11 research outputs found

    Mitigating the effects of atmospheric distortion using DT-CWT fusion

    Get PDF
    This paper describes a new method for mitigating the effects of atmospheric distortion on observed images, particularly airborne turbulence which degrades a region of interest (ROI). In order to provide accurate detail from objects behind the dis-torting layer, a simple and efficient frame selection method is proposed to pick informative ROIs from only good-quality frames. We solve the space-variant distortion problem using region-based fusion based on the Dual Tree Complex Wavelet Transform (DT-CWT). We also propose an object alignment method for pre-processing the ROI since this can exhibit sig-nificant offsets and distortions between frames. Simple haze removal is used as the final step. The proposed method per-forms very well with atmospherically distorted videos and outperforms other existing methods. Index Terms — Image restoration, fusion, DT-CWT 1

    DRIMET: Deep Registration for 3D Incompressible Motion Estimation in Tagged-MRI with Application to the Tongue

    Full text link
    Tagged magnetic resonance imaging (MRI) has been used for decades to observe and quantify the detailed motion of deforming tissue. However, this technique faces several challenges such as tag fading, large motion, long computation times, and difficulties in obtaining diffeomorphic incompressible flow fields. To address these issues, this paper presents a novel unsupervised phase-based 3D motion estimation technique for tagged MRI. We introduce two key innovations. First, we apply a sinusoidal transformation to the harmonic phase input, which enables end-to-end training and avoids the need for phase interpolation. Second, we propose a Jacobian determinant-based learning objective to encourage incompressible flow fields for deforming biological tissues. Our method efficiently estimates 3D motion fields that are accurate, dense, and approximately diffeomorphic and incompressible. The efficacy of the method is assessed using human tongue motion during speech, and includes both healthy controls and patients that have undergone glossectomy. We show that the method outperforms existing approaches, and also exhibits improvements in speed, robustness to tag fading, and large tongue motion.Comment: Accepted to MIDL 2023 (full paper

    Normative mammillary body volumes: From the neonatal period to young adult

    Get PDF
    The mammillary bodies may be small, but they have an important role in encoding complex memories. Mammillary body pathology often occurs following thiamine deficiency but there is increasing evidence that the mammillary bodies are also compromised in other neurological conditions and in younger ages groups. For example, the mammillary bodies are frequently affected in neonates with hypoxic-ischemic encephalopathy. At present, there is no normative data for the mammillary bodies in younger groups making it difficult to identify abnormalities in neurological disorders. To address this, the present study set out to develop a normative dataset for neonates and for children to young adult. A further aim was to determine whether there were laterality or sex differences in mammillary body volumes. Mammillary body volumes were obtained from MRI scans from 506 participants across two datasets. Measures for neonates were acquired from the Developing Human Connectome Project database (156 male; 100 female); volumes for individuals aged 6–24 were acquired from the NICHE database (166 males; 84 females). Volume measurements were acquired using a semi-automated multi-atlas segmentation approach. Mammillary body volumes increased up to approximately 15 years-of-age. The left mammillary body was marginally, but significantly, larger than the right in the neonates with a similar pattern in older children/young adults. In neonates, the mammillary bodies in males were slightly bigger than females but no sex differences were present in older children/young adults. Given the increasing presentation of mammillary body pathology in neonates and children, these normative data will enable better assessment of the mammillary bodies in healthy and at-risk populations

    Cardiac motion estimation from medical images: a regularisation framework applied on pairwise image registration displacement fields

    Get PDF
    Accurate cardiac motion estimation from medical images such as ultrasound is important for clinical evaluation. We present a novel regularisation layer for cardiac motion estimation that will be applied after image registration and demonstrate its effectiveness. The regularisation utilises a spatio-temporal model of motion, b-splines of Fourier, to fit to displacement fields from pairwise image registration. In the process, it enforces spatial and temporal smoothness and consistency, cyclic nature of cardiac motion, and better adherence to the stroke volume of the heart. Flexibility is further given for inclusion of any set of registration displacement fields. The approach gave high accuracy. When applied to human adult Ultrasound data from a Cardiac Motion Analysis Challenge (CMAC), the proposed method is found to have 10% lower tracking error over CMAC participants. Satisfactory cardiac motion estimation is also demonstrated on other data sets, including human fetal echocardiography, chick embryonic heart ultrasound images, and zebrafish embryonic microscope images, with the average Dice coefficient between estimation motion and manual segmentation at 0.82–0.87. The approach of performing regularisation as an add-on layer after the completion of image registration is thus a viable option for cardiac motion estimation that can still have good accuracy. Since motion estimation algorithms are complex, dividing up regularisation and registration can simplify the process and provide flexibility. Further, owing to a large variety of existing registration algorithms, such an approach that is usable on any algorithm may be useful

    Large-Scale Optimization Methods with Application to Design of Filter Networks

    Full text link

    Fast imaging in non-standard X-ray computed tomography geometries

    Get PDF
    corecore