1,233 research outputs found

    Ausschreibung der SCG-Preise 2011 / Appel à candidatures pour les Prix SSC 2011

    Get PDF

    Ausschreibung der SCG-Preise 2010 / Appel à candidatures pour les Prix SSC 2010

    Get PDF

    Ausschreibung der SCG-Preise 2010 / Appel à candidatures pour les Prix SSC 2010

    Get PDF

    Ausschreibung der SCG-Preise 2011 / Appel à candidatures pour les Prix SSC 2011

    Get PDF

    Méthodes simples de recherche bibliographique en chimie organique

    Get PDF

    Convegno fotochim fotobiol 2016 - programma

    Get PDF

    Schwerpunkte des Chemiestudiums an der HTL-Chur: Teil 2: Instrumental-Analytik

    Get PDF

    Evaluation of a TiO2 photocatalysis treatment on nitrophenols and nitramines contaminated plant wastewaters by solid-phase extraction coupled with ESI HPLC–MS

    Get PDF
    Nitration reactions of aromatic compounds are commonly involved in different industrial processes for pharmaceutical, pesticide or military uses. For many years, most of the manufacturing sites used lagooning systems to treat their process effluents. In view of a photocatalytic degradation assay, the wastewater of a lagoon was investigated by using HPLC coupled with mass spectrometry. The wastewater was highly concentrated in RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro- 1,3,5,7-tetranitro-1,3,5,7-tetrazocine) and two herbicides Dinoterb (2-tert-butyl-4,6-dinitrophenol) and Dinoseb (2-sec-butyl-4,6-dinitrophenol). First of all, an analytical method using solid-phase extraction (SPE) combined with HPLC ESI MS/MS was put in work for identification and titration of RDX, HMX and the two dinitrophenols in a complex natural matrix. Then, the UV/TiO2 treatment was investigated for pollutants removal. Dinitrophenolic compoundswere significantly degraded after a 8-h-exposition of the wastewater/TiO2 suspension, whereas RDX and HMX were poorly affected

    Modeling Acidification Recovery on Threatened Ecosystems: Application to the Evaluation of the Gothenburg Protocol in France

    Get PDF
    To evaluate the acid deposition reduction negotiated for 2010 within the UNECE LRTAP Gothenburg Protocol, sulphur and nitrogen deposition time-series (1880–2100) were compared to critical loads of acidity on five French ecosystems: Massif Central basalt (site 1) and granite (2); Paris Bassin tertiary sands (3); Vosges mountains sandstone (4) and Landes eolian sands (5). The SAFE model was used to estimate the response of soil solution pH and [A1] [BC] ratio to the deposition scenario. Among the five sites, critical loads were exceeded in the past at sites 3, 4 and 5. Sites 3 and 4 were still expected to exceed in 2010, the Protocol year. Further reduction of atmospheric deposition, mainly nitrogen, would be needed to achieve recovery on these ecosystems. At sites 3, 4 and 5, the delay between the critical load exceedance and the violation of the critical chemical criterion was estimated to be 10 to 30 years in the top soil and 50 to 90 years in the deeper soil. At site 5, a recovery was expected in the top soil in 2010 with a time lag of 10 years. Unexpectedly, soil pH continued to decrease after 1980 in the deeper soil at sites 2 and 5. This time lag indicated that acidification moved down the soil profile as a consequence of slow base cation depletion by ion exchange. This delayed response of the soil solution was the result of the combination of weathering rates and vegetation uptake but also of the relative ratio between base cation deposition and acid compounds
    corecore