702 research outputs found

    Phase Transition for Glauber Dynamics for Independent Sets on Regular Trees

    Full text link
    We study the effect of boundary conditions on the relaxation time of the Glauber dynamics for the hard-core model on the tree. The hard-core model is defined on the set of independent sets weighted by a parameter λ\lambda, called the activity. The Glauber dynamics is the Markov chain that updates a randomly chosen vertex in each step. On the infinite tree with branching factor bb, the hard-core model can be equivalently defined as a broadcasting process with a parameter ω\omega which is the positive solution to λ=ω(1+ω)b\lambda=\omega(1+\omega)^b, and vertices are occupied with probability ω/(1+ω)\omega/(1+\omega) when their parent is unoccupied. This broadcasting process undergoes a phase transition between the so-called reconstruction and non-reconstruction regions at ωrlnb/b\omega_r\approx \ln{b}/b. Reconstruction has been of considerable interest recently since it appears to be intimately connected to the efficiency of local algorithms on locally tree-like graphs, such as sparse random graphs. In this paper we show that the relaxation time of the Glauber dynamics on regular bb-ary trees ThT_h of height hh and nn vertices, undergoes a phase transition around the reconstruction threshold. In particular, we construct a boundary condition for which the relaxation time slows down at the reconstruction threshold. More precisely, for any ωlnb/b\omega \le \ln{b}/b, for ThT_h with any boundary condition, the relaxation time is Ω(n)\Omega(n) and O(n1+ob(1))O(n^{1+o_b(1)}). In contrast, above the reconstruction threshold we show that for every δ>0\delta>0, for ω=(1+δ)lnb/b\omega=(1+\delta)\ln{b}/b, the relaxation time on ThT_h with any boundary condition is O(n1+δ+ob(1))O(n^{1+\delta + o_b(1)}), and we construct a boundary condition where the relaxation time is Ω(n1+δ/2ob(1))\Omega(n^{1+\delta/2 - o_b(1)})

    Phase transition for the mixing time of the Glauber dynamics for coloring regular trees

    Full text link
    We prove that the mixing time of the Glauber dynamics for random k-colorings of the complete tree with branching factor b undergoes a phase transition at k=b(1+ob(1))/lnbk=b(1+o_b(1))/\ln{b}. Our main result shows nearly sharp bounds on the mixing time of the dynamics on the complete tree with n vertices for k=Cb/lnbk=Cb/\ln{b} colors with constant C. For C1C\geq1 we prove the mixing time is O(n1+ob(1)lnn)O(n^{1+o_b(1)}\ln{n}). On the other side, for C<1C<1 the mixing time experiences a slowing down; in particular, we prove it is O(n1/C+ob(1)lnn)O(n^{1/C+o_b(1)}\ln{n}) and Ω(n1/Cob(1))\Omega(n^{1/C-o_b(1)}). The critical point C=1 is interesting since it coincides (at least up to first order) with the so-called reconstruction threshold which was recently established by Sly. The reconstruction threshold has been of considerable interest recently since it appears to have close connections to the efficiency of certain local algorithms, and this work was inspired by our attempt to understand these connections in this particular setting.Comment: Published in at http://dx.doi.org/10.1214/11-AAP833 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Reconstruction Threshold for the Hardcore Model

    Full text link
    In this paper we consider the reconstruction problem on the tree for the hardcore model. We determine new bounds for the non-reconstruction regime on the k-regular tree showing non-reconstruction when lambda < (ln 2-o(1))ln^2(k)/(2 lnln(k)) improving the previous best bound of lambda < e-1. This is almost tight as reconstruction is known to hold when lambda> (e+o(1))ln^2(k). We discuss the relationship for finding large independent sets in sparse random graphs and to the mixing time of Markov chains for sampling independent sets on trees.Comment: 14 pages, 2 figure

    Phase ordering after a deep quench: the stochastic Ising and hard core gas models on a tree

    Full text link
    Consider a low temperature stochastic Ising model in the phase coexistence regime with Markov semigroup PtP_t. A fundamental and still largely open problem is the understanding of the long time behavior of \d_\h P_t when the initial configuration \h is sampled from a highly disordered state ν\nu (e.g. a product Bernoulli measure or a high temperature Gibbs measure). Exploiting recent progresses in the analysis of the mixing time of Monte Carlo Markov chains for discrete spin models on a regular bb-ary tree \Tree^b, we tackle the above problem for the Ising and hard core gas (independent sets) models on \Tree^b. If ν\nu is a biased product Bernoulli law then, under various assumptions on the bias and on the thermodynamic parameters, we prove ν\nu-almost sure weak convergence of \d_\h P_t to an extremal Gibbs measure (pure phase) and show that the limit is approached at least as fast as a stretched exponential of the time tt. In the context of randomized algorithms and if one considers the Glauber dynamics on a large, finite tree, our results prove fast local relaxation to equilibrium on time scales much smaller than the true mixing time, provided that the starting point of the chain is not taken as the worst one but it is rather sampled from a suitable distribution.Comment: 35 page

    Glauber dynamics on nonamenable graphs: Boundary conditions and mixing time

    Get PDF
    We study the stochastic Ising model on finite graphs with n vertices and bounded degree and analyze the effect of boundary conditions on the mixing time. We show that for all low enough temperatures, the spectral gap of the dynamics with (+)-boundary condition on a class of nonamenable graphs, is strictly positive uniformly in n. This implies that the mixing time grows at most linearly in n. The class of graphs we consider includes hyperbolic graphs with sufficiently high degree, where the best upper bound on the mixing time of the free boundary dynamics is polynomial in n, with exponent growing with the inverse temperature. In addition, we construct a graph in this class, for which the mixing time in the free boundary case is exponentially large in n. This provides a first example where the mixing time jumps from exponential to linear in n while passing from free to (+)-boundary condition. These results extend the analysis of Martinelli, Sinclair and Weitz to a wider class of nonamenable graphs.Comment: 31 pages, 4 figures; added reference; corrected typo

    Glauber dynamics on trees:Boundary conditions and mixing time

    Full text link
    We give the first comprehensive analysis of the effect of boundary conditions on the mixing time of the Glauber dynamics in the so-called Bethe approximation. Specifically, we show that spectral gap and the log-Sobolev constant of the Glauber dynamics for the Ising model on an n-vertex regular tree with plus-boundary are bounded below by a constant independent of n at all temperatures and all external fields. This implies that the mixing time is O(log n) (in contrast to the free boundary case, where it is not bounded by any fixed polynomial at low temperatures). In addition, our methods yield simpler proofs and stronger results for the spectral gap and log-Sobolev constant in the regime where there are multiple phases but the mixing time is insensitive to the boundary condition. Our techniques also apply to a much wider class of models, including those with hard-core constraints like the antiferromagnetic Potts model at zero temperature (proper colorings) and the hard--core lattice gas (independent sets)

    Glauber Dynamics on Trees and Hyperbolic Graphs

    Get PDF
    We study continuous time Glauber dynamics for random configurations with local constraints (e.g. proper coloring, Ising and Potts models) on finite graphs with nn vertices and of bounded degree. We show that the relaxation time (defined as the reciprocal of the spectral gap λ1λ2|\lambda_1-\lambda_2|) for the dynamics on trees and on planar hyperbolic graphs, is polynomial in nn. For these hyperbolic graphs, this yields a general polynomial sampling algorithm for random configurations. We then show that if the relaxation time τ2\tau_2 satisfies τ2=O(1)\tau_2=O(1), then the correlation coefficient, and the mutual information, between any local function (which depends only on the configuration in a fixed window) and the boundary conditions, decays exponentially in the distance between the window and the boundary. For the Ising model on a regular tree, this condition is sharp.Comment: To appear in Probability Theory and Related Field
    corecore