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Abstract 

The secondary structure of a 16S rRNA molecule is a graphical, two dimensional 
representation used by molecular biologists in determining evolutionary relationships 
between different organisms. By comparing two secondary structures, scientists can 
obtain knowledge of how 'related' one species of bacteria may be to another species 
[OLSE 1986]. To date, there is no widely used computer program for secondary structure 
creation because these programs generally do not work well with large sets of sequence 
data. In other words, these programs work adequately on small RNA fragments, but tend 
to create incorrect or unwieldy secondary structures on larger data sets. Thus, the 
molecular biologist is forced to create the secondary structure by hand, which is a 
monotonous and time consuming task. The gRNAid program is a tool implemented for 
the Macintosh that will aid in the creation of secondary structures . Rather than trying to 
calculate the molecular bonding in order to form the structure, gRNAid looks at a known 
secondary structure and uses it as a template to create a new secondary structure for 
another organism. 



Chapter 1 
Introduction 

The sequence or primary structure of a 16S rRNA molecule consists of approximately 
1600 bases, or nucleotides, where each base is either an A (adenine), U (uracil), G (guanine), or C 
( cytosine). Within the cell, this molecule is folded in three dimensions. This is referred to as the 
tertiary structure of the molecule. Both secondary and tertiary structure are held together primarily 
by hydrogen bonds. A Watson-Crick bond is formed when A-U or G-C nucleotides pair together. 
A weaker bond, referred to as the noncannonical base pair, is formed when G-U or G-A 
nucleotides bond together, where G-U is stronger than G-A. Although the tertiary structure is 
useful for studying RNA function, this three dimensional structure is complex to obtain and 
difficult to analyze [ZUK2 1989]. Thus, a flattened, two-dimensional model of the molecule, 
referred to as the secondary structure, is used most often in analysis. A secondary structure for the 
bacteria Escherichia coli, from now on referred to as E. coli, is shown in Figure 1-1. Notice that 
the bonding information from the tertiary structure is preserved in the secondary structure. 

Research in the area of secondary structure generation can be divided into two main areas. 
The first attempts to generate these structures were by the calculation of the minimum free energy 
chemical bonding that occurs in the molecule, thus simulating the way that the molecule folds in its 
natural environment. This approach will be referred to throughout this paper as the thermodynamic 
method. The second method relies on the fact that much of the structure of the 16S rRNA 
molecule is conserved from molecule to molecule. That is, if you compare any two 16S rRNA 
molecules, approximately 60 percent of the secondary structure for these molecules will be same 
[GUTE 1985]. As you compare molecules that are more evolutionarily related to each other, this 
percentage will increase and more of the structure of the molecule will be conserved . This 
approach will be referred to as the phylogenetic method of secondary structure creation [LE 1989]. 

gRNAid In A Nutshell 
The gRNAid program takes the phylogenetic approach to the determination of secondary 

structure models. That is, it uses a known 16S rRNA secondary structure as a template when 
generating an unknown structure. To create the new structure, gRNAid requires two files as input: 
a template file that represents a known secondary structure, and an alignment file the characterizes 
the aligned sequence of some organism for which we wish to generate the new structure. The 
sequence data in the alignment file is aligned with the sequence data of the organism represented by 
the template file. The gRNAid program associates screen coordinate and bonding information 
from the template file with nucleotides in the alignment file (formally referred to as the mapping 
process.) When gRNAid cannot map screen positioning information to a nucleotide in the 
alignment file, the nucleotide is considered to be 'hidden', and it is the responsibility of the user to 
manually map any hidden nucleotides to screen positions . 

The best secondary structures are produced when the organisms representing the alignment 
and template files are closely related to each other. For example, assume we are trying to find the 
structure of a 16S rRNA molecule that contains 1550 nucleotides. Different results will be 
obtained depending on the template file we select. If the two bacteria are conserved in g]% of their 
structure, then only 3%, or approximately 45 nucleotides, will not be mapped to screen locations. 
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Put another way, 1505 nucleotides will be mapped to screen positions. Therefore, we would only 
have to edit the 45 nucleotides before completing the structure. However, if we select a template 
where the two bacteria are only 90% conserved, 155 nucleotides will have to be manually mapped 
to screen positions. 

gRNAid And Secondary Structure Creation 
To put the process of secondary structure inference in perspective, let's go through an 

example of how gRNAid would be used in the molecular biologist's lab. We will walk through an 
example of the steps that a molecular biologist would go through to create the secondary structure 
for the bacteria called Anacystis nidulans, from now on ref erred to as Anacystis. 

First, the organism would be obtained by, for example, visiting Waldo Lake and taking a 
sample at 50 feet below the surface. The sample would be brought back to the lab where we 
would determine the sequence of the Anacystis 16S rRNA molecule. The first 300 bases of 
Anacystis are presented in Figure 1-2. 

Anacystis AAAAUGGAGAGUUUGAUCCUGGCUCAGGAUGAACGCUGGCGGCGUGCUUA 
Nidulans ACACAUGCAAGUCGAACGGGCUCUUCGGAGCUAGUGGCGGACGGGUGAGU 

AACGCGUGAGAAUCUGCCUACAGGACGGGGACAACAGUUGGAAACGACUG 
CUAAUACCCGAUGUGCCGAGAGGUGAAACAUUUAUGGCCUGUAGAUGAGC 
UCGCGUCUGAUUAGCUAGUUGGUGGGGUAAGGGCCUACCAAGGCGACGAU 
CAGUAGCUGGUCUGAGAGGAUGAUCAGCCACACUGGGACUGAGACACGGC 

Figure 1-2 First 300 bases of Anacystis nidulans sequence 

Once the primary structure of Anacystis has been determined, we would select another 
bacterium for which we already know the secondary structure. We would use this known 
secondary structure as a template to create the secondary structure for Anacystis. Recall that at 
least 60 percent of the structure of any two 16S rRNA is conserved. It has been hypothesized that 
at least 90 percent of the secondary structure is conserved when comparing the secondary 
structures of any two bacteria. This percentage increases for bacteria that are closely related. The 
field that studies evolutionary relationships between organisms is called phylogeny [OLSE 1986]. 
The results of phylogenetic studies produce graphs that show evolutionary relationships between 
organisms, and these results can be used to come up with good estimates of the optimal bacterial 
secondary structure to select as a template. In this example, we will select E. coli because it is 
closely related to Anacystis, and its secondary structure is known. 

Next, we would go through the process of aligning the Anacystis sequence with the E. coli 
sequence, which means to textually line up the structurally equivalent domains of the two 
structures nucleotide by nucleotide. An example segment of E. coli aligned with Anacystis is 
shown in Figure 1-3. The reason for alignment is twofold: 1) there are nucleotides in the 
Anacystis segment that are not found (genetic deletions) in the homologous E. coli segment, and 2) 
there are nucleotides in the Anacystis that have been inserted between nucleotides in the E. coli 
segment. These insertions and deletions denote the areas where the Anacystis secondary structure 
that will be structurally different than the E. coli secondary structure. For example, an insertion of 
100 bases in the Anacystis sequence might denote an area where a new hairpin loop is to be 
appended in the Anacystis secondary structure. A detailed explanation of the process of obtaining 
an alignment is beyond the scope of this paper. See <reference> for more detailed information on 
alignment. [ Anyone HELP! What is a good reference to the process of alignment?] 
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) There are several additional points to make about the alignment in Figure 1-3. First, notice 
the thousand, hundreds, tens and units row. Every nucleotide in the E.coli sequence is numbered 
from 1 to 1562. Nucleotides in Anacystis that align with nucleotides in E. coli are considered to be 
at the same nucleotide number. When no nucleotides in the Anacystis sequence map to nucleotides 
in the E. coli sequence, a deletion is denoted by placing the dash character in the sequence of 
Anacystis, as shown in Figure 1-3. When there are insertions in Anacystis, dashes are placed in 
the E. coli sequence in order to make room for the inserted nucleotides in the Anacystis sequence. 

thousand 
hundreds 

tens 
units 

E. coli 
Anacystis 

1111111111111111 1111222222222222222222222 
8888888888999999 9999000000000011111111112 
0123456789012345 6789012345678901234567890 
UAACGUCGCAAGACCA-AAGAGGGGGACCUUCGGGCCUCUUG 
UGUGCCGA--GAGGUGAAACAUU--------------UAUGG 

1 ' + ' _ Insertion 

Deletions 

thousand 
hundreds 

tens 
units 

E. coli 
Anacystis 

Figure 1-3 Alignment of Anacystis with E. coli 

Once an alignment is complete, gRNAid is used to create the Anacystis secondary 
structure. The gRNAid program takes data from the known E. coli secondary structure and maps 
it onto the nucleotides provided by the Anacystis alignment to produce a partial secondary structure 
for Anacystis. Figure 1-4 shows a diagram of the mapping process for a segment of the Anacystis 
aligned sequence. The topmost box in the figure consists of an Anacystis sequence segment that 
has been aligned with E. coli, the middle box shows the known E. coli secondary structure or 
template, and the bottom box contains the result of mapping the aligned Anacystis sequence onto 
the E. coli secondary structure. The bold G nucleotide in the bottom box indicates an area where 
there are hidden nucleotides. That is, if you look at position 195 in the aligned Anacystis segment, 
you will notice that there is an additional A inserted after the G. There is not an E. coli nucleotide 
that corresponds with this inserted A. Thus, it is up to the user to associate screen positioning and 
bonding information with this hidden A. When deletions are encountered in the Anacystis 
sequence, no nucleotides are mapped to physical locations, and the secondary structure tends to 
look choppy. The two areas of deletions in the bottom box can be arranged to form hairpin loops. 
Figure 1-5 shows the correct Anacystis secondary structure once insertions and deletions have 
been accounted for in this nucleotide segment. The process of mapping nucleotides to create 
secondary structure will be explained in Chapter 2. 
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thousand 
hundreds 

tens 
units 

Anac:ystis 

11111111111111 11112222222 
88888888999999 99990011112 
01234567012345 67890167890 
UGUGCCGAGAGGUGAAACAUUUAUGG 

Aligned segment of Anacystis 

thousand 
hundreds 

tens 
units 

Anac:ystis 

Known E. coli secondary structure 

Deletions 

Anacystis partial secondary structure 

Figure 1-4 The gRNAid process of secondary structure creation 
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Figure 1-5 Complete Anacystis secondary structure segment 

Related Work 
In Gouy et. al. [GOUY 1987], three types of secondary structure prediction algorithms 

were outlined: 

1. Combinatorial algorithms calculate all helices that can be formed by a particular 
sequence and then compute secondary structure by selecting the helices with the optimal 
minimum free energy fold. 

2. Recursive algorithms determine structure by breaking the alignment into fragments and 
then finding the structure of each of the smaller fragments. Minimum free energy 
calculations are performed on small sequence fragments, and these smaller segments 
are combined to obtain the structure for the larger segments. 

3. Heuristic algorithms make assumptions about the free energy of folding, and as a 
result, they do not always find the correct secondary structure. 

Notice that the phylogenetic method used by gRNAid is not included in the above list, although it 
was briefly mentioned in the Gouy's paper. In Le et. al [LE 1989], secondary structure algorithms 
were generalized into two groups, the first of which is a superset of the algorithms mentioned 
above: 

1. The thermodynamic programming method, where the prediction of the secondary 
structure is based on thermodynamic data. 

2. Phylogenetic comparison, where secondary structures are created using conserved 
regions of the structure as a template. 
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) 
There are two programs that are currently available on the Macintosh that work with 

secondary structure data. The first is called Mulfold [ZUKl 1989, JAEl 1989, JAE2 1989], and it 
is based on the original version called MFOLD that was originally implemented on VMS/VAX. 
Mulfold is limited to working with 300 bases, so its use on the Macintosh is limited (note that the 
VAX version works with up to 2000 bases.) Mulfold predicts secondary structures via free energy 
minimization, and can output the structure in either a graphical or textual format. The graphical 
format is limited in its usefulness in that it displays the structure in typewriter-style. Figure 1-6 
shows an example of a typewriter format secondary structure that was created for 5S RNA wheat 
embryo. 

FOLDING BASES 1 TO 120 OF whtrrast 
ENERGY = -27.2 

10 
--1 CATA 

GGATGCGAT 
CTTACGTTG 

CCA 
110 

20 30 
-TAR AC -- CC 

CCA GCAC AGC CGGA TC A 
GGT CGTG TTG GCCT AG T 

T CGAA AA CA AC 
60 50 40 

70 80 
AGTAGTA T G 

GCGAG CTAGGA GG T 
TGCTC GGTCCT CC G 

-CTGAAG - A 
100 90 

Figure 1-6 Wheat embryo secondary structure produced in typewriter format 

Mulfold can also save data in a textual form, ref erred to as connect format, that can be 
imported into another Macintosh based program called Loop Viewer [GILB 1990]. For example, 
the result of saving the wheat embryo 5S RNA into a connect file and displaying the structure with 
Loop Viewer is shown in Figure 1-7. Loop Viewer can be used to display structures and save them 
in a PICT file format that can be used by other drawing applications such as MacDraw®. 
However, Loop Viewer cannot at this time be used to generate or edit secondary structures. 
Loop Viewer was to be a subset of another application called LoopDLoop, which was to allow 
secondary structure editing features, but as of this writing, the status of LoopDLoop is unknown . 
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Figure 1-7 Wheat embryo secondary structure displayed with Loop Viewer 

The Mulfold tool required approximately 32 minutes to predict the wheat embryo sequence 
of 120 bases. The authors claim that the time that Mulfold takes to predict a secondary structure is 
on the order of N3, where N is the number of nucleotides in the sequence. Thus, it comes as no 
surprise that it took Mulfold 3 hours and 53 minutes to compute the structure for a 297 base 
segment of E.coli. Actually, Mulfold computed 6 different secondary structure fragments during 
this time. Of these 6, the best structure is shown in Figure 1-8, where the fragment on the left 
represents the structure predicted by Mulfold and the structure on the right is the correct structure 
for the given segment of E. coli. Although there is a similarity between the two structures in the 
figure, there are some obvious differences between the two. The fact that Mulfold did not produce 
a completely correct secondary structure is probably not attributable to the fact that only a fragment 
of the E. coli data was provided. 
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MFold Actual 

Figure 1-8 Left: E. coli fragment predicted by Mulf old. Right: Actual 
structure of the same E. coli fragment. 

Most of the secondary structure programs available today are based only on the 
thermodynamic method of computing secondary structure. The problem that these programs must 
solve is twofold: 1) predict the secondary structure, and 2) correctly display the secondary 
structure. Thus, even though a program might be able to generate correct secondary structure data 
(such as the connect file generated by Mulfold), the display of this data may consist of secondary 
structure segments that overlap. For example, another structure produced by Mulfold for the E. 
coli fragment is shown in Figure 1-9. Notice that a portion of the structure overlaps, making it 
difficult to read. As more complex secondary structures are generated, the display of these 
structures becomes more complicated, and sometimes the result of displaying the structure is so 
snarled that it is easier to create the structure by hand than try to untangle the mess. Because 
gRNAid uses a template file to associate nucleotides with screen positions, this problem is 
effectively avoided. 

Road Map For The Remainder Of This Paper 
The next chapter delves into the details of how gRNAid generates a secondary structure, 

and covers topics such as nucleotide numbering, the mapping process, and the importance of the 
alignment and template files. Chapter 3 looks under the hood and provides implementation level 
details, such as algorithms and data structures used in the gRNAid program. Chapter 4 is a User's 
Manual and provides a reference to the functionality provided by gRNAid. Chapter 5 presents the 
conclusions of this research effort and also a section detailing further areas of study. Finally, 
Appendix A contains a tutorial that provides step-by-step instruction on how to use gRNAid. 
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Figure 1-9 Programs that use the thermodynamic method sometimes have 
problems with displaying secondary structure once it is predicted. 
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Chapter 2 
Design 

This chapter gives an overview of the process gRNAid utilizes to create a new secondary 
structure. First, the concepts behind the alignment file, nucleotide numbering, and template file are 
discussed. Then the basic algorithm behind secondary structure creation is introduced, followed 
by short discussions on gRNAid editing capabilities and template file management. The chapter is 
concluded with a discussion of the iterative nature of secondary structure creation. 

The Alignment File 
Alignment is the process of identifying and lining up the homologous nucleotides of two 

molecules. The alignment file contains a partially or fully aligned sequence of the gene for which 
we wish to find the secondary structure. Ideally, the sequence in the alignment file has been 
correctly aligned with the sequence that represents the template file. A fragment of the alignment 
file for the bacteria E. coli is shown in Figure 2-1. 

thousand 111111111111111111111111111111111111111111111111111111111111 
hundreds 222222222222222222222222222222222222222222222222222222222222 

tens 000000000111111111122222222223333333333444444444455555555556 
units 123456789012345678901234567890123456789012345678901234567890 

E.coli AUCAUGGCCCUUACGACCAGGGCUACACACGUGCUACAAUGGCGCAUACAAAGAGAAGCG 

Figure 2-1 E. coli alignment fragment 

There are three pieces of information that the alignment file must contain: 

1) The sequence of the organism represented by the alignment file 
2) The nucleotide numbering information, relative to the E. coli molecule 
3) Alignment information, in the form of insertions and deletions 

When nucleotides in another sequence do not line up with nucleotides in E. coli, insertions 
and deletions appear in the alignment file. An aligned fragment of the Anacystis nidulans sequence 
is shown in Figure 2-2, where an insertion in the Anacystis sequence appears between nucleotide 
numbers 195 and 196. The inserted base does not align with any part of the E.coli sequence, so 
no nucleotide number is associated with it. 

thousand 
hundreds 11111111111111 111122222222222 

tens 88888888999999 999900111122222 
units 01234567012345 678901678901234 

An.nidul UGUGCCGAGAGGUGAAACAUUUAUGGCCUG 

Figure 2-2 Anacystis nidulans alignment fragment 

The sequence fragment shown Figure 2-3 shows an example of deletions, which are 
denoted by dashes (-) in the Anacystis sequence . Because gRNAid is only interested in the 
Anacystis data, deletions in the Anacystis sequence can be removed from the file as shown in 
Figure 2-4. It is preferable to use alignment files without the deletions characters (Figure 2-4) 
because if the dashes are in the sequence , then they will show up in the secondary structure created 
by gRNAid and cannot be removed . 
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thousand 
hundreds 1111111111111111111 

tens 666667777777777888888888899999999990000000000111111111 
units 567890123456789012345678901234567890123456789012345678 

An.nidul AACGGGCUCUU------------------CGGAGCUAGUGGCGGACGGGUGAGU 

Figure 2-3 Deletions in the Anacystis sequence 

thousand 
hundreds 1111111111111111111 

tens 666667777779999990000000000111111111 
units 567890123454567890123456789012345678 

An.nidul AACGGGCUCUUCGGAGCUAGUGGCGGACGGGUGAGU 

Figure 2-4 Anacystis alignment with the deletion characters removed 

Nucleotide Numbering 

The nucleotide numbering scheme is used to give conserved regions unique identifiers. 
That is, nucleotides that form the same structure or are at the same physical location should be 
given the same identifier. The nucleotide numbering scheme used for E. coli is considered to be 
the standard for all bacteria. Nucleotides in the E.coli sequence are numbered consecutively from 
1 to 1542, with the 1 at the 5' end and the 1542 at the 3' end (Figure 1-1). Since we already 
know the structure of E.coli, any other sequence that contains nucleotides numbered in the 1 to 
1542 range 'inherits' the same structure as E.coli. The alignment process can also be defined as 
trying to assign nucleotide numbers to a sequence with the goal of finding the conserved regions 
between two bacteria 

The nucleotide numbering scheme provided in both the alignment and template files is the 
key ingredient gRNAid uses for secondary structure creation. In the alignment file, many of the 
rows contain a nucleotide number with a maximum of 4 digits (thousand, hundreds, tens, units). 
For example, A is the first nucleotide in the sequence shown in Figure 2-4 and is at nucleotide 
number 65. Notice that nucleotide numbers are not provided in the alignment file when there is an 
insertion, such as the A shown in Figure 2-2. When there are deletions in the alignment, the 
nucleotide number should be completely removed from the alignment file, as shown in Figure 2-4. 

The nucleotide numbering scheme used by the template file is slightly different than that 
used by the alignment file. Each nucleotide number is considered to be in decimal. For example, 
nucleotide 10 in the alignment file would be nucleotide 10.0 in the template file. The use of 
decimals within the nucleotide number gives gRNAid more information when creating secondary 
structures. Nucleotides at areas of insertion can now be assigned their own unique nucleotide 
numbers. For example, in Figure 2-5, areas of insertion relative to E. coli are shown by nucleotide 
numbers 14.1 and 14.2. This extra nucleotide numbering information can be used be gRNAid to 
create the secondary structure in these areas of insertion. 
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The Template File 
The template file contains information about the known secondary structure for a particular 

bacterium. Once a complete template file has been created, it can be used to predict secondary 
structures for other bacteria. A segment of a template file for some bacteria from nucleotide 
number 10.0 through nucleotide number 25.0 is shown in Figure 2-5. 

Nucleotide 
Number Base 

t • • 10.0 514 492 A 24.0 
11.0 522 492 G 23.0 
12.0 528 493 u 22. 0 
13.0 535 493 U 21.0 
14.0 542 498 U 
14. 1 545 498 u 
14.2 547 498 G Bonding 
15.0 549 499 G nformation 
16.0 555 493 A 

17.0 557 486 U 918.0 
18.0 552 480 C 917.0 
19.0 547 474 A 916.0 
20.0 541 469 u 915.0 
21. 0 535 4 74 G 13.0 
22.0 528 4 75 G 12.0 
23.0 522 475 C 11.0 
24.0 514 475 u 10.0 
25.0 507 475 C 9.0 

t i Screen (X,Y) 
Coordinates 

Figure 2-5 Template file segment for some bacteria 

There are four important pieces of information included in the template file: 

1. Nucleotide number (in decimal) 
2. X,Y screen coordinates 
3. Base 
4. The nucleotide ID of the base bonded to, if needed 

Each nucleotide in the template file has a unique nucleotide number associated with it, 
including nucleotides at areas of insertion. The screen coordinates give the two-dimensional 
location of the nucleotide in some coordinate system. The base can be any alphanumeric character, 
although the base will usually be an A, U, G, or C. The fourth piece of information in the template 
file contains bonding information, which only exists for nucleotides that form a base-pair. For 
example, in the first line of the template file in Figure 2-5, nucleotide 10.0 bonds with nucleotide 
24.0. Similarly, it is indicated that nucleotide 24.0 bonds with 10.0, giving the template file a 
'symmetrical' characteristic in its bonding information . 
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) Secondary Structure Creation 
The key to the creation of the secondary structure is in the nucleotide number. Because the 

alignment file does not assign nucl_eotide ID's to all bases, it is up to gRNAid to do so. If a 
nucleotide ID has not been assigned to a base, then the new ID is the sum of the previous ID plus 
0.1, as shown in Figure 2-6. 

1028.1 

1026.2 
1028.2 

1026.1 1028.3 

1111111 11 1111111111 
0000000 00 0000000000 
2222222 22 2333333333 
0123456 78 9012345678 
GACGUCCCCUUCGGGGCAGAGUGA 

Figure 2-6 Assigning ID's to inserted nucleotides 

When creating a new secondary structure, gRNAid requires information from both the 
alignment and template files. The sequence in the alignment file should be aligned with the 
sequence representing the template file, or, in the very least, aligned with the E.coli sequence. 
The goal is to create a secondary structure for the organism represented by the alignment file. 
When a nucleotide number is in both the alignment and template files, the screen positioning and 
bonding information from the template file can be associated with the base in the alignment file, as 
shown in Figure 2-7. In the figure, nucleotide 10 in the alignment file maps to nucleotide 10.0 in 
the template file. Thus, the Gin the alignment file can be associated with a screen position 
(514,492) and can be bonded with nucleotide 24.0. 

t ► .1.0.0 514 492 A 24.0 
thousand 11.0 522 492 G 23.0 
hundreds 12.0 528 493 U 22.0 

tens 11111 13.0 535 493 u 21.0 
units 01234 14.0 542 498 u 

sequence GUAAC 

Alignment File Template File 

Figure 2-7 Mapping nucleotide 10 with data in the template file 
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The algorithm for mapping the aligned sequence onto positioning and bonding information 

can be described by the following three items: 

1. If a nucleotide ID is found in both the template and alignment files, then the screen 
positioning and bonding information from the template file can be mapped onto the 
nucleotide in the alignment file (see 1 in Figure 2-8.) A nucleotide ID of 16.1 is 
associated with the A in the alignment file, and there exists a 16.1 in the template file. 
Thus, information from the template file can be mapped to the A in the alignment file. 

2. If a nucleotide ID in the alignment file cannot be found in the template file, then 
gRNAid cannot associate any screen positioning or bonding information with it (see 2 
in Figure 2-8.) There is no 17.1 or 17.2 in the template file, so coordinate and bond 
information cannot be associated with either of these nucleotides, and as a result, these 
nucleotides are considered to be invisible, or hidden. The process of dealing with 
hidden nucleotides is discussed later in this section. 

3. If a nucleotide ID in the template file cannot be found in the alignment file, ignore it (see 
3 in Figure 2-8). There is a nucleotide 15.0 in the template file, but no nucleotide 15 in 
the alignment file. This extraneous information from the template file can be 
disregarded. 

thousand 

111111 ,i~ 10.0 514 492 A 24.0 

hundreds 11.0 522 492 G 23.0 

tens 12.0 528 493 u 22.0 

units 012346 7 8 13.0 535 493 U 21.0 

sequence GUAACGAUGCC 14.0 542 498 u 

t 15.0 545 500 c~ 
16.0 545 505 u 

► 16.1 545 510 C 3 
CD 17.0 545 515 G 

18.0 545 519 A 

Alignment File Template File 

Figure 2-8 Demonstration of the mapping algorithm 

In the above algorithm, the bonding information is only mapped if both of the bonds in the 
base pair are available. For example, the template file in Figure 2-8 has nucleotide 10.0 bonded 
with nucleotide 24.0. Although nucleotide 10 exists in the alignment file, it is possible that 
nucleotide 24 does not exist. Thus, the bonding information from the template file cannot be used. 
Also, only legal Watson-Crick (A-U,G-C) and noncannonical (GoA,G•U) bonds will be formed. 
For example, assume that nucleotides 10 and 24 exist in the both the alignment and template files. 
If the bases in the pair do not form a legal bond, then the bonding information will be discarded. 

Recall from item 2 in the algorithm that some nucleotides may not be associated with screen 
positions and are considered hidden. It is up to the user to map these hidden nucleotides to screen 
positions. It is gRNAid's responsibility to provide access to these hidden nucleotides. If there is a 
hidden nucleotide in the structure, the last visible nucleotide in the alignment sequence will be used 
to graphically denote an area of insertion. For example, in number 2 of Figure 2-8, the last visible 
nucleotide is 17, and will be used to show that there are hidden nucleotides that follow. 
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In gRNAid, bold nucleotides represent areas where hidden nucleotides exist, as shown in 
Figure 2-9. In the figure, the bold A and U represent areas where hidden nucleotides can be 
found. It is the responsibility of the user to eventually associate screen positions with these hidden 
nucleotides. This mapping process is performed by clicking the mouse button at the desired 
location in the window for each hidden nucleotide. More details on this mapping process can be 
found in the Mapping Hidden Nucleotides section of Chapter 4. 

□ B.subtil BJ 

Figure 2-9 Hidden nucleotides appear after bold nucleotides 

Editing Capabilities 
It is not the intent of gRNAid to provide powerful editing capabilities such as those found 

in MacDraw® and in other drawing programs. Rather, the goal is to quickly produce a secondary 
structure for analysis. Since gRNAid produces a secondary structure with hidden nucleotides, it is 
important to provide a minimal set of editing features to create a correct template file. The set of 
editing features currently provided by gRNAid are selection, drag, and base-pair operations. 
Nucleotides within the structure can be selected and dragged. Bonds cannot be selected or dragged 
by themselves and are considered to be owned by the base-pair that forms the bond. 
Consequently, the only way to directly select and drag a bond is through the owning base-pair. 
The forming and breaking of bonds are the base-pair operations available within gRNAid. 

Template File Management 
The beauty of gRNAid is that newly created secondary structures are saved as template 

files, and thus can be used in the generation of other secondary structures. Within gRNAid, the 
template file can be used in two ways: 1) as a secondary structure, and 2) as a file used in the 
creation of other secondary structures. For the first usage, a template file can be saved to represent 
the correct secondary structure of a particular organism. Within gRNAid, the structure can be 
opened, viewed, edited, and saved again. For the second usage, the template is an important 
ingredient in the creation of a new secondary structure. 

Template files can be saved at any time, even when there are hidden nucleotides in the 
secondary structure. At save time, any nucleotides that do not have screen coordinate information 
are given the special coordinate@,@. This allows gRNAid to easily recognize the hidden 
nucleotides when reading the file from disk. This also means that template files containing hidden 
nucleotides could be used in the secondary structure generation process, which is not 
recommended. 
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Structure Creation As An Iterative Process 

The gRNAid program assumes that the alignment file is correct, especially in primary 
structure. The process of alignment and secondary structure generation should be an iterative one: 

1. A partially aligned sequence is saved into an alignment file. 
2. A secondary structure is created with gRNAid. 
3. The user notes areas (if any) where the alignment is incorrect in the secondary structure. 
4. If there are errors in the alignment file, correct them and go back to step 1. 

During the early stages of creating a model for a new structure, emphasis is on creating a 
correct alignment file. The user should not spend time editing the secondary structure, since 
changes will be lost on the next iteration. Once a sequence has been fully aligned, the secondary 
structure can be edited. It is important that the alignment file be correct in the final iteration because 
of gRNAid's dependence on the file during the creation of a new secondary structure. Usage of 
incorrect alignment files may result in an incorrect template file, which in tum can lead to incorrect 
results during the creation of a new secondary structure. 

To produce a correct template file, the secondary structure must never become corrupted by 
exchanges between bases or other alterations which are physically and chemically impossible . The 
need for this can be seen by an example. While editing the secondary structure in gRNAid, what if 
the user swapped an A with nucleotide ID 32 with an A that has a nucleotide ID of 37? Even 
though this might seem like a harmless mistake, each and every nucleotide within gRNAid is 
considered to be unique through its nucleotide ID. Therefore, when this swap occurs, the template 
file will be corrupted because both of the A's will be associated with the wrong screen and bonding 
information. Thus, if the template is ever used to generate new secondary structures, nucleotides 
that have ID's 32 and 37 will be mapped incorrectly. In all practicality, the process of creating a 
correct template file will also be iterative in nature. However, once the problems have been ironed 
out of a template, it becomes a powerful tool to assist in the creation of new secondary structures. 
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Chapter 3 
Implementation Details 

This chapter covers details pertaining to the implementation of gRNAid. It is not the intent 
of this paper to explain C++, Object Oriented Programming (OOP), and Macintosh Toolbox 
concepts, and as such this chapter assumes that the reader has some knowledge in these areas. 

Programming Environment 
The gRNAid program was implemented with the Macintosh Programmers Workshop 

(MPW) C++ programming language, which is based on AT&T CFront 2.0. The reasons behind 
selecting this language were threefold. First, the C++ language facilitates the use of the Object 
Oriented Programming (OOP) paradigm, which would (hopefully) make program development and 
maintenance easier. Second, a simple Macintosh-based class hierarchy that implemented much of 
the standard Macintosh user interface behavior was available [WEST 1990] and could be used as a 
building block for implementing the gRNAid application. Third, it seemed a benefit to learn more 
about the OOP paradigm and the C++ language, since much work in academia and industry 
involves these skills. 

Class Hierarchy 
The gRNAid program uses 29 classes, 7 of which were provided by Elements ofC++ 

Macintosh Programming by Dan Weston [WEST 1990]. These 7 classes are TApplication, 
TDocument, TList, TScrollDoc, TDocList, TLink, and Tlterator. This section provides a short 
paragraph on each of the 29 classes and details how each class is used within gRNAid. Note that 
this section does not provide an extensive description of each class, but rather touches on its 
highlights. Most of the class types start with the letter T because this is the standard Apple® 
method for naming classes. 

Nucleotide Classes 

Each nucleotide in the secondary structure is represented by a TNuc object. A nucleotide 
knows how to draw itself and contains data pertaining to its location on the screen, its visibility, a 
reference to the nucleotide it is bonded to, and a nucleotide ID . Nucleotide numbers are 
represented by the class TNuclD, which consists of overloaded arithmetic and comparison 
operators. Only TNuc and a select few other classes have access to the TNuclD class. 

TNuc TNuclD 

Figure 3-1 Nucleotide and ID classes 
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Bond Classes 

All bonds are also represented by a class, and because there is more than one type of bond, 
the class hierarchy depicted in Figure 3-2 was created. A bond can either be Watson-Crick or 
noncannonical, and noncannonical bonds can be further divided into strong or weak types. 
The TBond abstract class is at the top of the hierarchy and handles all generic bond data and 
functions. For example, all bonds reference the two nucleotides that form the base pair, and this 
information is stored in the TBond class. Most other methods within TBond are pure virtual. That 
is, a stub is provided so that the subclasses can fill in the details, such as for the Draw() method, 
since each type of bond is drawn differently on the screen. 

The TWatsonCrick class provides specific details pertaining to Watson-Crick bonds. Since 
Watson-Crick bonds are graphically represented as straight lines, this class is responsible for 
keeping track of the two screen coordinates that define that line. TWatsonCrick objects also have 
methods to calculate these two points based on the location of the two owning TNuc objects that 
form the base pair. Details of this calculation are covered in more detail in the Algorithms section 
of this chapter. 

The TNonCannonical class is another abstract class that implements the basic behavior of 
noncannonical bonds. All noncannonical bonds are represented graphically as small circles. Each 
circle is represented by a bounding rectangle because rectangles are parameters to the Macintosh 
Toolbox circle drawing routines. Keeping track of this rectangle is the responsibility of the 
TNonCannonical class. This class also provides methods that calculate this rectangle based on the 
coordinates of the two owning TNuc objects that form the bond. More information on calculating 
this noncannonical rectangle is provided in the Algorithms section of this chapter. 

The TStrongNonCannonical and TWeakNonCannonical classes only differ in their drawing 
methods: one draws a hollow circle (o) and the other draws a solid black circle(•). All other data 
and behavior for these two classes are inherited from their ancestors. 

TBond 

/~ 
TWatsonCrick TNonCannonical 

/~ 
TStrongNonCannonical TWeakNonCannonical 

Figure 3-2 Class hierarchy for the bond 

List classes 

List classes are the main data structures used to store and access information used in 
gRNAid. The class hierarchy representing all lists within gRNAid is shown in Figure 3-3. The 
TList class is a generic class that implements a simple linked list. This class will store any object 
and the only operations available are for the insertion and retrieval of objects in the list. It is up to 
child classes to enhance the behavior of the list when necessary . There are two other classes, 
TLink and Tlterator, that are available as utilities to the TList class. The TLink class, which is 
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used internally by the TList and its subclasses but is not visible to any other class, implements the 
links that build the linked list. The Tlterator class, which is available to all classes that operate on a 
list, is used as an aid for iterating through the linked list. 

The TDocList class is used internally by the TApplication class (discussed later) to keep 
track of all open files and windows in the application. It inherits most of its functionality from the 
parent class. The TBondList class is responsible for keeping track of all bonds in the secondary 
structure and as well as managing all bonding routines. The TSelectedList class keeps track of all 
nucleotides that have been selected in the secondary structure window . This class provides 
routines to drag and select nucleotides as well as drawing all nucleotides in their highlighted state. 

The TNucList class is responsible for the data that makes up the secondary structure and is 
considered to be a major data structure within the gRNAid implementation. TNucList stores all 
nucleotides in the secondary structure and also contains a reference to TBondList and TSelectedList 
objects. Most higher level classes only know about a TNucList object, and if an event occurs 
pertaining to bonds or selected objects, the TNucList object delegates the task to the appropriate 
class object. Thus, the TNucList class is considered to be more of a management class. Details 
behind the TNucList data structure will be provided later in this chapter . 

TLink 
Tlterator 

TDocList 

TList 

I\ 
TNucList TBondList 

Figure 3-3 List and list utility classes 

Document Classes 

TSelectedList 

Data from the application is handled by a generic class called TDocument. Because data is 
usually displayed in a window in some type of format, the TDocument class handles generic 
windowing operations such as displaying, dragging, or moving a window. The class hierarchy 
showing all subclasses of TDocument is shown in Figure 3-4. The TDocument class is more 
concerned with the user interface aspect of data management than anything else, and it is up to 
subclasses to provide more detailed operations, such as reading and writing files. 

Another generic document class is TScrollDoc, which provides functionality for a 
scrollable window. TScrollDoc uses much of the inherited windowing behavior from TDocument 
and overrides other TDocument methods to obtain its scrolling behavior. 

TStructureDoc is a high level class that is mainly responsible for the data in the secondary 
structure window. It inherits much of the classic Macintosh user interface behavior from 
TScrollDoc and TDocument, and thus concentrates on features unique to the gRNAid application. 
TStructureDoc does not know about TNuc, TBond, TBondList, and TSelectedList classes, and so 
events related to any secondary structure element are delegated to the TNucList object, which is a 
member of the TStructureDoc class. When a TStructureDoc does handle an event, it is usually 
related to the display of the secondary structure within the window. 
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· The TPICTDoc class is used within gRNAid to save and print PICT files. TPICTDoc class 
was meant to be a generic class, and therefore contains functionality to read PICT files and display 
the graphics in a scrollable window. However, gRNAid only uses the printing and saving related 
routines from the class and does not use any of the display related routines. 

The T AlignDoc class implements low level alignment file reading code and places the 
alignment data in a TNucList object. Although it is derived from TDocument, the T AlignDoc class 
never directly displays data in a window. Because TDocument assumes that data is to be placed in 
a window once it is read, the T AlignDoc class must override several file-reading related methods. 

The TTemplateDoc class is a utility class that implements the reading and writing of the 
template file. TTemplateDoc is considered to be a helper class to TStructureDoc. That is, the 
algorithms from TTemplateDoc could be placed in the TStructureDoc class. The reason for 
separating these classes is as follows. When reading the template file from disk, the TNucList data 
structure needed to be created, which involved the knowledge of the TNuc, TBond, and 
TBondList classes. Thus, this template file related code was separated into its own class to hide 
low level implementation details from TStructureDoc and to keep it from being exposed to lower 
level classes which it need not know anything about. 

The actual mapping algorithm (which maps template screen coordinate and bonding 
information onto data from the alignment file) is implemented in file reading code of the 
TTemplateDoc class. Similar to the TAlignDoc class, TTemplateDoc is not responsible for 
displaying the secondary structure data in a window. Therefore, TTemplateDoc is derived from 
T AlignDoc, from which it can inherit the same type of user interface behavior as used in its parent. 

TDocument 

/ ~ 
TAlignDoc TScrollDoc 

/ /~ 
TTemplateDoc TPictDoc TStructureDoc 

Figure 3-4 The document class hierarchy 

Application Classes 

The T Application class provides methods for standard Macintosh behavior, such as the 
display and control of menus, MultiFinder compatibility, access to desk accessories, and a 
framework for handling events. The T Application class was implemented to be a generic base 
class and does not provide enough functionality to be instantiated on its own. Therefore, the 
TgRNAidApp class is derived from TApplication (Figure 3-5) and provides application specific 
information that is not available in the parent. However, because the TApplication class provides 
much of the typical Macintosh behavior, the number of methods provided in the TgRNAidApp 
class is minimal. 
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T Application . 

TgRNAidApp 

Figure 3-5 Application - framework 

Dialog Classes 

A generic class that handles the display of dialogs is provided by the TDialog class. The 
functionality from the TDialog class can be accessed by subclassing off of TDialog and providing a 
few key details, such as the resource ID of the Dialog. The only dialog used within gRNAid was 
for the About .. . box, thus the presence of the TA bout class (Figure 3-6). 

TDialog 

TAbout 
Figure 3-6 Dialog classes 

Supporting Classes 

Several other classes (Figure 3-7) were implemented to support the gRNAid application . 
The TFontMgr class is used to keep track of font information, such as current font, font size, and 
the maximum width of any character within the current font/font size. Font information is very 
important to several clients, including TStructureDoc, TNuc, and TBond. Because the font and 
size can be changed via menu selection , TStructureDoc must be able to access the font manager to 
change these values. Nucleotides and bonds are dependent on font information for their screen 
coordinate calculations . A TFontMgr object is owned by the TStructureDoc class. However, 
since TNuc and TBond objects do not access TStructureDoc objects, static (global) methods are 
implemented so these classes can easily access font information. 

The Vector class implements a basic two-dimensional vector data type, and is used by the 
TBond class when calculating screen positioning information for the bond. The Util class provides 
utility methods such generic string and file processing functionality . All methods within Util are 
static and thus can be accessed by any class. Finally, Util_message is used to display messages on 
the screen while gRNAid is in the middle of processing. The constructor for this class takes a 
string representing the message to be displayed as an argument. The message window is displayed 
when the Util_message object is constructed, and removed from the screen when the object's 
destructor is called. 
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TFontMgr 

Vector 

Util 

Util_message 

Figure 3-7 Utility classes 

Secondary Structure Internal Representation 
The data structure shown in Figure 3-8 shows how several classes described earlier work 

together to fonn the internal representation of secondary structure data As explained earlier, lists 
are implemented with TLink objects that contain two pointers, one pointer to the object and another 
pointer to the next TLink in the list. As shown in the figure, both the TNucList and TBondList 
classes use the TLink class. The remainder of this section implicitly refers to Figure 3-8. 

For most other classes such as TStructureDoc, the secondary structure is completely 
represented by a TNucList object. That is, other classes only know about the TNucList object and 
they will query this object when they need to access any secondary structure data. Thus, although 
the TNuc, TNucID, TBondList, and TBond classes are all used to internally define secondary 
structure data, most other classes only have knowledge of the TNucList class. When the TNucList 
object receives a query, it will either handle the query itself or dole out the responsibility to the 
appropriate class. Note, however, that a few classes such as T AlignDoc and TTemplateDoc have 
access to low level classes such as TNucID and TNuc for performance reasons only. Because 
approximately 1600 nucleotides and at least 400 bonds need to be created, it was decided to allow 
T AlignDoc and TTemplateDoc objects direct access to low level classes rather than slow things 
down by forcing them to go through the TNucList object. 

TNucList is responsible for keeping track of all TNuc objects and also implements some 
TNuc related routines. Each TNuc object references a TNucID object, which stores the unique 
nucleotide ID and provides overloaded operator methods. If a TNuc is bonded with another 
nucleotide, the fBond member within the TNuc will reference a TBond object. The TNucList class 
also contains a member, fBondList, that references a TBondList object that is responsible for 
storing and handling all bond related information. In fact, the TNucList is not even aware of the 
existence of the TBond object. Thus, it is the responsibility of TBondList to delegate tasks to the 
TBond object when necessary. The TBondList relationship with the TBond object parallels the 
TNucList association with TNuc objects. 

There is one TBond object formed for each base-pair, and each TBond object must be 
referenced by two TNuc objects. Figure 3-8 does not show any direct references to the TBond 
object because it is an abstract class. That is, it cannot be instantiated by itself because it does not 
provide enough infonnation to be useful. Instantiated bonds only come from TWatsonCrick, 
TStrongNonCannonical, orTWeakNonCannonical classes, which are subclasses of the TBond 
class. The fPartnerl and fPartner2 members, which are references back to the owning nucleotides, 
are provided by the TBond class and are inherited by any subclasses of TBond. All TWatsonCrick 
classes contain fFirstPt and fSecondPt members, which are unique to the TWatsonCrick class and 
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are not included in any other bond class. These members are used to represent the screen 
coordinates that form a straight line, which is the graphical representation of a Watson-Crick bond. 
The TStrongNonCannonical object contains an fBondRect field, which is inherited from the 
TNonCannonical class. The graphical representation of a TNonCannonical bond is a circle, and 
the Macintosh Toolbox routines take a rectangle as an argument when drawing a circle. The only 
difference between the TStrongNonCannonical and TWeakNonCannonical is in their drawing 
routines. The weak noncannonical bond (not shown in the figure) is drawn as a hollow circle ( o), 
while the strong counterpart is drawn as a black dot(•). 

Why A Linked List? 
A linked list representation of the nucleotide and bond data was chosen because it was 

simple and fast enough to use with 1600 nucleotides. Prior to the decision on the type of data 
structure to use, a simulation was carried out to analyze the performance of a linked list with 10000 
objects on the Macintosh. Each object abstractly represented a TNuc object, and the goal was to 
determine how long it would take to select a single nucleotide (i.e. - find a nucleotide in the list and 
select it) and how fast the nucleotides draw on the screen. It was determined that the linked list 
representation was good enough for a list of 10,000 objects since the time it took to find and invert 
an object after a selection was minimal. Thus, the linked list representation was the data structure 
of choice. 

Note that other data structures could be substituted for the linked list because of the object 
oriented nature of the implementation. Because the internal representation of the linked list is 
hidden from all subclasses, faster data structures such as a hash table or tree could replace the 
linked list representation. 

Dependency Graph 
Figure 3-9 on the following page shows a dependency graph of all of the classes used 

within gRNAid. An arrow from TStructureDoc to TTemplateDoc means that TStructureDoc 
depends on or has knowledge of TTemplateDoc. The dotted arrows imply that the dependency 
was made for performance reasons only. That is, the dependency could have been removed, 
resulting in a more object oriented program with the price of slowing down some algorithm. The 
dependency graph is depicted in a top-down style, where more management oriented classes are 
near the top of the graph and classes that implement more of the grunge-level details are near the 
bottom. Note that the base classes (TApplication, TDocument, TScrollDoc, TList, etc.) are not 
included in Figure 3-9. 
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) Bond Drawing Algorithm 
When gRNAid generates a new secondary structure or reads a template file from disk, it 

must calculate the screen positions associated with the bonds. The template file contains 
information specifying that two nucleotides are bonded together, but does not give any information 
on where the bond will reside on the screen. There are three types of bonds that can be formed: 
Watson-Crick, strong noncannonical, and weak noncannonical. Watson-Crick bonds are 
represented by straight lines on the screen, while noncannonical bonds are represented by circles. 
Although strong(•) and weak (o) bonds are drawn differently on the screen, the algorithm used to 
calculate the screen positions is the same. Thus, there are two algorithms, one for Watson-Crick 
and one for noncannonical. Because it is easier, we will cover the noncannonical bond forming 
algorithm first. 

Noncannonical 

The most complex part of forming a bond is determining where the bond should be placed. 
Noncannonical bonds, represented by a circle, are drawn differently than Watson-Crick bonds. 
The first question is, how is a noncannonical bond represented? Noncannonical bonds are either a 
solid circle(•) between an A and a G, or a hollow circle (o) between a G and a U. The Macintosh 
toolbox routines PaintOval (which draws the•) and FrameOval (which draws the o) both take a 
rectangle that surrounds the circle as an argument. Thus, it would be good to save this rectangle as 
a data member in the parent TNonCannonical class. 

The next question is, how is this rectangle calculated? Consider the illustration in Figure 3-10. If 
a line is drawn from the upper left hand comer of the left hand nucleotide to the lower right hand 
comer of the right hand nucleotide, the centerpoint of the bond will be at the centerpoint of this 
line. Thus, to calculate the rectangle, find the centerpoint of the line and then calculate the 
surrounding rectangle by adding or subtracting some radius. 

Figure 3-10 Calculating the rectangle for a noncannonical bond 
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) Watson-Crick 

The problem of computing Watson-Crick bond screen information for visually attractive 
bonds was initially complex, but with the use of the object oriented paradigm and a Vector class, 
the solution became more straightforward. Consider Figure 3-11. We want to draw a Watson­
Crick bond from one nucleotide to the other. This means we want to find the two points, A and B, 
and store them in the TWatsonCrick bond object. Once we find these two points, it is trivial to 
draw the straight line that goes from A to B. 

Figure 3-11 Calculation of the line for a Watson-Crick bond 

Let the dots in the middle of the C and G represent the centers of the nucleotides. Let 
vector Preference the dot in the middle of nucleotide G above, and let vector Q represent the dot in 
the middle of nucleotide C. Figure 3-12 shows these two vectors with some of the details removed 
for clarity. In this figure, notice the dotted line that goes from Q to P, through points A and B. 
This line goes in exactly the direction that we want the Watson-Crick bond to go . If we could find 
the vector representing this line, we would be taking a step in the right direction (pun intended). 
To follow the remainder of this discussion, you may need to get out your vector algebra book. 

In Figure 3-12, vector R is vector P minus vector Q (R = P - Q). Now we have a vector 
that goes in the right direction, but it isn't exactly where what we wanted it. Recall that our goal is 
to find the two points, A and B. 
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Figure 3-12 Using vectors to calculate the midpoints 

Let's first look at trying to find A. Let the length of vector R be equal to L. This also 
means that the length of the vector from Q to Pis L. Now imagine that we have drawn an 
imaginary circle around the Q vector, as shown in Figure 3-13. If we knew the value of the radius 
r in Figure 3-13, then we would have it made, since A= Q + (r IL) * R. So what is r? Simple -- r 
is an arbitrary value that can be calculated based on the size of the current font 

A 
Figure 3-13 Finding A 

So there you have it. A= Q + (r IL)* R; R = P- Q; and Lis the length of R. Similarly, 
to find B, we would use B = P - (r I L) * R. Implementation-wise, a vector class was created that 
had common vector operators such as vector addition and subtraction, scalar multiplication, and an 
operator to compute the length of a vector. The addition made the code rather elegant and much 
easier to understand. 
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) 
Conclusions 

One might think that these algorithms could be avoided by placing bond screen positioning 
information in the template file, and much like nucleotides, bonds could assume screen positions 
from the template file. However, gRNAid currently does not allow for the manipulation of bonds. 
That is, the bond objects cannot be moved by themselves and can only be moved with their owning 
nucleotides. Therefore, it makes sense for gRNAid to calculate the bond coordinates based on the 
owning base-pair. Thus, when both nucleotides that form the base-pair are moved, the bond is 
off set to move with the owning bases. When only one of the nucleotides in the base pair is 
moved, the graphical representation of the bond has a rubberbanding effect, and the coordinates for 
the bond must be recalculated . Future versions of gRNAid might provide bond editing 
capabilities, and as such the bond objects could then obtain screen positioning information from the 
template file. However, because the rubberbanding effect mentioned above would still be a desired 
behavior, the bond coordinate calculation routines would still be a required part of gRNAid. 

Algorithm Analysis 

Algorithms within gRNAid are O(N2) or less (where N represents the number of 
nucleotides in the sequence), with the. majority of the algorithms being O(N). The bonding 
algorithm described above is 0(1) since the operation does not depend on the number of 
nucleotides or bonds in the secondary structure. Drawing the secondary structure is O(N + M), 
where N is the number of nucleotides and M is the number of bonds. A nucleotide selection via 
the mouse is also O(N), since a selection really represents a search of the nucleotide list for the 
nucleotide that was selected. 

The mapping algorithm is more complex to analyze (see Chapter 2 for design level details 
of this algorithm). The portion of the algorithm that associates screen positions with nucleotides is 
O(N), because each nucleotide in the nucleotide list must be scanned in order to associate it with a 
screen position. Most of the work in the mapping algorithm comes from forming the bond. Recall 
that all TBond objects have members fPartnerl and fPartner2 (Figure 3-8). These members, 
which from now on will be collectively referred to as the partner pointers, reference the owning 
nucleotide objects that form the bond. 

Hooking up the partner pointers involves 'finding' both TNuc objects in the base pair and 
then updating the partner pointers to reference the appropriate nucleotide. In the mapping 
algorithm, the first TNuc partner is already available since it has just been constructed. The time 
intensive task comes in finding the second nucleotide object. Since the nucleotides are stored in a 
linked list, the only way to find the partner nucleotide is to search the whole list, which is an O(N) 
task, worst case. Because this search must be done for every base pair, the entire algorithm is 
worst case on the order of N2, although several performance improvements can be made to this 
algorithm to speed it up. Therefore, the entire mapping algorithm is on the order of N (coordinate 
mapping)+ N2 (base pairing). On a Macintosh SE30, this mapping algorithm generally takes 20 
to 30 seconds when generating a secondary structure for a 16S rRNA with approximately 1600 
bases. This is still an improvement over thermodynamic based algorithms that are generally 
O(N3). See Chapter 1 for more information on the performance characteristics of other secondary 
structure creation programs. 
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) Chapter 4 
gRNAid User's Manual 

This chapter provides a reference to all available gRNAid functionality . First, secondary 
structure generation is described. Next, the editing operations within gRNAid are outlined, and 
then the hidden nucleotide bar and the process of mapping hidden nucleotides to screen locations is 
explained. Finally, each menu item in gRNAid is listed with a description of its function. A 
tutorial is provided in Appendix A showing how all of these commands work in context with each 
other. 

Generating A Secondary Structure 
To create a new secondary structure from scratch within gRNAid, an alignment file and a 

template file must be available. For the sake of this discussion, assume the alignment file 
represents the sequence of Archaeoglobis fulgidus (from now on referred to as Archae) and the 
template file represents the secondary structure of E.coli .. 

The alignment file represents an alignment of the sequence of Archae with the sequence of 
E.coli. Specifically, the file contains the aligned Archae sequence and nucleotide numbering 
information. At this time, gRNAid requires that the alignment file conform to a strict format, and 
any deviation from this format will result in error. The template file is a representation of a known 
secondary structure, and the screen coordinate and bonding information from the template file is 
used in the creation of new secondary structures . Information explaining the ideas behind the 
alignment files, nucleotide numbering, and template files is in Chapter 2. 

The Generate menu i tern from the Structure menu is used to commence secondary 
structure creation . Once this menu item is selected, a file selection dialog is displayed prompting 
you to select the alignment file of the organism for which you want the secondary structure 
generated. In Figure 4-1, the alignment file for Archae is selected. The gRNAid program displays 
an informational dialog while processing the alignment file, which is removed from the screen 
upon the completion of processing this file. 

Next, you are prompted to select the template file. In Figure 4-2, the template file for the 
bacterium E. coli is selected. Again, an informational dialog is displayed as the template file is 
being processed. Once the process is complete, the secondary structure is displayed in a scrollable 
window. This window contains many of the common artifacts found in other Macintosh 
applications, including scroll bars, close box, zoom box, title bar, and size box. If you are 
unfamiliar with these objects, please ref er to your Macintosh documentation. A segment of the 
secondary structure generated from the Archae alignment and the E. coli template is shown in 
Figure 4-3. 
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Select an Alignment file 

la Rrchaeog ...-1 
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Figure 4-1 File selection dialog used to select an alignment file 

Select a Template file 

1 a E.COii ...-1 
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[ Cancel ] 

Figure 4-2 File selection dialog used to select a template file 
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□ Archaeog 

Editing Operations 

Selection & Deselection of Nucleotides 

A single nucleotide can be selected by clicking the mouse on it, and when the nucleotide is 
selected, it becomes highlighted. If you click the mouse on another nucleotide, any previously 
highlighted nucleotide is deselected and the nucleotide just clicked on is selected. To deselect all 
nucleotides, click the mouse in a blank area of the window. 

To select a group of nucleotides, keep the mouse button depressed and drag (Figure 4-4); a 
selection rectangle is displayed as you drag and when you release the mouse button, all nucleotides 
that overlap with this rectangle will become highlighted. Again, a mouse click on any non­
nucleotide will result in a deselection of all previously selected nucleotides . 

.. 
-0- -0-

Figure 4-4 Selecting a group of nucleotides 
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Sometimes you maywant to select or deselect another nucleotide without affecting anything 
else that has been selected . For example, in Figure 4-4, you may want to select several of the 
unselected nucleotides while keeping all of the other nucleotides selected. To do this, press down 
on the shift key while clicking the mouse on a nucleotide. The shift-click mechanism acts as a 
toggle: if you click on a selected nucleotide, then it will deselect. Otherwise, a click on a deselected 
nucleotide will result in it being selected . The shift-click mechanism allows you to easily add 
and remove nucleotides from the selection group without affecting any of the nucleotides that are 
already selected. 

Dragging 

Once one or more nucleotides have been selected, they can be dragged. The selection and 
drag of a single nucleotide can be done with a single mouse click. Depress the mouse button when 
on the nucleotide, move the mouse to the new location for the nucleotide, and release the mouse 
button. The nucleotide will be off set so that it now resides at the new location. One or more 
nucleotides can be dragged by clicking the mouse on any selected nucleotide and then dragging. 
While dragging, an outlined region of what you are dragging will appear as an aid, as shown in 
Figure 4-5. 

□ 
(; 
(; 

Archaeog 0 

.. j u 

: I =;u~) I 
.-... ·.·.·.· ............. · ... · ............................... · ........... ·.· ¢ 121 ¢ IJ l;;;;;;;;;;;;~;x;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;J ¢ 121 

Figure 4-5 Dragging a group of selected nucleotides 

At this time, a drag is not allowed if any of the outline region is moved outside of the 
editing area of the window. As shown in Figure 4-6, a portion of the outline region is moved 
outside of the window, which gRNAid considers to be an illegal drag. To get around this, make 
the window bigger or incrementally drag the segment and scroll the window to move the segment 
to its final position. 
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Figure 4-6 It is illegal to try to drag outside of the legal bounds of the window. 

Selection & Dragging of Bonds 

A bond cannot be edited directly but is considered to be owned by the base-pair that forms 
the bond. If both of the nucleotides that make up the base pair are selected, then any drag on this 
base pair will result in the bond being dragged also. Notice in Figure 4-5 that the bonds all moved 
with their parent base-pair. The topic of dragging bonds brings up an interesting question: what 
happens when only one of the nucleotides in the bond is selected and dragged to a new position? 
As shown in Figure 4-7, a rubberbanding of the bond occurs. The rubberbanding of the bond is 
more obvious with Watson-Crick bonds than with noncannonical bonds. When the noncannonical 
bond is rubberbanded, the dot is placed central to the two owners, and it is not always immediately 
obvious which nucleotide pair owns the bond. 

Archaeog 0§ Archaeog 

.. 
0 

Figure 4-7 A rubberbanding effect occurs when only one nucleotide in the base pair is 
dragged 
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The Hidden Nucleotide Bar 
Notice that the secondary structure displayed in Figure 4-8 contains a selected bold 

nucleotide, U. This bold nucleotide represents an area in the secondary structure where gRNAid 
did not map one or more nucleotides to screen positions. Thus , these nucleotides are hidden and 
must be mapped to screen positions by the user. When a bold nucleotide is selected, an 
informational bar will appear at the top of the window. This bar is referred to as the hidden 
nucleotide bar and gives three pieces of information: 1) the number of nucleotides that are hidden, 
2) the sequence of nucleotides that are hidden, and 3) some help text (3€ M to map) indicating the 
command that is needed to begin mapping hidden nucleotides. In Figure 4-8, the bold U is 
selected and tells you that 10 nucleotides, CCCUUCGGGG, have not been mapped to screen 
positions. The hidden nucleotide bar is only displayed when a single, bold nucleotide has been 
selected. Thus, if more than one nucleotide is selected, the hidden nucleotide bar will not be 
displayed . . 

~M to map ti Hues: 10 CCCUUCGGGG -0 

·.·.·.· .. ,·.·:·.·.·:·:·.·.·.·.· ... ·.·.·.· ... ·.· ............................. · ... :,.,·.: ... :,:, .... : ................. · ... · .. .-......... · ... · .. .-............. · ........... : ..... :.: ... :,:.:.: ... :,:_: ... :,:,:, ¢ 121 
Figure 4-8 The hidden nucleotide bar is displayed when a single, bold 

nucleotide is selected 

Mapping Hidden Nucleotides 
The process of mapping hidden nucleotides means to associate screen positions with 

hidden nucleotides that failed to obtain a screen position . That is, an X,Y screen position is 
associated with a hidden nucleotide by the click of the mouse at the desired location in the 
secondary structure window. After the click, the previously hidden nucleotide becomes visible at 
the X,Y coordinates obtained by the mouse click . 

In gRNAid, it is only legal to map hidden nucleotides when a single, bold nucleotide has 
been selected. When this condition is not met , the hidden nucleotide bar will not be displayed and 
the mapping commands will be disabled. For the remainder of this section, it is assumed that a 
single , bold nucleotide has been selected, thus enabling the mapping commands. 
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) Map Mode 

Before examining the mapping process closely, it is useful to differentiate between map 
mode and normal editing mode. In normal editing mode, a single mouse click in a window 
denotes the selection, deselection, or dragging of one or more nucleotides. There has to be some 
way to determine when we want to change what a single mouse click means . While mapping 
nucleotides to screen positions, a mouse click should used to associate screen positions with 
hidden nucleotides. Because the behavior of a mouse click is now ambiguous, a new mode called 
map mode is introduced. When you enter map mode, the mouse click will be interpreted as 
associating screen positions with hidden nucleotides. When in normal editing mode, a mouse click 
is used for selection, deselection, and dragging operations. 

In gRNAid, the Map Hidden and Exit Map menu commands from the Nucleotide 
menu (Figure 4-9) can be used as a toggle from one mode to the other. Note that these menu 
commands appear at the same location in the Nucleotide menu and as such are never available for 
selection at the same time. You can also toggle between modes by using the X M keyboard . 
equivalent. Thus, if you are currently in normal editing mode, you can select the Map Hidden 
command to enter map mode, which will in effect change the text of the menu to Exit Map. If for 
some reason you decide to exit map mode before mapping all hidden nucleotides to screen 
position, you can select the Exit Map menu item, which will toggle you back to normal editing 
mode and change the text of the menu item to Map Hidden. 

Nuc:leotide 

rorm BtHHi 

Hr<1<lk Bond 

Map Hidden :~:M 

Nuc:leotide 
rorm Bond ,}H 
Br<1<lk Bond ,}(:B 

[Hit Map :~:M 

Figure 4-9 Using menu command to toggle between normal and map mode 

The current mode you are in can be determined in several different ways. When map mode 
is entered, the cursor will change to a crosshair when the mouse is in the window. (Note: the 
mouse changes to an arrow when it is moved outside of the editing region of the window~ it 
changes back to the crosshair when moved back into the window.) When in normal editing mode, 
the mouse will be an arrow. A second indicator of the current mode is in the hidden nucleotide bar 
(Figure 4-4). The help text that appears at the upper left-hand corner of the bar is context sensitive: 
if you are in map mode, the help text will be X M to Quit, and when in normal editing mode the 
help text will be XM to Map . A third sign indicating mode is in the Nucleotide menu 
commands, where the text of the mapping menu item differs depending on the current mode. 

Mapping 

In Figure 4-8, a sequence of ten hidden nucleotides needs to be mapped to screen positions 
on the 3' side of the bold U. (Note: if you are not familiar with the 3' and 5' concepts, see 
Chapter 2.) In Figure 4-4, the 3' side is on the side next to the A, so this is the side where we 
would want to insert the ten hidden nucleotides. 
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It is useful to analyze the hidden nucleotide sequence to determine its structure before 
mapping the nucleotides to their screen positions. For example , the hidden nucleotide bar in 
Figure 4-4 shows that there is an insertion of 10 nucleotides (CCCUUCGGGG). With a little 
analysis and some scratch paper, it can be conjectured that the structure of the segment looks 
something like that shown in Figure 4-10, where the hidden nucleotides are bold. 

u 
u UC CC U 
• I I I I 
GAG GG C 

A G 

Figure 4-10 The nucleotides shown here in bold represent the 10 hidden 
nucleotides that need to be mapped to screen positions. 

Generally , the structure must be edited to make room for the hidden nucleotides, as shown in 
Figure 4-11. 

□ Rrchaeog 0 
=M to map I# Nucs : 10 CCCUUCGGGG Q 

" - G •• C AG r i·~· [JJJ}} }lmtj)m rn:A~ I 
A G U-A. <, U .I"1... 
-t':n (;-~ .,.. .,.. V 

¢ Ii=~;~ ;1 E ;~; ~ ; ~ ;~; ~;~ ;~; ~;~;~; ~;~ ;~; ~;~;~; ~;~ ;~; ~ ;~ ;~; ~;~ ;~;~;~ ;~; ~; ~ ;~; ~;~;~i ~; ~ ;~;~;~ ;~; ~;~ ;~; ~;~ ;~;~;~ i~; ~;~ i~i ~i~;~; ~;~i~;~i~i~i ~i~ i~i ~i; I ¢ '21 
Figure 4-11 Editing the structure to provide room for the hidden nucleotides 

(compare to Figure 4-8) 

The sequence of steps that one must go through to map nucleotides to screen positions is as 
follows. First , map mode must be entered by selecting the Map Hidden menu option or using 
the 3C M keyboard equivalent. The help text in the hidden nucleotide bar will change to 3C M to 
Quit. The cursor will then change to a crosshair ( + ). This cursor will change to an arrow when 
the mouse is moved outside of the editing area of the window, and will resume its shape as a 
crosshair when moved back within the window. To associate an X,Y coordinate with the first 
hidden nucleotide, click the cross-hair at the general location where the first hidden nucleotide is to 
be placed . In Figure 4-12 , the first hidden nucleotide, C, has been mapped to a screen position. 

=M to quit ii Nucs: 9 CCUUCGGGG ◊ 

u. G lf!;/ ic11 G l ccclAG°C\.rlcfi GGuu:~+ 

Lru:A gJJ:;.~ :lJJ.JJJJ. w.l 1.11. 11.1 

A_-U C A A C A G g=A G U {7 

¢ ;;;;;; ,;:;:\=i=ii=i=i::;:;:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,;,;,;,:,:,:,:,:,;,:,:,:,:,:,:,:,:,:,:,:,:,:,:;:,:,:,:,:,:,:;:,:,:,:,:,:,:,:,:, ¢ '21 
Figure 4-12 Mapping the first hidden nucleotide to a screen position 
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Once the nucleotide has been mapped to a coordinate, the hidden nucleotide bar is updated -
the number of nucleotides that remain hidden is decreased by one and the mapped nucleotide is 
removed from the list of invisible nucleotides. Also, the newly mapped nucleotide becomes the 
current bold nucleotide, and the previously bold nucleotide is returned to a normal state. Repeat 
this process of clicking the cross-hair in the window to map the remaining nucleotides to screen 
positions. When the last hidden nucleotide has been mapped, the hidden nucleotide bar is removed 
an no bold nucleotides remain in this segment of the sequence. Figure 4-13 shows the result of 
mapping the 10 hidden nucleotides to their screen positions. 

D Archaeog 0 

Exiting Map Mode 
You may not want to map all hidden nucleotides to coordinates at one time. For example, 

there may be 100 hidden nucleotides that need to be mapped and you may want to map these in 20 
nucleotide increments. To exit map mode, at any time select the Exit Map command from the 
Nucleotide menu or use the 3CM keyboard equivalent. This will toggle you out of map mode 
and into normal editing mode. A bold nucleotide will represent the place where you stopped 
mapping the nucleotides, so to resume mapping all you need to do is select this nucleotide and re­
enter map mode. 

Forming And Breaking Bonds 
Many times a bond may need to be removed or created from a newly created portion of the 

secondary structure. For example, in Figure 4-13, there are several bonds to be formed. To create 
the bond, select the two nucleotides that are to form the base pair, then select the Form Bond 
command from the Nucleotide menu. Only Watson-Crick and noncannonical bonds may be 
formed. To remove an existing bond, select both nucleotides that form the base pair and then 
select the Break Bond item from the Nucleotide menu. 
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Menu Commands 
The remainder of the chapter is devoted to explaining each of the menu commands available 

within gRNAid. Many of the menu items have a command key equivalent (:lC ) that can be used to 
invoke the command. 

The Apple menu contains all desk accessories that have been 
installed under the Ii menu as well as the About gRNAid ... 
menu item, which provides general information on the gRNAid 
program. 

Rbout gRNAid ... 

N(~U} ~;[~N 

Open... 3€0 

Close OOW 
S <l J} (~ ,}(, S ...----------, 
Saue As ► 

Page Setup ... 
Print ... 

Quit 3€0 

Save 

Template ... 
PI CT ... 

New 
This command is not used and should be removed 
from gRNAid in the near future . 

Open ... 
When this menu item is selected, you are prompted to 
select any legal template file that has been previously 
saved to disk. Recall that the template file is the 
textual representation of the secondary structure. 
Only legal template files should be opened with this 
command. Once the template file has been opened, 
the secondary structure represented by the file is 
displayed in a window. 

Close 
This command closes the currently active window. 
If any editing operations have been made to the 
structure since the last save, you will be asked if you 
would like to save the new changes. This command 
is only available when windows are open within 
gRNAid. 

Use this menu item to save the current contents of the window . This menu item is only enabled if 
any changes or editing operations have been performed in the window since the structure was last 
saved. Note that a simple mouse click in the window will enable the Save menu item. If the 
contents of the window have not previously been saved, you will be prompted to enter a name for 
the template file, similar to the Save As... command. If the template has been saved before, then 
the template file will be updated to include any new secondary structure information since the last 
save. 
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Save As 
If the Save As Template command is selected, then the currently active secondary structure 
window is saved to a new file and the name of the active window is changed to the name of the 
new file. All subsequent file related operations will occur on the new file. If the Save As PICT 
command is selected, then the file is saved to a PICT format, which is readable by other PICT 
reading programs such as MacDraw®. The Save As PICT command does not have any affect 
on the currently active structure. These commands are deactivated when there are no open 
windows. 

Page Setup ... 
When this command is selected, a printer-specific dialog will be displayed allowing you to set 
printer-specific characteristics such as page layout and orientation. This dialog will vary for 
different models of printers. Use this command before printing to set up printer-related 
characteristics. This command is available only when there is a structure available for printing. 

Print ... 
This command will print the secondary structure in the currently active window. A dialog is 
displayed allowing you to set page-layout specific information before printing. This dialog will 
vary depending on the printer you are currently set up to use. Note that only one page will be 
printed, no matter how large the secondary structure may be. If the secondary structure in the 
currently active window is larger than one page size, gRNAid will shrink the image so that it will 
fit into one page. This command is disabled when there are no open windows within gRNAid. 

Quit 
When this command is selected, you will be queried to save any windows that need saving and 
then the application will exit. 

The Edit menu is provided for desk accessory compatibility and nothing 
more. Many desk accessories rely on applications to provide a File and 
Edit menu that they can use while running. The gRNAid program itself 
does not use any of the Edit menu functions and as such they will always 
be disabled while gRNAid is being used 
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Struc:ture 
Generate ... 

Generate... a€6 This command will create a secondary structure based on an 
.......................................................................... alignment file and a template file. First, you are asked to 

provide the alignment file, which represents the aligned 
Show Backbone a€K sequence of the organism for which a secondary structure will 
Redraw a€R be created. You are next prompted for a template file, which 

contains the known secondary structure of some other 
organism. It is assumed that the alignment file represents an 

alignment of the new bacterium with the bacterium represented by the template. Once these two 
files have been entered, gRNAid performs a mapping algorithm to generate a partial secondary 
structure. Hidden nucleotides, which occur at areas where there are bold nucleotides in the 
secondary structure, should eventually be mapped to screen positions (see the Mapping Hidden 
Nucleotides section of this chapter for more information). 

Show Backbone 
This menu item provides a graphical means of looking at primary structure . While editing a 
secondary structure, errors may occur when nucleotides get moved to incorrect locations . When 
the backbone is activated, a line is drawn from each nucleotide to its neighbors. Areas of chaos in 
the window denote areas where the primary structure is incorrect. The Show Backbone 
command is a toggle: if the backbone is currently displayed and this menu item is selected, the 
backbone will be removed. Conversely, if the backbone is not displayed, the selection of this 
menu item will result in the display of the backbone. Figure A-21 in Appendix A shows an 
example of the backbone. This command is not active when there are no open windows . 

) Redraw 
Occasionally, some debris may be left in the window after an editing operation, and this command 
can be used to clean up the window. This command is not active if a window is not open. 

Form Bond 
This menu item is only enabled if two nucleotides have been 
selected and they are bondable . That is, only Watson-Crick and 
noncannonical bonds are allowed within gRNAid and as such, if 
two A's have been selected, this menu item will be disabled. Once 
the two legally bondable nucleotides have been selected, this 
option can be used to draw the correct bond type between the base­
pair. Note that once the bond is drawn, it cannot be selected or 
edited. 

Break Bond 

Nuc:leotide 
Form Bond ~F 
Break Bond ~B 

Map Hidden ~M 

This command is disabled if two bonded nucleotides have not been selected. The result of this 
command is to break the bond and remove it from the window. 

Map Hidden/Exit Map 
This menu is enabled only when a bold nucleotide has been selected and is used to map hidden 
nucleotides to screen positions. Bold nucleotides in the window represent areas where there are 
one or more nucleotides that have not been mapped to screen positions. This menu option acts as a 
toggle; to map nucleotides, select the Map Hidden menu item. The text of the menu item then 
changes to Exit Map, which you could select at any time to exit map mode. The process of 
mapping nucleotides to screen positions was explained in the Mapping Hidden Nucleotides section 
of this chapter. 
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Selecting any item from this menu will change the font used for all 
nucleotides in the secondary structure of the currently active 
window. The default font is Times. All fonts that have been 
installed into your system will be displayed in the Font menu. This 
menu item is disabled if there are no windows open within the 
gRNAid application. 

(D [j)iJ 
'y [j)iJ 
ill [j)iJ 

✓ID [;)iJ 
om [j)U 
0 0 [j)Q 
0 ~ [;)fJ 
0 ~ [;)fJ 
om [;)fJ 
~~O)fJ 

The menu options provided in the Font Size menu 
can be used to change the size of font in the currently 
active window. All font related operations take 
several moments to complete because all bond 
positions must be recalculated. This menu item is 
available only when at least one secondary structure 
window is open within gRNAid. 
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Results 

Chapter 5 
Conclusions 

As gRNAid was being developed, small template and alignment files were created to test 
various parts of gRNAid functionality. While gRNAid did in fact work well with small template 
files (representing small portions of a secondary structure), there was uncertainty concerning how 
gRNAid would work with large, 1600 base sequences. The first real template created was for the 
16S rRNA of Anacystis nidulans, and this bacteria was selected rather than E.coli because its 
secondary structure was available in computer form, which was used as an aid in template file 
generation. The creation of the first template file was monotonous and time consuming since 
screen positions needed to be associated with every single nucleotide in the Anacystis sequence. 

Once the Anacystis template file was complete, it was immediately used to create the 
secondary structure for E.coli (Figure 5-1). The result of the generation turned out amazingly well 
given that it was the first time the mapping algorithm was attempted on a large, 16S rRNA 
sequence. The secondary structure shown in Figure 5-1 is considered to be incomplete because 
some editing needs to be performed to create a complete secondary structure. For example, refer to 
the 1 in Figure 5-1. In the Anacystis secondary structure, this fragment represented a hairpin 
loop. The obvious hint that it is not correct for E. coli is the lack of all the bonds. Furthermore, 
the presence of the bold G nucleotide in 1 indicates an area where there are 18 hidden nucleotides 
that have not been mapped to screen positions. Number 2 shows another area of insertion, where 
22 nucleotides need to mapped to screen positions. The 3 represents an area of deletion, where 
nucleotides in E. coli did not map to nucleotides in the Anacystis template. This part of the 
structure must be edited so that the 4 nucleotides form the end of the hairpin loop. This means that 
the G• U strong noncannonical bond would have to be removed. Finally, the 4 shows several 
nucleotides that were not bonded together in the Anacystis structure but need to be bonded in the 
E. coli structure. Ref er to Figure 1-1 in Chapter 1 to see the E. coli secondary structure after the 
editing operations have been applied. 

Once the E.coli secondary structure was complete, it was saved to a template file and used 
in the generation of 9 other secondary structures that have different levels of 'relatedness' to E.coli 
rRNA. For example, the mouse 18s small subunit rRNA is not as close evolutionarily to E. coli as 
would be another bacterial small subunit rRNA, and thus the secondary structure created for mouse 
(Figure 5-2) is not as complete as the ones created for bacteria. For example, areas 1, 2, and 3 in 
Figure 5-2 are areas where there are 117, 30, and 172 hidden nucleotides respectively. Segments 
4 and 5 show where there are deletions in the mouse sequence. Obviously, it would take more 
editing effort to transform Figure 5-2 to the complete mouse secondary structure. However, once 
this secondary structure was complete, it could be used as a template in generating secondary 
structures for other organisms that are evolutionarily close to mouse . 
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Figure 5-1 Unedited E.coli secondary structure 
created from Anacystis nidulans template 



) 

Figure 5-2 Unedited mouse secondary structure 
created from E. Coli template 



Analysis of Results 
A secondary structure created with gRNAid is only as good as the template and alignment 

file used in the generation process. Errors in the template file can be passed on from structure to 
structure, and thus it is a priority to create a correct template file before using it to generate other 
secondary structures. For example , it is easy to unintentionally swap two adjacent nucleotides , as 
shown in Figure 5-3. In part A of Figure 5-3, the G and the A at the top of the hairpin loop have 
been swapped. The Show Backbone functionality does not make it obvious that an error has 
occurred until the two off ending nucleotides are moved further apart (part B ). Another template 
file error occurs when a bond is left out of the template file. These template file errors need to be 
caught early or the errors will be transmitted to other secondary structures. 

A 

~ 

'=' 
B 

~ 
Figure 5-3 A - Two nucleotides (G & A) have been swapped, but are not 
easily detected via Show Backbone. B - The error is more obvious when the 

nucleotides have been moved further apart. 

Alignment files can contain errors in sequence and alignment. When the sequence is 
incorrect (for example, the sequence should be A UUGC but is in the alignment file as AA UGC), 
the secondary structure will obviously be incorrect. When alignment is faulty, incorrect nucleotide 
numbers will be assigned and the mapping process will be erroneous . For example, in Figure 5-4, 
the correct alignment shows two C nucleotides at IDs 70 and 71 respectively. Notice that each of 
these nucleotides is bonded with another nucleotide . The incorrect alignment shows the same two 
C nucleotides mapped to IDs 69.1 and 69.2. Thus, in the faulty alignment, the C nucleotides are 
mapped to erroneous screen positions and are not bonded with any other nucleotides. 

Template file 

68.0 535 493 U 21. 0 
69.0 542 498 U 
69.1 545 502 C 
69 . 2 550 510 G 
70.0 555 516 C 13.0 
71.0 560 523 G 12.0 
72 . 0 566 533 G 
72. 1 572 539 A 
72 .2 581 543 U 
73.0 590 550 C 

thousand thousand 
hundreds hundreds 

tens 66666777 777 tens 66666 777777 
units 56789012 345 units 56789 012345 

bacteria AACGGCCGCUCUU bacteria AACGGCCGCUCUU 

Correct alignment Incorrect alignment 

Figure 5-4 How incorrect alignment affects the mapping process 
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Insertions in Insertions 

The template file produced by gRNAid is dependent on the alignment file from which it 
was created, mostly because of the nucleotide ID information that it gets from the alignment file. 
This dependency causes a problem within the mapping process. The following example will 
illustrate the problem. 

Assume that we have already created a complete template for bacterium "A". A fragment of 
the alignment file and the corresponding template file is shown in Figure 5-5. The template file 
relies on the correctness of the alignment file to determine nucleotide numbering information, and 
the secondary structure creation process that gRNAid uses revolves around the correctness of these 
nucleotide ID's. 

Alignment Template 

thousand 71.0 A 300 300 
hundreds 72.0 A 305 295 

tens 77 77 72 .1 U 310 290 
units 12 34 72.2 U 315 285 

bact A: AAUUCG 73.0 C 320 280 
74.0 G 325 275 

Figure 5-5 Alignment and template file fragment for bacterium A 

Now assume that we have another bacterium, "B", for which we wish to generate an rRNA 
secondary structure. We want to use the template file for bacterium A to create the secondary 
structure for bacterium B. The first step is to align the nucleotides from bacterium B with 
bacterium A. A fragment of the alignment for bacterium B is shown in Figure 5-6. 

Alignment 
thousand 
hundreds 

tens 
units 

bact B: 

77 77 
12 34 
CGACCCGCC 

Figure 5-6 Alignment of bacterium B 

There is a subtle problem that is depicted in Figure 5-7. The first U in bacterium A is 
aligned with the first A in bacterium B. However, the next U in bacterium A aligns with the 
second Gin bacterium B. This is referred to as an insertion within an insertion, and gRNAid 
cannot handle this situation correctly. The underlying problem is that the alignment for bacterium 
A has implicitly changed (Figure 5-8) to accommodate the new insertions into bacterium B. 
However, the template file for bacterium A is still based on the old alignment file shown in Figure 
5-5. Thus; when gRNAid reads bacterium B's alignment file, it will correctly map the first A in 
the alignment to 72.1 in the template, and incorrectly map the next nucleotide (C) to 72.2 in the 
template. The correct mapping process would be to not map the CCC sequence fragment in 
bacterium B to any ID's in the template (thus malcing them invisible), and to map the last Gin the 
sequence fragment to 72.2 in the template. 
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) thousand 
hundreds 

tens 77 77 
units 12 34 

bact A: AAUUCG 

thousand 
hundreds 

tens 7,/ 77 
units 12 34 

bact B: CGACCCGCC 

Figure 5-7 Insertions in insertions 

thousand 
hundreds 

tens 77 7.7 
units 

bact A: 
12 34 
AAU---UCG 

Figure 5-8 Implicit alignment for bacterium A 

A work around for this problem might be to recreate the bacteria A template using the 
"new" alignment shown in Figure 5-8. This is probably more effort than it is worth. Note that 
this problem only happens in insertions within insertions, and will never happen when a bacteria is 
aligned correctly with E. coli, since there are no insertions in E. coli. 

Further Areas of Study 
The insertions within insertions problem is not a hard one to solve and could be 

implemented in gRNAid in a future version. However, the solution to the problem would make 
the user of gRNAid do a little bit of extra work. Here's how. A menu option, called 
Renumber ... for example, could provide functionality to renumber nucleotide IDs . This menu 
option would be used when the alignment file associated with the template file has changed because 
of its alignment with another bacteria. When this menu item is selected, the user would input to 
gRNAid the new alignment file and the old template file. The gRNAid program would then 
renumber the nucleotide IDs based on the new alignment information. A simple solution, but it 
forces the user to make an extra effort in secondary structure generation. 

The gRNAid program could also be enhanced by giving it functionality to try to guess 
structure at areas of insertion. For example, a thermodynamic or palindrome based algorithm 
could be used to try to predict structure where there are hidden nucleotides. A possible problem 
with this approach could be with trying to associate screen positions with the newly predicted 
structure. For example, refer to 3 in Figure 5-2, which is an area where there is an insertion of 
172 nucleotides. Notice that this 172 base insertion is not at the end of a hairpin loop, but right in 
the middle of two other pieces of structure. Do these existing pieces need to be moved in order to 
make room for the hidden nucleotides? Probably, and determining where these nucleotides should 
be moved and what screen positions to associate with the hidden nucleotides is not an easy 
problem to solve. One possible way around this problem would be to guess the structure of the 
hidden nucleotides and put the result in some kind of "scratchpad" that could be edited by the user 
and then copied into the existing secondary structure. 
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There are a large number of analysis functions that could be added to gRNAid to make it 
more powerful. For example, a function to search for a particular string of nucleotides in the 
structure would be nice. The ability to compare two structures and highlight conserved regions 
would also be useful. Also, color could be used to emphasize a particular feature, such as making 
all base-pairs blue or making Watson-Crick pairs green and noncannonical pairs red. Such 
coloring functionality would allow the user of gRNAid to be able to find patterns or even find 
errors in their secondary structures. 

Finally, additional editing operations would be very useful to add to gRNAid. The user 
needs to be able to add, delete, or change a nucleotide. Here is why. What if the user was 75% 
complete with arranging the secondary structure when they noticed that they had an error in the 
alignment file? At this point, it would not be a good idea to edit the alignment file and recreate the 
structure, because 75% of their work would be lost. This is precisely the reason why there is 
functionality available to save as a PICT - so the user can take their work to a drawing program 
without losing all of their work. 

Final Analysis 
All in all, gRNAid seems to work better than expected. Early in the game, it was unsure 

whether the mapping algorithm would be effective in secondary structure creation. However, once 
gRNAid was up and running with a few bugs were ironed out, gRNAid began to work well as a 
secondary structure creation tool. As is always the case, unexpected problems, such as the 
insertions within insertions, crop up throughout the development process. Despite these problems, 
gRNAid can still be a tool that is useful within the molecular evolutionist's lab. 
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Appendix A 
Tutorial 

The goal of this chapter is to familiarize you with the gRNAid application by walking you 
through the creation of a secondary structure . In this tutorial, the secondary structure of Anacystis 
nidulans will be generated from the E. Coli template file. You will edit the secondary structure by 
selecting and dragging nucleotides on the screen . You will learn how to map hidden nucleotide 
insertions to screen positions. Finally, you will examine other useful gRNAid features that are 
helpful in secondary structure creation . This tutorial assumes that you already understand the basic 
concepts behind gRNAid as explained in Chapter 1 and Chapter of this paper. Also, the tutorial 
assumes that you have experience using Macintosh computers. For example, it is assumed that 
you know what it means to scroll a window . Finally, it assumes that you have the gRNAid folder 
installed on a hard disk or on a floppy that is not locked. 

Secondary Structure Generation 
The gRNAid application and some example data files are provided on the gRNAid disk. The 
contents of the gRNAid folder should look something like that shown in Figure A-1. Do not 
worry if your version does not look exactly like the figure. All you need to run this tutorial is the 
gRNAid application and the Tutorial folder. 

Double click on the gRNAid icon. The gRNAid main menu will appear, as shown in Figure A-2. 

-□ gRNAid folder BJ 
11 ;tems 335K ;n d;sk 426K available ~, LJ LJ LJ 

0 -

gRNAid v 1 .3 An.nidul Archaeog Agr.tume 

LJ LJ LJ LJ 
B.subt;1 E.CoH Mouse Myx .xant 

LJ LJ LJ 
Plan.sta S.solfat Tutor;a1 -

0 
¢1 1¢ 12:J 

Figure A-1 Contents of the gRNAid folder 
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., File Edit Structure 

Figure A-2 The gRNAid main menu bar 

From the Structure menu, select the Generate ... menu item or use the 3C G keyboard equivalent 
(Figure A-3). 

Show Backbone 3€K 
Redraw 3€R 

Figure A-3 Select Generate from the Structure menu 

A file selection dialog will appear prompting you for an alignment file. Descend into the Tutorial 
Folder and then into the An.nidul folder and open the Alignment file as shown in Figure A-4. The 
gRNAid program normally takes about 15-45 seconds to read an alignment file with approximately 
1500 nucleotides, depending on the machine you are using. 

Select an Alignment file 

I a An.nidul ,.. I 
CJ An.nidul Alignment ffl 

0 

E:J Shadow 

[ ] 
[ Desktop ] 

[ Cancel ] 

Figure A-4 Open the An.nidul Alignment File 

Next you will be queried for the template file. Move back up to the gRNAid folder by pressing the 
mouse arrow on the popup menu and selecting the Tutorial folder, as shown in Figure A-5. (Note: 
you can also ascend to the next highest level by clicking the mouse button on the hard drive icon 
that appears above the Eject button.) 
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Select an Alignment file 

c=iShadow 
'C5l gRNAid folder 

ii Desktop [ [jf~C1 ) 

[ Desktop ) 

€ Open J 
0 [ Cancel ) 

Figure A-5 How to ascend to the Tutorial folder 

Descend into the E.Coli menu and open the E.Coli Template file, as shown in Figure A-6. Be sure 
to select the E.Coli Template and not the E.Coli Alignment. The gRNAid program will take about 
30-60 seconds to read in the template file data and create the secondary structure, depending on the 
machine you are using. 

Select a Template file 

la [.Coli ... , 

c=i Shadow 

[ [jf~C1 ) 

[ Desktop ] 

I Open ·1 
·-----· 
[ Cancel ) 

Figure A-6 Select the E.Coli Template file 
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' ) The secondary structure of Anacystis nidulans is displayed in a scrollable window. A portion of 
this secondary structure is shown in Figure A-7. Note that this is not a complete secondary 
structure. Bold nucleotides represent areas where gRNAid was unable to map nucleotides from the 
Anacystis nidulans sequence onto screen positions. 

Scroll the window until you find the section of the structure represented in Figure A-7. See Figure 
A-8 for a roadmap of where you need to go. 

□ Rn.nidul 
A 
G C 

U C 
c-G 
<;-C 
U • G 

AU • G 
C-<, 
C-<:; 
C -G 

AU• G 
A 

Ac-<; 
C -oG 

<>u Ge 

¢ l::H k::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::il ¢ '21 
Figure A-7 A portion of the Anacystis nidulans secondary structure 

Scroll 
to here 
~ 

Figure A-8 A roadmap showing where to scroll 
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Now save the secondary structure (template) just created (as we will edit the file in sections that 
follow). From the File menu, select the Save menu item. Because the template has never been 
saved before, a dialog appears querying you to name the new file. Make sure that the current 
folder is the An.nidul folder (which is in the Tutorial folder) and save the file as An.nidul 
Template, as shown in Figure A-9. 

la nn.nidul ,.. I ~shadow 

0 - ( [jf~C1 ) 
( Desktop ) 
( New D) 

Saue file as ... Cancel 

I nn.nidul Template 

Figure A-9 Save the template as An.nidul Template 

Selecting and Dragging 
In the following section, feel free to practice selection and dragging skills on the Anacystis 
nidulans structure you just created. Do not worry about making a mess. The An.nidul Template 
file you just saved will be used in subsequent sections of this chapter. 

Nucleotides can be selected in several different ways. Bonds cannot be selected at all. To select a 
single nucleotide, click the mouse on it. Figure A-10 shows what the window would look like 
when a bold nucleotide is selected. Notice that the selected nucleotide is inverted. Also notice that 
new data appears at the top of the window when the bold nucleotide was selected. This is referred 
to as the 'hidden nucleotide bar'. It shows the nucleotides that have not been mapped to a screen 
position. In this example two nucleotides (UC) have yet to be mapped to screen positions . The 
process of associating screen positions with these 'invisible' nucleotides, referred to as mapping, 
will be discussed later in this tutorial. 

To deselect a nucleotide, click anywhere within the window. If you click on another nucleotide, it 
will be selected and any other selected nucleotide will become deselected. If you click on an empty 
portion of the window, all selected nucleotides will deselect. 
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□ Rn.nidul Template 

XM to map I# Hues: 2 UC 

Figure A-10 Select the bold U nucleotide 

A group selection can be performed by keeping the mouse button depressed and dragging, as 
shown in Figure A-11. While dragging, a selection rectangle will appear; once you let up on the 
mouse button, anything within this rectangle will be selected. This is an easy method of selecting a 
group of contiguous nucleotides. Figure A-12 shows the results of a group selection. Notice that 
the hidden nucleotide bar did not appear in the window even though a bold nucleotide is in the 
group of selected nucleotides. The rule is that the hidden nucleotide bar only appears when a 
single, bold nucleotide has been selected. Again, to deselect all selected nucleotides, click the 
mouse on an empty portion of the window. 

□ Rn.nidul Template 

Figure A-11 Selection of a group of nucleotides 
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The last selection mechanism allows you to select those pesky nucleotides that don't easily fit into 
the selection rectangle. For example, assume that you have selected nucleotides as shown in 
Figure A-11 and that you want to select the G and C as shown by number 1 at the top of Figure 
A-12. To select the G nucleotide without deselecting everything else, keep the shift key pressed 
and click on the G. Do the same thing to select the C. 

Assume that U and Gas shown by number 2 in Figure A-12 are to be deselected. Again, press the 
shift key and click the U. Keep the shift key down, and click the G. The U and G have become 
deselected without altering the selections of any other of the nucleotides in the group. The shift­
click mechanism acts as a toggle. If there is a shift-click on a selected nucleotide, then it is 
toggled to its deselected state. Conversely, a shift-click on a deselected nucleotide selects it. 
This mechanism allows you to add and remove nucleotides from the selection area without 
affecting those nucleotides already selected. 

Rn.nidul Template 

Figure A-12 Examples of selection and deselection 

To drag the selected group of nucleotides, click the mouse on any of the selected nucleotides and 
keep the mouse button pressed down while dragging. An outline of the drag region appears during 
the drag to aid you in the placement of the dragged nucleotides, as demonstrated in Figure A-13. 
When the drag is complete, all nucleotides within the selection list are off set to their new position. 
Note that the bonds move along with their respective nucleotides. Thus, if a Watson-Crick C-G 
pair is selected and dragged, the bond goes with the nucleotides to their new position. 
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) □ fln.nidul Template 

¢ l'J f ·::.·::.·::.·:.·.·::.·::.·:·····,=::·:.·:·:·:···::.· ......................... ·.·.· ........... ·_.:.:·:•·;·•::,·,:.::.·.·:.·.· ... ·.-.·.·::.· ... ·.· ....... ·_._-_. ..... ] ¢ ~ 

Figure A-13 Group dragging 

Mapping Nucleotides 

The goal of this section is to demonstrate how to map nucleotides that have not been associated 
with ~reen positions. See the User's Manual for more detailed information on nucleotide 
mappmg . 

Before getting started, revert to the saved version of the template file. If the window from the last 
session is still up, close by by selecting the Close item from the File menu. If you are asked if 
you want to save the file, click on the No button. Now read in the saved file: select Open from 
the File menu, and in the An.nidul folder, open the Tutorial Template file. Scroll to the same area 
that you were at in the last section. See Figure A-8 for the roadmap. 

Select the bold U nucleotide as shown in Figure A-15. The hidden nucleotide bar appears, and 
indicates that there is an insertion of 2 nucleotides, U and C, on the 3' side of the bold U. It is 
important to always place the inserted nucleotide on the 3' side of the bold nucleotide, as shown in 
Figure A-14. Thus, after the two hidden nucleotides (UC) are inserted, the primary structure of 
the loop will be GUll.CGC, where the underlined portion of the sequence segment is the part that 
appears in the hidden nucleotide bar. 
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D nn.nidul Template 

XM to map I# Hues: 2 UC 
i.; G 
G o A, 
A.-if," 

U C 
c-G 
<,-C 
U • G 

A.U • G 
C-<, 
C-G 
C-G 

A.U • G 
A. 

Ac-G 
C-G 

BJ 

/LIJ/ mm 

5, s1·de / ' mm 
3' Side~ 

Figure A-14 Map hidden nucleotides on the 5' side of the bold nucleotide 

Before the two new nucleotides are mapped to screen positions, make room for them by arranging 
the hairpin loop as shown in Figure A-15. 

□ nn.nidul Template 
XM to map I u Hues: 2 UC 

C G 
G o A, 
A.-if," 

u lj 

c-G 
<,-C 
U • G 

A.U • G 
C-<, 
C-G 
C-G 

A.U • G 
A. 

Ac-G 
C-G 
G C 

LIJ G 

Figure A-15 Make room for the hidden nucleotides 

BJ 

Reselect the bold U nucleotide if it is not already selected . Now enter nucleotide map mode by 
selecting the Map Hidden item from the Nucleotide menu or typing 3€:M, the keyboard 
equivalent (Figure A-16). Look at the Nucleotide menu again. Notice that the text of the last 
menu item has changed to Exit Map (Figure A-17), but that it still has the 3€:M keyboard 
equivalent associated with it. You can toggle back and forth between map mode and normal mode 
by using 3€:M or the Map menu item in the Nucleotide menu . If you haven't already done so, 
exit map mode by typing 3€:M or selecting the Exit Map item from the Nucleotide menu. It is 
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convenient to toggle between modes, when, for example, there are 100 hidden nucleotides. You 
can enter map mode, map 10 nucleotides, and then exit map mode so that you can arrange the 10 
nucleotides into their appropriate positions. 

Nucleotide 
rorm Bond ,i(,r 
Hn1<lk Bond ~)(,H 

Map Hidden :~:M 

Figure A-16 Nucleotide menu with Map Hidden option 

Nucleotide 
rorm Borni ,](,r 
HrH<lk Hond ,](,B 

[Hit Map ~M 

Figure A-17 Nucleotide menu with Exit Map option 

Re-enter map mode by typing 3€:M or selecting Map Hidden from the Nucleotide menu. Once 
you enter map mode, the cursor changes to a cross-hair ( + ). Note that the cursor changes back to 
an arrow when the mouse is moved outside of the work area of the window. When the cursor is 
moved back into the window, it changes back to the cross-hair. You can now the click the cross 
hair at the position in the window where the first hidden nucleotide (U) is to be placed. Figure A-
18 shows the general position where you should stamp the first hidden nucleotide. 

After the first nucleotide has been stamped, notice that the hidden nucleotide bar has changed to 
reflect the fact that only one nucleotide remains to be mapped. Also, the nucleotide that was just 
mapped to a screen position is now bold and the previously bold nucleotide is now normal sized. 
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' ) □ Rn.nidul Template 

~M to quit I# Nucs: 1 C 
U C 
c-G 
o::;-c 
u • (; 

AU • o::; 
C-o::; 
C-G 
C-G 

AU• o::; 
A 

Ac-o::; 
C-G 
G C 

U G 

LIJ + 

BJ 
0 
m 

¢ 1::1 1::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::1 ¢ 12:] 
Figure · A-18 Map the first hidden nucleotide to a screen position 

Map the final nucleotide (C) to its screen position . Notice that the hidden nucleotide bar 
disappears after you map the last nucleotide. Thus, once you are finished mapping a given 
sequence of invisible nucleotides, you are automatically transferred out of map mode. Figure A-19 
shows the final result after mapping the 2 hidden nucleotides to screen positions. 

) Forming and Breaking Bonds 

) 

Bonds can only be manipulated at well-defined times . For example, if you look at the 
Nucleotide menu as shown in Figure A-17, you will notice that the bonding menu items are 
completely disabled . To form a bond, you must select two nucleotides that are bondable. For 
example , if you select a nucleotide A and select another nucleotide C, you cannot form a bond. 
The only legal bonds that can be formed in gRNAid are Watson-Crick (A-U, G-C), and 
noncannonical (AoG,G 0 U) bonds. Select the G and C bonds as shown in Figure A-19 by either 
using the group drag or shift-click selection mechanism. Now select the Form Bond item from 
the Nucleotide menu. A Watson-Crick bond is formed. 

[Note: At times when one tries to form a new horizontal/vertical Watson-Crick 
bond, the bond is not drawn on the screen. Use the Redraw menu option to 
correctly draw the bond.] 

To break a bond, you must select two nucleotides that are currently bonded together. Select any 
two nucleotides that are bonded together. Break the bond by selecting the Break Bond item from 
the Nucleotide menu. Don't forget to bond it back together again before moving onto the next 
section. 

[Note: At times when one tries to break a horizontal/vertical Watson-Crick bond, 
the bond is not removed from the screen. Again, use the Redraw menu option.] 
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IA 

Potpourri 

Rn.nidul Template 
A. 
(; C 

U C 
c-G 
<;-C 
u • (; 

AU • <; 
C-<; 
C -<; 
C-<; 

AU• <; 
A. 

Ac-<; 
C-<; 
5] '.ii 

Figure A-19 Select the G and C to form a bond 

The rest of this tutorial examines other handy features of gRNAid. First let's examine the Show 
Backbone feature . For the sake of this exercise, swap the U and G nucleotides as shown in 
Figure A-20. 

□ Rn.nidul Template 

¢ I.ii Ii. .. :.::.·.·:.·.·::·:·.·.:::·:·:·:·:·::·:·::::.·:::::.::.:.:.:.:.:.:.·.::.·.· .. :.·::·:·:·:·.·.·:·:·:·:·:·:·:·:·:·:·:·:·:·::::·.· ... ·.·::.·::. ·:J ¢ 12:J 
Figure A-20 The G and U have been swapped (see Figure A-19) 

Select the Show Backbone item from the Structure menu. Notice that each nucleotide is now 
connected to its neighbors by a line. This dot-to-dot illustration is a powerful way of looking at the 
primary structure in a graphical way. Areas of chaos in the window denote areas where the 
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, ) apparent primary structure is incorrect, as shown in Figure A-21. Tum the backbone off by 
selecting the Show Backbone menu item, which acts as a toggle. Swap the G and U back to 
their former screen positions . 

[Note: The screen is not updated properly when Show Backbone is on and 
nucleotides are dragged around. To get an updated backbone, use the Redraw 
menu item from the Structure menu.] 

An.nidul Template 

Figure A-21 Show backbone 

Now change the font to Helvetica and the font size to 12 pt as demonstrated in Figure A-22. Be 
patient; when font or font size is changed, gRNAid must recalculate bonding screen position 
information for each bond in the secondary structure. 
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Cairo 
Chicago 
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Courier 
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Monaco 
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✓Times 
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{D [j){l 

✓~ [j){l 

fl(D [j)fJ 

00 [j)fJ 

0 ~ U)fJ 
0 {D U)fJ 

~~ U)fJ 

Figure A-22 Changing the font and font size 

Next, save the Tutorial Template as a PICT file so other, more powerful drawing programs (such 
as MacDraw®) can be used to edit the secondary structure. From the File menu, select the Save 
As hierarchical menu and then select the PI CT ... menu option as shown in Figure A-23. Save 
the PICT file in the An.nidul folder. Once the file is saved, any drawing program that reads PICT 
files can read in this newly created PICT file. To determine if a particular drawing program can 
read PICT files, refer to its documentation. 

A-14 



N(~W )}{,N 

Open 880 

Close 88W 

Page Setup ... 
Print ... 

Quit 880 
Figure A-23 

To print the secondary structure, use the Print ... menu options under the File menu. The 
gRNAid program only prints one page. If the secondary structure is larger then one physical page, 
gRNAid will shrink the secondary structure to fit the page before printing. 

You have now completed the gRNAid tutorial and are considered dangerous. For general 
gRNAid information, refer to the gRNAid User's Manual in Chapter 4. 
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