8,541 research outputs found

    Multi Site Coordination using a Multi-Agent System

    Get PDF
    A new approach of coordination of decisions in a multi site system is proposed. It is based this approach on a multi-agent concept and on the principle of distributed network of enterprises. For this purpose, each enterprise is defined as autonomous and performs simultaneously at the local and global levels. The basic component of our approach is a so-called Virtual Enterprise Node (VEN), where the enterprise network is represented as a set of tiers (like in a product breakdown structure). Within the network, each partner constitutes a VEN, which is in contact with several customers and suppliers. Exchanges between the VENs ensure the autonomy of decision, and guarantiee the consistency of information and material flows. Only two complementary VEN agents are necessary: one for external interactions, the Negotiator Agent (NA) and one for the planning of internal decisions, the Planner Agent (PA). If supply problems occur in the network, two other agents are defined: the Tier Negotiator Agent (TNA) working at the tier level only and the Supply Chain Mediator Agent (SCMA) working at the level of the enterprise network. These two agents are only active when the perturbation occurs. Otherwise, the VENs process the flow of information alone. With this new approach, managing enterprise network becomes much more transparent and looks like managing a simple enterprise in the network. The use of a Multi-Agent System (MAS) allows physical distribution of the decisional system, and procures a heterarchical organization structure with a decentralized control that guaranties the autonomy of each entity and the flexibility of the network

    Socionic Multi-Agent Systems Based on Reflexive Petri Nets and Theories of Social Self-Organisation

    Get PDF
    This contribution summarises the core results of the transdisciplinary ASKO project, part of the German DFG's programme Sozionik, which combines sociologists' and computer scientists' skills in order to create improved theories and models of artificial societies. Our research group has (a) formulated a social theory, which is able to explain fundamental mechanisms of self-organisation in both natural and artificial societies, (b) modelled this in a mathematical way using a visual formalism, and (c) developed a novel multi-agent system architecture which is conceptually coherent, recursively structured (hence non-eclectic) and based on our social theory. The article presents an outline of both a sociological middle-range theory of social self-organisation in educational institutions, its formal, Petri net based model, including a simulation of one of its main mechanisms, and the multi-agent system architecture SONAR. It describes how the theory was created by a re-analysis of some grand social theories, by grounding it empirically, and finally how the theory was evaluated by modelling its concepts and statements.Multi-Agents Systems, Petri Nets, Self-Organisation, Social Theories

    A distributed knowledge-based approach to flexible automation : the contract-net framework

    Get PDF
    Includes bibliographical references (p. 26-29)

    Workflow-Net Based Cooperative Multi-Agent Systems

    Get PDF
    Workflow-nets are mathematical frameworks that are used to formally describe, model and implement workflows. First, we propose critical section workflow nets (abbreviated WFCSnet). This framework allows feedbacks in workflow systems while ensuring the soundness of the workflow. Feedback is generally not recommended in workflow systems as they threaten the soundness of the system. The proposed WFCSnet allows safe feedback and limits the maximum number of activities per workflow as required. A theorem for soundness of WFCSnet is presented. Serializability, Separability, Quasi-liveness and CS-Properties of WFCSnet are examined and some theorems and lemmas are proposed to mathematically formalize them. In this thesis, we define some formal constructs that we then build upon. We define the smallest formal sub-workflow that we call a unit. We propose some mathematical characteristics for the unit and show how it can be used. We study similarities between units and whether two units can be used interchangeably or not. We then use composites out of simple units to build more complex constructs and we study their properties. We define the concept of cooperation and propose a mathematical definition of the concept. We discuss the concept of task coverage and how it affects cooperation. We claim that task coverage is necessary for any task to be achieved and therefore, a necessity for cooperation. We use mathematical methods to determine the task coverage and the candidate cooperative partners based on their capabilities that can contribute to the desired task. Workflow-net based cooperative behaviour among agents is proposed. First, we propose a cooperative algebra, which takes the desired objective of cooperation as a plan and then transforms this plan into a workflow-net structure describing dependencies and concurrency among sub-workflow elements constituting the overall plan. Our proposed cooperative algebra converts the plan into a set of matrices that model the cooperative workflow among agents. We then propose a cooperative framework with operators that assign tasks to agents based on their capabilities to achieve the required task

    Characterizing Behavioural Congruences for Petri Nets

    No full text
    We exploit a notion of interface for Petri nets in order to design a set of net combinators. For such a calculus of nets, we focus on the behavioural congruences arising from four simple notions of behaviour, viz., traces, maximal traces, step, and maximal step traces, and from the corresponding four notions of bisimulation, viz., weak and weak step bisimulation and their maximal versions. We characterize such congruences via universal contexts and via games, providing in such a way an understanding of their discerning powers

    Socionics: Sociological Concepts for Social Systems of Artificial (and Human) Agents

    Get PDF
    Socionics is an interdisciplinary approach with the objective to use sociological knowledge about the structures, mechanisms and processes of social interaction and social communication as a source of inspiration for the development of multi-agent systems, both for the purposes of engineering applications and of social theory construction and social simulation. The approach has been spelled out from 1998 on within the Socionics priority program funded by the German National research foundation. This special issue of the JASSS presents research results from five interdisciplinary projects of the Socionics program. The introduction gives an overview over the basic ideas of the Socionics approach and summarizes the work of these projects.Socionics, Sociology, Multi-Agent Systems, Artificial Social Systems, Hybrid Systems, Social Simulation

    A cooperative multi-agent robotics system: design and modelling

    Get PDF
    This paper presents the development of the robotic multi-agent system SMART. In this system, the agent concept is applied to both hardware and software entities. Hardware agents are robots, with three and four legs, and an IP-camera that takes images of the scene where the cooperative task is carried out. Hardware agents strongly cooperate with software agents. These latter agents can be classified into image processing, communications, task management and decision making, planning and trajectory generation agents. To model, control and evaluate the performance of cooperative tasks among agents, a kind of PetriNet, called Work-Flow Petri Net, is used. Experimental results shows the good performance of the system

    Representing Conversations for Scalable Overhearing

    Full text link
    Open distributed multi-agent systems are gaining interest in the academic community and in industry. In such open settings, agents are often coordinated using standardized agent conversation protocols. The representation of such protocols (for analysis, validation, monitoring, etc) is an important aspect of multi-agent applications. Recently, Petri nets have been shown to be an interesting approach to such representation, and radically different approaches using Petri nets have been proposed. However, their relative strengths and weaknesses have not been examined. Moreover, their scalability and suitability for different tasks have not been addressed. This paper addresses both these challenges. First, we analyze existing Petri net representations in terms of their scalability and appropriateness for overhearing, an important task in monitoring open multi-agent systems. Then, building on the insights gained, we introduce a novel representation using Colored Petri nets that explicitly represent legal joint conversation states and messages. This representation approach offers significant improvements in scalability and is particularly suitable for overhearing. Furthermore, we show that this new representation offers a comprehensive coverage of all conversation features of FIPA conversation standards. We also present a procedure for transforming AUML conversation protocol diagrams (a standard human-readable representation), to our Colored Petri net representation
    corecore