research

Glauber Dynamics on Trees and Hyperbolic Graphs

Abstract

We study continuous time Glauber dynamics for random configurations with local constraints (e.g. proper coloring, Ising and Potts models) on finite graphs with nn vertices and of bounded degree. We show that the relaxation time (defined as the reciprocal of the spectral gap λ1λ2|\lambda_1-\lambda_2|) for the dynamics on trees and on planar hyperbolic graphs, is polynomial in nn. For these hyperbolic graphs, this yields a general polynomial sampling algorithm for random configurations. We then show that if the relaxation time τ2\tau_2 satisfies τ2=O(1)\tau_2=O(1), then the correlation coefficient, and the mutual information, between any local function (which depends only on the configuration in a fixed window) and the boundary conditions, decays exponentially in the distance between the window and the boundary. For the Ising model on a regular tree, this condition is sharp.Comment: To appear in Probability Theory and Related Field

    Similar works