA accurately identifies the pairs of synthetic sequences that share evolutionary history. While phylogenetic correlations confound the identification of contacting residues by DCA, they are thus useful to predict interacting partners among paralogs. We find that DCA performs as well as phylogenetic methods to this end, and slightly better than them with large and accurate training sets. Employing DCA or phylogenetic methods within an Iterative Pairing Algorithm (IPA) allows to predict pairs of evolutionary partners without a training set. We further demonstrate the ability of these various methods to correctly predict pairings among real paralogous proteins with genome proximity but no known direct physical interaction, illustrating the importance of phylogenetic correlations in natural data. However, for physically interacting and strongly coevolving proteins, DCA and mutual information outperform phylogenetic methods. We finally discuss how to distinguish physically interacting proteins from proteins that only share a common evolutionary history

    Frequent Pattern Finding in Integrated Biological Networks

    Get PDF
    Biomedical research is undergoing a revolution with the advance of high-throughput technologies. A major challenge in the post-genomic era is to understand how genes, proteins and small molecules are organized into signaling pathways and regulatory networks. To simplify the analysis of large complex molecular networks, strategies are sought to break them down into small yet relatively independent network modules, e.g. pathways and protein complexes. In fulfillment of the motivation to find evolutionary origins of network modules, a novel strategy has been developed to uncover duplicated pathways and protein complexes. This search was first formulated into a computational problem which finds frequent patterns in integrated graphs. The whole framework was then successfully implemented as the software package BLUNT, which includes a parallelized version. To evaluate the biological significance of the work, several large datasets were chosen, with each dataset targeting a different biological question. An application of BLUNT was performed on the yeast protein-protein interaction network, which is described. A large number of frequent patterns were discovered and predicted to be duplicated pathways. To explore how these pathways may have diverged since duplication, the differential regulation of duplicated pathways was studied at the transcriptional level, both in terms of time and location. As demonstrated, this algorithm can be used as new data mining tool for large scale biological data in general. It also provides a novel strategy to study the evolution of pathways and protein complexes in a systematic way. Understanding how pathways and protein complexes evolve will greatly benefit the fundamentals of biomedical research
    corecore