710 research outputs found

    The Structural Annotations of The Mir-122 Non-Coding RNA from The Tilapia Fish (Oreochromis niloticus)

    Get PDF
    Tilapia (Oreochromis niloticus) is an important fisheries commodity. Scientific efforts have been done to increase its quality. One of them is staging a premium diet such as a fat-enriched diet. The transcriptomics approach is able to provide the signatures of the diet outcomes by observing the micro(mi)RNA signature in transcriptional regulation. Hence, it was found that the availability of mir-122 is essential in the regulation of a high-fat diet in tilapia. However, this transcriptomics signature is lacking structural annotations and the complete interaction annotations with its silencing(si)RNA. RNAcentral website was navigated for the latest annotation of mir-122 from tilapia and other species as a comparison. MEGA X was employed to comprehend the miRNA evolutionary repertoire. The RNA secondary structure prediction tools from the Vienna RNA package and the RNA tertiary structure prediction tools from simRNA and modeRNA are secured with default parameters. The HNADOCK tools were leveraged to observe the interaction between mir-122 and its siRNA. The post-processing was conducted with the Chimera visualization tool. The secondary and tertiary structure of the mir-122 and its siRNA could be elucidated, docked, and visualized. In this end, further effort to develop a comprehensive molecular breeding tool could be secured with the structural annotation information

    XplorSeq: A software environment for integrated management and phylogenetic analysis of metagenomic sequence data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advances in automated DNA sequencing technology have accelerated the generation of metagenomic DNA sequences, especially environmental ribosomal RNA gene (rDNA) sequences. As the scale of rDNA-based studies of microbial ecology has expanded, need has arisen for software that is capable of managing, annotating, and analyzing the plethora of diverse data accumulated in these projects.</p> <p>Results</p> <p>XplorSeq is a software package that facilitates the compilation, management and phylogenetic analysis of DNA sequences. XplorSeq was developed for, but is not limited to, high-throughput analysis of environmental rRNA gene sequences. XplorSeq integrates and extends several commonly used UNIX-based analysis tools by use of a Macintosh OS-X-based graphical user interface (GUI). Through this GUI, users may perform basic sequence import and assembly steps (base-calling, vector/primer trimming, contig assembly), perform BLAST (Basic Local Alignment and Search Tool; <abbrgrp><abbr bid="B1">1</abbr><abbr bid="B2">2</abbr><abbr bid="B3">3</abbr></abbrgrp>) searches of NCBI and local databases, create multiple sequence alignments, build phylogenetic trees, assemble Operational Taxonomic Units, estimate biodiversity indices, and summarize data in a variety of formats. Furthermore, sequences may be annotated with user-specified meta-data, which then can be used to sort data and organize analyses and reports. A document-based architecture permits parallel analysis of sequence data from multiple clones or amplicons, with sequences and other data stored in a single file.</p> <p>Conclusion</p> <p>XplorSeq should benefit researchers who are engaged in analyses of environmental sequence data, especially those with little experience using bioinformatics software. Although XplorSeq was developed for management of rDNA sequence data, it can be applied to most any sequencing project. The application is available free of charge for non-commercial use at <url>http://vent.colorado.edu/phyloware</url>.</p

    The Study of Hepatitis B Virus Using Bioinformatics

    Get PDF
    Hepatitis refers to the inflammation of the liver. A major cause of hepatitis is the hepatotropic virus, hepatitis B virus (HBV). Annually, more than 786,000 people die as a result of the clinical manifestations of HBV infection, which include cirrhosis and hepatocellular carcinoma. Sequence heterogeneity is a feature of HBV, because the viral-encoded polymerase lacks proof-reading ability. HBV has been classified into nine genotypes, A to I, with a putative 10th genotype, “J,” isolated from a single individual. Comparative analysis of HBV strains from various geographic regions of the world and from different eras can shed light on the origin, evolution, transmission and response to anti-HBV preventative, and treatment measures. Bioinformatics tools and databases have been used to better understand HBV mutations and how they develop, especially in response to antiviral therapy and vaccination. Despite its small genome size of ~3.2 kb, HBV presents several bioinformatic challenges, which include the circular genome, the overlapping open reading frames, and the different genome lengths of the genotypes. Thus, bioinformatics tools and databases have been developed to facilitate the study of HBV

    Evolution of ribonuclease H genes in prokaryotes to avoid inheritance of redundant genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A theoretical model of genetic redundancy has proposed that the fates of redundant genes depend on the degree of functional redundancy, and that functionally redundant genes will not be inherited together. However, no example of actual gene evolution has been reported that can be used to test this model. Here, we analyzed the molecular evolution of the ribonuclease H (RNase H) family in prokaryotes and used the results to examine the implications of functional redundancy for gene evolution.</p> <p>Results</p> <p>In prokaryotes, RNase H has been classified into RNase HI, HII, and HIII on the basis of amino acid sequences. Using 353 prokaryotic genomes, we identified the genes encoding the RNase H group and examined combinations of these genes in individual genomes. We found that the RNase H group may have evolved in such a way that the RNase HI and HIII genes will not coexist within a single genome – in other words, these genes are inherited in a mutually exclusive manner. Avoiding the simultaneous inheritance of the RNase HI and HIII genes is remarkable when RNase HI contains an additional non-RNase H domain, double-stranded RNA, and an RNA-DNA hybrid-binding domain, which is often observed in eukaryotic RNase H1. This evolutionary process may have resulted from functional redundancy of these genes, because the substrate preferences of RNase HI and RNase HIII are similar.</p> <p>Conclusion</p> <p>We provide two possible evolutionary models for RNase H genes in which functional redundancy contributes to the exclusion of redundant genes from the genome of a species. This is the first empirical study to show the effect of functional redundancy on changes in gene constitution during the course of evolution.</p

    Structural analysis of the spiroplasma virus, SpV4: implications for evolutionary variation to obtain host diversity among the Microviridae

    Get PDF
    AbstractBackground: Spiroplasma virus, SpV4, is a small, non-enveloped virus that infects the helical mollicute Spiroplasma melliferum. SpV4 exhibits several similarities to the Chlamydia phage, Chp1, and the Coliphages α3, φK, G4 and φX174. All of these viruses are members of the Microviridae. These viruses have isometric capsids with T = 1 icosahedral symmetry, cause lytic infections and are the only icosahedral phages that contain single-stranded circular DNA genomes. The aim of this comparative study on these phages was to understand the role of their capsid proteins during host receptor recognition.Results: The three-dimensional structure of SpV4 was determined to 27 å resolution from images of frozen-hydrated particles. Cryo-electron microscopy (cryo-EM) revealed 20, ∼54 å long, ‘mushroom-like’ protrusions on the surface of the capsid. Each protrusion comprises a trimeric structure that extends radially along the threefold icosahedral axes of the capsid. A 71 amino acid portion of VP1 (the SpV4 capsid protein) was shown, by structural alignment with the atomic structure of the F capsid protein of φX174, to represent an insertion sequence between the E and F strands of the eight-stranded antiparallel β-barrel. Secondary structure prediction of this insertion sequence provided the basis for a probable structural motif, consisting of a six-stranded antiparallel β sheet connected by small turns. Three such motifs form the rigid stable trimeric structures (mushroom-like protrusions) at the threefold axes, with hydrophobic depressions at their distal surface.Conclusions: Sequence alignment and structural analysis indicate that distinct genera of the Microviridae might have evolved from a common primordial ancestor, with capsid surface variations, such as the SpV4 protrusions, resulting from gene fusion events that have enabled diverse host ranges. The hydrophobic nature of the cavity at the distal surface of the SpV4 protrusions suggests that this region may function as the receptor-recognition site during host infection

    GenBank

    Get PDF
    GenBank® is a comprehensive database that contains publicly available nucleotide sequences for more than 300 000 organisms named at the genus level or lower, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole genome shotgun (WGS) and environmental sampling projects. Most submissions are made using the web-based BankIt or standalone Sequin programs, and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the European Molecular Biology Laboratory Nucleotide Sequence Database in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through the NCBI Entrez retrieval system, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bi-monthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, begin at the NCBI homepage: www.ncbi.nlm.nih.gov

    Systematic analysis of mRNA 5' coding sequence incompleteness in Danio rerio: an automated EST-based approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>All standard methods for cDNA cloning are affected by a potential inability to effectively clone the 5' region of mRNA. The aim of this work was to estimate mRNA open reading frame (ORF) 5' region sequence completeness in the model organism <it>Danio rerio </it>(zebrafish).</p> <p>Results</p> <p>We implemented a novel automated approach (<it>5'_ORF_Extender</it>) that systematically compares available expressed sequence tags (ESTs) with all the zebrafish experimentally determined mRNA sequences, identifies additional sequence stretches at 5' region and scans for the presence of all conditions needed to define a new, extended putative ORF. Our software was able to identify 285 (3.3%) mRNAs with putatively incomplete ORFs at 5' region and, in three example cases selected (<it>selt1a</it>, <it>unc119.2</it>, <it>nppa</it>), the extended coding region at 5' end was cloned by reverse transcription-polymerase chain reaction (RT-PCR).</p> <p>Conclusion</p> <p>The implemented method, which could also be useful for the analysis of other genomes, allowed us to describe the relevance of the "5' end mRNA artifact" problem for genomic annotation and functional genomic experiment design in zebrafish.</p> <p>Open peer review</p> <p>This article was reviewed by Alexey V. Kochetov (nominated by Mikhail Gelfand), Shamil Sunyaev, and Gáspár Jékely. For the full reviews, please go to the Reviewers' Comments section.</p

    A three-way comparative genomic analysis of Mannheimia haemolytica isolates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mannhemia haemolytica </it>is a Gram-negative bacterium and the principal etiological agent associated with bovine respiratory disease complex. They transform from a benign commensal to a deadly pathogen, during stress such as viral infection and transportation to feedlots and cause acute pleuropneumonia commonly known as shipping fever. The U.S beef industry alone loses more than one billion dollars annually due to shipping fever. Despite its enormous economic importance there are no specific and accurate genetic markers, which will aid in understanding the pathogenesis and epidemiology of <it>M. haemolytica </it>at molecular level and assist in devising an effective control strategy.</p> <p>Description</p> <p>During our comparative genomic sequence analysis of three <it>Mannheimia haemolytica </it>isolates, we identified a number of genes that are unique to each strain. These genes are "high value targets" for future studies that attempt to correlate the variable gene pool with phenotype. We also identified a number of high confidence single nucleotide polymorphisms (hcSNPs) spread throughout the genome and focused on non-synonymous SNPs in known virulence genes. These SNPs will be used to design new hcSNP arrays to study variation across strains, and will potentially aid in understanding gene regulation and the mode of action of various virulence factors.</p> <p>Conclusions</p> <p>During our analysis we identified previously unknown possible type III secretion effector proteins, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated sequences (Cas). The presence of CRISPR regions is indicative of likely co-evolution with an associated phage. If proven functional, the presence of a type III secretion system in <it>M. haemolytica </it>will help us re-evaluate our approach to study host-pathogen interactions. We also identified various adhesins containing immuno-dominant domains, which may interfere with host-innate immunity and which could potentially serve as effective vaccine candidates.</p

    The ABC transporter gene family of Caenorhabditis elegans has implications for the evolutionary dynamics of multidrug resistance in eukaryotes

    Get PDF
    BACKGROUND: Many drugs of natural origin are hydrophobic and can pass through cell membranes. Hydrophobic molecules must be susceptible to active efflux systems if they are to be maintained at lower concentrations in cells than in their environment. Multi-drug resistance (MDR), often mediated by intrinsic membrane proteins that couple energy to drug efflux, provides this function. All eukaryotic genomes encode several gene families capable of encoding MDR functions, among which the ABC transporters are the largest. The number of candidate MDR genes means that study of the drug-resistance properties of an organism cannot be effectively carried out without taking a genomic perspective. RESULTS: We have annotated sequences for all 60 ABC transporters from the Caenorhabditis elegans genome, and performed a phylogenetic analysis of these along with the 49 human, 30 yeast, and 57 fly ABC transporters currently available in GenBank. Classification according to a unified nomenclature is presented. Comparison between genomes reveals much gene duplication and loss, and surprisingly little orthology among analogous genes. Proteins capable of conferring MDR are found in several distinct subfamilies and are likely to have arisen independently multiple times. CONCLUSIONS: ABC transporter evolution fits a pattern expected from a process termed 'dynamic-coherence'. This is an unusual result for such a highly conserved gene family as this one, present in all domains of cellular life. Mechanistically, this may result from the broad substrate specificity of some ABC proteins, which both reduces selection against gene loss, and leads to the facile sorting of functions among paralogs following gene duplication
    corecore