7,312 research outputs found

    Kajian Kelayakan Sistem Photovoltaik Sebagai Pembangkit Daya Listrik Skala Rumah Tangga (Studi Kasus Di Gedung Vedc Malang)

    Full text link
    Pemakaian sistem photovoltaik di gedung VEDC Malang yang digunakan untuk mensuplai beban pertamanan adalah salah satu contoh aplikasi pemanfaatan sistem photovoltaik untuk memanfaatkan energi surya.Hasil kajian penggunaan sistem photovoltaik untuk beban pertamanan (yang diasumsikan sebagai beban rumah tangga) menunjukkan bahwa prosentase jatuh tegangan pada sistem photovoltaik terbesar terjadi pada saat kondisi cuaca mendung dan jatuh tegangan terkecil terjadi pada saat kondisi cuaca cerah. Hasil analisis juga menunjukkan bahwa modul surya dan kemampuan baterai yang digunakan juga tidak bekerja secara efisien. Pada aspek ekonomis, biaya per kWh sistem photovoltaik juga lebih mahal apabila dibandingkan dengan beaya per kWh dari listrik PT PLN.Akhirnya dapat disimpulkan bahwa penggunaan sistem photovoltaik dengan studi kasus di gedung VEDC Malang masih belum efisien dan mahal

    Peningkatan Daya Output Photovoltaik Dengan Penambahan Lapisan Kaca Film Pada Permukaannya

    Get PDF
    One of the parameters that affect photovoltaic output is temperature. The optimum working temperature of photovoltaic is in the range of 25oC. Any increase in temperature will cause a decrease in photovoltaic output. Window film is one of the most widely used materials to block heat while still being able to pass sunlight. The main characteristic of window film that can block heat is known as the IRR (Infra Red Rejected) and the ability to pass light is known as the VLT (Visible Light Transmittance). The greater the VLT, the smaller its ability to block heat, and vice versa. In its application to photovoltaics, it is necessary to find and test suitable window film for increasing the photovoltaic output power. In this paper, the results of testing of 3 types of window films with different VLT, the highest, medium and low VLT films chosen according to the market, namely VLT: 90%, 72% and 60%. The third window film is applied by sticking it to the surface of the photovoltaic. The test is carried out by comparing it with standard photovoltaic (without window film) on sunny weather from 10:00 to 14:00 each for 3 days. The results showed that photovoltaic film coated with 90% VLT was able to increase the average output power by +49.36%, while  those coated with 72% and 60% VLT had decreased power respectively -6.53% and -26.20 % Keywords : Photovoltaic power, Window film, Heat reductionAbstrakSalah satu parameter yang mempengaruhi output photovoltaik adalah temperatur. Temperatur kerja optimum photovoltaik berada pada kisaran 25oC. Setiap kenaikan temperatur akan menyebabkan penurunan output photovoltaik. Kaca film adalah salah satu material yang banyak digunakan untuk memblok panas namun tetap mampu melewatkan cahaya matahari. Karakteristik utama kaca film yang dapat memblok panas dikenal dengan istilah IRR (Infra Red Rejected) dan kemampuan melewatkan cahaya dikenal dengan istilah VLT (Visible Light Transmittance). Semakin besar VLT maka semkin kecil kemampuannya memblok panas, demikian juga sebaliknya. Dalam aplikasinya pada photovoltaik, perlu dicari dan diuji  kaca film yang sesuai untuk peningkatan daya output photovoltaik. Dalam tulisan ini diuraikan hasil pengujian 3 jenis kaca film dengan VLT yang berbeda, dipilih kaca film dengan VLT tertinggi, sedang dan rendah sesuai yang ada di pasaran, yaitu VLT: 90%, 72% dan 60%. Ketiga kaca film tersebut diaplikasikan dengan cara ditempelkan pada permukaan photovoltaik. Pengujian dilakukan dengan membandingkannya dengan photovoltaik standar (tanpa kaca film) pada cuara cerah dari jam 10.00 hingga jam 14.00 masing-masing selam 3 hari. Hasilnya menunjukkan photovoltaik dilapisi kaca film dengan VLT 90% mampu meningkatkan daya output rata-rata 49,36%, sementara yang dilapisi kaca film dengan VLT 72% dan 60 % mengalami penurunan daya berturut-turut  -6,53 % dan -26,20% Kata Kunci : Daya Photovoltaik, Kaca film, Reduksi pana

    Floating solar panel park

    Get PDF
    Treball desenvolupat dins el marc del programa 'European Project Semester'.This Final Report is the culmination of a four month long design study on floating solar panel park feasibility in Vaasa, Finland. The Floating Ideas Team was tasked with coming up with a design that would not only work, but also make a profit. The team focused a lot of time on initial research, an iterative design process, and experiments to gather information that could not be found during the research phase. In this report, one can expect to find the major findings from research in many different areas such as location, panel design, flotation design, cooling techniques, and efficiency adding techniques. The first takeaway is that implementing floating solar parks in Finland would require adding efficiency techniques such as mirrors or concentrators. Second, how the panels are placed means a lot in a location so far north. Placing the panels far away from each other and horizontally will reduce the negative impact of shadows. And third, the rotation of the structure is important in increasing efficiency. Multiple axis tracking is not necessary, but tracking in the vertical axis can add a 50% increase in power generated. This research then lead into the defining of four initial designs which were eventually paired down into one. The largest factors leading to the change in design were the combination of rotation and anchoring methods, the flotation structure, and the structure required hold the panel modules together. In the end, the final design is a modular circular design with panels and mirrors to help add efficiency, approximately 37%. From there, an economic and environmental feasibility study was done and for both, this design was deemed feasible for Finland. With the design, detailed in this report, it would be possible to implement this and make a profit off of it, leading the team to believe that this should be implemented in places looking for alternatives for renewable energy production

    Penentuan Daya Maksimum Photovoltaik Dengan Metode Group

    Full text link
    The maximum power point (MPP) is equivalent to maximum IxV at the I-V curve under G and T conditions. Characteristic and performance of the solar cell, module photovoltaic and solar generator of the photovoltaic system is possible to be evaluated through the MPP. The relationship among model, parameters and constants are expressed by a mathematical model of the exponential equation. Calculation of the MPP value at the intensity irradiation (G) and the cell temperature (T), the maximum voltage (Vmax) are fixed firstly by the current output equal to zero. The voltage output (Vout) is slowly dropped step by step (V=Vmax – n DV, where n = 1, 2, 3, . . . . m) and the current output (I) is founded. The MPPn (Iout x Vout) must be compared to the previous value of the MPPn-1 or MPPn – MPPn-1 ³ 0 Calculating process: the current-voltage (I-V) output, the MPP value is relative complicated and involves measured datum at the various irradiation and cell temperature. To simplifythe calculation of the MPP and I-V output, the group method is used to allocate the each datum [ Gn,Tn, In(In1, In2, In3, . . . Inm), Vn(Vn1, Vn2, Vn3, . . . Vnm), MPPn, Qn, Hn, . . . etc] in its dimensions [ {G1, G2,G3, . . . .Gn}, {T1, T2, T3, . . . .Tn}, {I1, I2, I3, . . . .In}, {V1, V2, V3, . . . .Vn}, {MPP1, MPP2, MPP3, . . ..MPPn}, {Q1, Q2, Q3, . . . .Qn},etc ]

    Simulation of nanostructure-based and ultra-thin film solar cell devices beyond the classical picture

    Get PDF
    In this paper, an optoelectronic device simulation framework valid for arbitrary spatial variation of electronic potentials and optical modes, and for transport regimes ranging from ballistic to diffusive, is used to study non-local photon absorption, photocurrent generation and carrier extraction in ultra-thin film and nanostructure-based solar cell devices at the radiative limit. Among the effects that are revealed by the microscopic approach and which are inaccessible to macroscopic models is the impact of structure, doping or bias induced nanoscale potential variations on the local photogeneration rate and the photocarrier transport regime.Comment: 15 pages, 10 figure

    Von Sand und Sonne zu Elektrizität und Wasserstoff : Polysilane: Bausteine einer zukünftigen Silicium-Technologie

    Get PDF
    Die Sonne strahlt weltweit pro Tag genügend Licht ein, um den Weltenergiebedarf für ein ganzes Jahr abzudecken. Somit ist sie die Quelle aller erneuerbarer Energien, denn neben der Erzeugung von Elektrizität aus Licht (Photovoltaik) regelt sie die Gezeiten und damit auch Wind und Wellen, die bei der Windkraft und in Gezeitenkraftwerken genutzt werden. Außerdem liefert sie die Energie für die Photosynthese in nachwachsenden Rohstoffen. Es gibt diesbezüglich nur ein grundlegendes Problem: Erneuerbare Energien fi nden wir in ausreichender Menge vor allem an Stellen mit mangelnder Infrastruktur. Sonnenenergie gibt es am meisten in der Wüste, Wind auf dem Meer und Biomasse im Dschungel. An Orten hoher Industrialisierung und damit auch hoher Bevölkerungsdichte ist für die »Erneuerbaren « so gut wie kein Platz. Es gibt demnach kein Energieproblem, aber ein Problem der Energiespeicherung und des Energietransportes

    STUDI LITERATUR SISTEM MONITORING DAYA PEMBANGKIT LISTRIK TENAGA SURYA

    Get PDF
    Pembangkit energi listrik terbarukan cukup efektif dalam menambah persediaan energi listrik, bahkan jika dalam jumlah yang besar dapat mengganti sistem pembangkit energi listrik konvensional menjadi energi listrik terbarukan yang ramah terhadap lingkungan. Pembangkit listrik tenaga surya mulai dikembangkan oleh produsen listrik dari pembangkit listrik secara mikro sampai dengan sistem tenaga listrik interkoneksi yang besar dan luas. Pada sistem pembangkit listrik terbarukan diperlukan monitoring daya output secara terus menerus dan secara real-time agar dapat mengetahui kondisi sistem pembangkit listrik tenaga surya secara langsung dan dapat memperoleh informasi apakah kinerja dari panel surya sesuai dengan yang diharapkan. Tujuan dari studi literatur ini adalah untuk mempelajari dan menguraikan prinsip kerja dari sistem pemantauan daya pada pembangkit listrik tenaga surya. Jenis kerangka kerja pada sistem monitoring tenaga surya mencakup berbagai macam tipe mikrokontroller, sensor radiasi matahari, sensor tegangan, sensor arus serta sistem interface menggunakan webserver, lcd atau sejenisnya yang berfungsi untuk menampilkan data secara real time kapan dan dimanapun. Studi literature ini diperoleh dari penelitian-penelitian ilmiah dari rentan tahun 2010-2020 dengan memanfaatkan pencarian jurnal online seperti Google Schoolar, IEEE explore dan open access library (OAL). Kata kunci: Monitoring daya, Photovoltaik, Sensor radiasi, Sensor teganga
    corecore