9 research outputs found

    The birth of the strong components

    Full text link
    Random directed graphs D(n,p)D(n,p) undergo a phase transition around the point p=1/np = 1/n, and the width of the transition window has been known since the works of Luczak and Seierstad. They have established that as n→∞n \to \infty when p=(1+μn−1/3)/np = (1 + \mu n^{-1/3})/n, the asymptotic probability that the strongly connected components of a random directed graph are only cycles and single vertices decreases from 1 to 0 as μ\mu goes from −∞-\infty to ∞\infty. By using techniques from analytic combinatorics, we establish the exact limiting value of this probability as a function of μ\mu and provide more properties of the structure of a random digraph around, below and above its transition point. We obtain the limiting probability that a random digraph is acyclic and the probability that it has one strongly connected complex component with a given difference between the number of edges and vertices (called excess). Our result can be extended to the case of several complex components with given excesses as well in the whole range of sparse digraphs. Our study is based on a general symbolic method which can deal with a great variety of possible digraph families, and a version of the saddle-point method which can be systematically applied to the complex contour integrals appearing from the symbolic method. While the technically easiest model is the model of random multidigraphs, in which multiple edges are allowed, and where edge multiplicities are sampled independently according to a Poisson distribution with a fixed parameter pp, we also show how to systematically approach the family of simple digraphs, where multiple edges are forbidden, and where 2-cycles are either allowed or not. Our theoretical predictions are supported by numerical simulations, and we provide tables of numerical values for the integrals of Airy functions that appear in this study.Comment: 62 pages, 12 figures, 6 tables. Supplementary computer algebra computations available at https://gitlab.com/vit.north/strong-components-au

    Latent Space Representations of Hypergraphs

    Get PDF
    The increasing prevalence of relational data describing interactions among a target population has motivated a wide literature on statistical network analysis. In many applications, interactions may involve more than two members of the population and this data is more appropriately represented by a hypergraph. In this paper we present a model for hypergraph data which extends the latent space distance model of Hoff et al. (2002) and, by drawing a connection to constructs from computational topology, we develop a model whose likelihood is inexpensive to compute. We obtain posterior samples via an MCMC scheme and we rely on Bookstein coordinates to remove the identifiability issues associated with the latent representation. We demonstrate that the latent space construction imposes desirable properties on the hypergraphs generated in our framework and provides a convenient visualisation of the data. Furthermore, through simulation, we investigate the flexibility of our model and consider estimating predictive distributions. Finally, we explore the application of our model to a real world co-occurrence dataset

    Advancements in latent space network modelling

    Get PDF
    The ubiquity of relational data has motivated an extensive literature on network analysis, and over the last two decades the latent space approach has become a popular network modelling framework. In this approach, the nodes of a network are represented in a low-dimensional latent space and the probability of interactions occurring are modelled as a function of the associated latent coordinates. This thesis focuses on computational and modelling aspects of the latent space approach, and we present two main contributions. First, we consider estimation of temporally evolving latent space networks in which interactions among a fixed population are observed through time. The latent coordinates of each node evolve other time and this presents a natural setting for the application of sequential monte carlo (SMC) methods. This facilitates online inference which allows estimation for dynamic networks in which the number of observations in time is large. Since the performance of SMC methods degrades as the dimension of the latent state space increases, we explore the high-dimensional SMC literature to allow estimation of networks with a larger number of nodes. Second, we develop a latent space model for network data in which the interactions occur between sets of the population and, as a motivating example, we consider a coauthorship network in which it is typical for more than two authors to contribute to an article. This type of data can be represented as a hypergraph, and we extend the latent space framework to this setting. Modelling the nodes in a latent space provides a convenient visualisation of the data and allows properties to be imposed on the hypergraph relationships. We develop a parsimonious model with a computationally convenient likelihood. Furthermore, we theoretically consider the properties of the degree distribution of our model and further explore its properties via simulation
    corecore