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ABSTRACT

This paper applies distributed artificial intelligence to the

real-time planning and control of flexible manufacturing systems (FMS)

consisting of asynchronous manufacturing cells. A knowledge-based

approach is used to determine the course of action, resource sharing,

and processor assignments. Within each cell there is an embedded auto-

matic planning system that executes dynamic scheduling and supervises

manufacturing operations. Because of the decentralized control, real-

time task, assignments are carried out by a negotiation process among

cell hosts. The negotiation process is modeled by augmented Petri

nets—the combination of production rules and Petri nets—and is exe-

cuted by a distributed, rule-based algorithm.

Keywords : FMS Scheduling and Control; Distributed Artificial
Intelligence; Networking FMS.





1. Introduction

Flexible automation—automation that can handle a large and con-

stantly changing variety of produced items—has played an increasingly

important role in the efforts to improve the productivity of the manu-

facturing industry (Hutchinson 1984, Merchant 1983). The recent

progress in computer technologies has accelerated the realization of

flexible automation. The use of computers in manufacturing, such as

the computer numerical controlled (CNC) machines, adds programmability

and thus versatility into manufacturing systems. More important, com-

puters also provide on-line execution of manufacturing planning and

decision making. These two capabilities, computerized control and on-

line planning, and decision making are integrated into a well-

orchestrated, automated manufacturing system—referred to as the

Flexible Manufacturing System (FMS)—that can produce wide-ranging

items efficiently.

In implementing FMS, the cellular architecture has emerged as the

most effective and economical organization for the system (Cutkosky

1983, McLean et al . 1983, Ranky 1986, Shaw 1987). Such a system con-

sists of a collection of "manufacturing cells." As shown in Figures 1

and 2, each cell is controlled by a host computer supervising the

activities in the cell. Any cell can communicate with other cells

through a local area network. The corresponding information system is

highly distributed. For instance, the host computers used in the

National Bureau of Standard's research facility range from a VAX

11/780 to 8086- or 68000-based single board computers and multiple
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processor systems. It is thus important to take into account the net-

working features in the planning and control of FMS.

Insert Figures 1 and 2 Here

Intelligent manufacturing planning and control in an FMS requires

knowledge bases that contain information about current tasks, manu-

facturing procedures, and the production environment (McLean et al.

1983). Furthermore, the evolution of the FMS into distributed archi-

tectures has complicated the information processing requirements.

Issues that must be considered include the effective planning and

problem solving in the distributed environment; the structuring of

knowledge bases to facilitate knowledge sharing between system com-

ponents; and the coordination and communication among manufacturing

cells. To achieve these, this paper develops a distributed knowledge-

based approach for manufacturing planning and control. In it, an

embedded nonlinear planning system in each cell generates production

procedures, supervises resource sharing, and guides manufacturing exe-

cutions. This planning system also keeps track of the manufacturing

environment, directing adjustments on the production procedures when

necessary.

Moreover, since a job may consist of a set of tasks to be assigned

to several manufacturing cells, the system needs to supply a coor-

dinating mechanism that, through the communications network, permits the

matching of tasks to cells. To achieve such coordination by decentral-

ized control, three issues need to be addressed:
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(1) the model of the problem-solving process which, through the com-

munications network, dynamically distributes tasks among the cells;

(2) the design of an interface language that enables effective com-

munication among cell hosts; and

(3) the programming and execution of this problem-solving process at

each cell in a decentralized manner.

Following the distributed artificial intelligence framework (Davis

and Smith 1983, Smith 1980), this paper uses the "contract net"

approach to meet these requirements. A network-wide negotiation pro-

cedure is used to ensure orderly information transformation and events

sequencing between asynchronous, cooperating cells. The underlying

idea is to structure the interactions among cells by tasks nego-

tiation.

In order to carry out the process systematically, it is important

to have a good representation of the negotiation process and to capture

the dynamic, concurrent nature of the process. Also, this represen-

tation should be integrated into executable programs to coordinate task

execution.

The augmented Petri net, an integration of production rules and

Petri nets, is used to model the negotiation process. The automation

of this augmented Petri nets leads to a distributed algorithm for task

allocation. Since the procedure is designed to be implemented by a

variant of a rule-based system—i.e., the control production system,

the knowledge-based system in a sense contains two kinds of program

knowledge: the knowledge for task planning and the knowledge for

intercell cooperation.
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The remainder of this paper is organized as follows. Section II

characterizes the distributed artificial intelligence system in the

FMS environment and discusses the planning approach for flexible auto-

mation. Section III shows the use of negotiation process for coor-

dinating the tasks; this process is then represented by the augmented

Petri net model. Section IV illustrates the implementation of the

negotiation process. The final section summarizes the paper.

II. Knowledge-Based Planning

In general, a knowledge-based planning system develops a course of

action for the agents to reach to goals desired. In an FMS, the agents

may be robots, computerized machine-centers, or the host computer of a

cell; they usually can carry out a variety of operations, including

various types of machining, workpiece routing, loading, and unloading

operations (Costa and Garetti 1985). As shown in Figure 3, a

knowledge-based planning system for the FMS has three basic com-

ponents :

Insert Figure 3 Here

(1) the database which serves as the working memory. It contains a

symbolic description of the real world, referred to as the world

model . This world model is represented by the collection of

first-order predicates in the database.

(2) The action model, which describes the transformational effects of

actions that map states to other states. Such transformations are

usually modeled by operators similar to the STRIPS operators

defined in Fikes and Nilsson (1971).
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In addition to the standard STRIPS formalism—which specifies an

action by the add list, delete list, and preconditions—we have also

included two more descriptions for each action—the "resource" used

during the action, and the "duration" of the action.

(3) The inference engine, which directs the plan generation process.

It selects a sequence of operators to achieve the goal state from

a given initial state.

The linear plans can be generated by any STRIPS-like plan genera-

tion system (Fik.es et al . 1972, Fik.es and Nilsson 1971). Such a

planning system can use a backward-chaining method in searching for

the best actions—i.e., it works backward from the goal state and find

a sequence of actions that could produce this goal state from the ini-

tial state . The process of plan generation, then, can be viewed as

finding the solution path in a search tree. The root of the tree is

the goal state, and instances of operators define the branches. The

solution path starts with the root (the goal state) and leads to the

leaves (the initial state), thereby defining the plan.

Within this planning framework, the manufacturing process cor-

responding to each task is modeled by state-changing transformations,

represented by operators. If the manufacturing processes for different

tasks are independent, then, in principle, they can be executed in

parallel. In reality, however, different tasks usually are competing

for machines, tools, and other resources; therefore, the planning

system must take into account the interactions among the processes.

Because the plans generated by these methods are partially ordered,

these methods are called nonlinear planning (Sacerdoti 1977, Shaw and

Whinston 1985, Vere 1983, Wilkins 1984).
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This approach displays some desirable characteristics for real-time

planning and control in the FMS environment. First, it is goal-

directed, i.e., users only need to specify the goals and the planning

system would, accordingly, derive the necessary steps on-line.

Second, it is dynamically adjustable. New goals can be accomodated

while the current production plan is still being executed; also, plans

can be modified when unexpected events occur (e.g., tool or machine

breakdowns). A "plan revision scheme" is initiated when bottlenecks

are detected; the scheme, in turn, seeks to use alternative resources

to improve the throughput. In addition, travel paths taken by guided

carts or the arm movements of neighboring robots should be analyzed so

that any potential conflicts or interferences are avoided (Bourne and

Fussell 1982, Lozano-Perez 1982).

Formally, the problem to be solved in the planning system can be

defined as a quadruple

PR = <S,0,IS,G>

where S is the set of states in the database, is the set of opera-

tors, defined as functions S * S. Both IS and G belong to S; IS

denotes the initial state, and G denotes the goal state. The infer-

ence engine selects the sequence of operators in the search space

based on predefined control strategies.

To perform planning by a distributed system with a group of intel-

ligent agents, the problem PR is decomposed into subproblems . The

final plan consists of a collection of plans for these subproblems,

coordinated to be applicable to all initial states IS and to achieve



-7-

the goal state G. The coordination between the planning agents may be

accomplished through messages passed between agents. The key issue,

then, is how to automate this coordination to result in orderly

interactions. The strategy we shall use throughout this paper for

this type of multi-agent planning consists of four phases:

(1) Goal decomposition. A job is decomposed into tasks to be exe-

cuted by different cells.

(2) Tasks distribution. Tasks are distributed among the cells so that

each task is performed by the most appropriate cell available.

(3) Tasks execution. Cells perform the assigned tasks as required.

(4) Tasks synthesis. Finished tasks of the same job are assembled.

This strategy is referred to as the task-sharing strategy. Another

widely used strategy is result-sharing—i.e., each agent will indepen-

dently initiate its problem solving activities and subsequently aggre-

gates its results. In the foregoing task-sharing scheme, the task

distribution problem needs special attention because of the loosely

coupled, decentralized control structure. The following sections

discuss the use of a negotiation process to achieve it.

Task-sharing is carried out based on the job hierarchy where each

job is decomposed into a set of tasks. Each task may correspond to the

operations for a part family, thus can be performed in a single set-

up. The job hierarchy is shown in Figure 4.

Insert Figure 4 Here
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III. The Contract Net Framework

A. The Negotiation Procedure

In an FMS, several cells may be assigned to a single job if its

operations belong to different part families. To utilize the system

resources efficiently, each task, which consists of a group of

operations according to the job hierarchy, must be assigned to the

most appropriate cell—referred to as the task-sharing process. Task

sharing also occurs when a cell is overloaded and needs to distribute

some of its tasks.

A widely used metaphor for distributed artificial intelligence is

the expert-team metaphor, in which the system under study is viewed as

a group of experts that solve problems cooperatively (Chandrasekaran

1981, Lesser and Corkill 1983, Minsky 1979, Yang et al . 1985).

Applying this metaphor to the FMS environment, we shall treat each

cell's host computer as an agent specialized in planning and managing

its local tasks. The whole FMS, then, is a network of such agents

with different areas of specialties, and task sharing can be carried

out by proper cooperation among the cells. Every cell in the network

can play the role of the contractor or the manager for tasks; a cell

should "negotiate" with other cells to determine how to share tasks.

Specifically, the announcement-bid-award cycle is used to distribute

tasks among cells.

The anounceraent-bid-award cycle is initiated when a manufacturing

cell has a task it is not capable of handling. The cell announces the

task to other cells to seek assistance. The announcement messages con-

tain three types of task-dependent information:
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a) The eligibility specification: listing the qualification for a

cell to submit a bid.

b) The task abstraction: providing a brief description of the task

to allow interested cells to evaluate the task by comparing it with

other announced tasks.

c) The bid specification: specifying the expected format of the bid

to be submitted.

A cell in the network keeps an "active-task announcement list" for

every machine in the cell and ranks each announced task in the list

according to its type. When a machine becomes idle, the cell selects

a task at the top of the list and submits a bid to the cell which

announced the task (the manager cell). A manager cell may receive

several such bids in response to a single task announcement. The

award decision is made based on all the bids received, and the manager

cell selects the most 'preferable cell based on a ranking function.

The successful bidders are informed of the award through award

messages from the manager cells and the task will be transferred

accordingly. The ranking function used in submitting bids can

correspond to various types of scheduling heuristics. For example,

when the ranking function is calculated by the total processing time

of the operation in a task, assigning task to the lowest bidder is

precisely the shortest-processing time (SPT) dispatching rule used in

dynamic scheduling.

There may be three types of cells in an FMS where the contract-

net framework is applicable: (1) flexible machining cells , where
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general-purpose machines are used and the set-up is flexible for per-

forming a wide-ranging family of operations; (2) product -oriented

cells , where a certain type of product is manufactured, e.g., gear

cell for producing gears; and (3) robot assembly cells , where robots

are used for putting sub-assemblies together. Depending on the set-up

of a flexible cell or a robot assembly cell, the cell's control unit

would give different performance estimates at different moments. The

product-oriented cells, on the other hand, have relatively more static

functions in terms of the set of operations they perform. For a job

requesting an operation that can be performed in these product-

oriented cells, the task-announcement message can be directly

addressed to the destination cell. The scheduling of jobs can be

accelerated by such "focused addressing."

Under the distributed control scheme, the dynamic system infor-

mation such as cell status, location of parts, position of tools,

progress of jobs, etc., is managed by a distributed database. The

bidding scheme can be executed dynamically by message passing.

Essentially, the bid submitted by each cell reflects the "price" for

the cell to embark on the task. The same bidding scheme can be

applied to resource allocation as well. That is, if some manu-

facturing resources—such as cutting tools, fixtures, part programs,

and pallets—are not readily available, then the bid should include

the price for getting the resources (i.e., the time it will take for

the supporting resources to arrive)

.
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B. An Application Example

We shall use an example in this section to illustrate the task

negotiation procedure for real-time scheduling. Suppose an FMS con-

sists of five flexible cells, with operation loading shown in Figure

5. For the sake of simplicity, let us assume that the travel time

between any two cells is a constant T„. The bidding duration is T, .

M b b

The communication delay for transmitting messages is assumed to be

insignificant comparing to T , T
fe

and the processing times. T is

time taken for awarding a task.

Insert Figure 5 Here

Suppose that a job, Job #003, arrives in the system at time 0. Job

#3 has a job hierarchy as shown in Figure 6(a). Figure 6(b) shows that

Task 3 cannot begin until both Task 1 and Task 2 are finished. This

may happen because Task 1 and Task 2 are performed on two separate

components; they are assembled together when finished and then Task 3

is performed. Thus, Tasks 1 and 2 can be announced simultaneously.

Insert Figure 6 Here

Initially, an idle cell-host is selected randomly as the dispatcher of

the newly arrived job. A manager cell is designated later after the

first round of negotiation (Cell #2 is the manager cell in this case

since it is the awardee with longer processing time).

The information flows passed through the communication network to

carry out the task-negotiation procedure is shown in Figure 7. Note

that the bidding function, f., used by Cell i in example is based on
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the SPT rule (Baker 1974); this rule is used here because of the

assumption that the time for transporting parts between any pair of

cells is a constant. Shaw (1987) showed that in general situations,

the earliest-finishing-time (EFT) rule performs better than the SPT

rule. The EFT rule is calculated by the sura of travel time, pro-

cessing time and expected queueing time.

Insert Figure 7 Here

C. The Negotiation Protocol

To execute the negotiation process by way of communications activ-

ities, a set of communication rules—referred to as the protocol—must

be established to regulate the interactions between the cells so that

they proceed in an orderly fashion. Furthermore, the protocol also

has to carry out the task sharing process—the process of distributing

tasks among cells. A formal model for the protocol should contain

three components:

1. A formalism for the message content. This task-dependent language

describes the task information in messages.

2. A formalism for the message format. This formalism, independent

of the task domain, is used to format all the messages, so that

the message content can be properly interpreted.

3. A formalism for the negotiation process. This formalism is used

to describe the proper sequencing of actions to carry out the nego-

tiation procedures among cells. Since there may be several

manager cells at the same time, this formalism needs to describe

asynchronous, parallel processes.
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The first two formalisms can use the context free grammar with BNF

expressions. This method is fairly standard in modeling protocols and

will not be discussed here. Details of it can be found in (Tanenbaum

1981, Teng and Liu 1978). Subsequent discussions focus on the formal-

ism for task negotiation.

IV. Modeling and Programming the Negotiation Process

A. A Model for the Negotiation Process

A good model for the negotiation process must describe two aspects

of task negotiation:

1. a procedural representation of the communication and coordination

mechanisms between the cells; and

2. a declarative representation of the local problem solving process

within a cell.

We use the augmented Petri net model (Dubois and Stecke 1983,

Nelson et al. 1983, Zisman 1978) to achieve these requirements. The

augmented Petri net is an integration of two representation models:

production rules are used to model the individual events (the declara-

tive representation), and the Petri net is used to model the interac-

tions and temporal relationships between these events (the procedural

representation). The augmented Petri net model has been proven effec-

tive in modeling asynchronous, concurrent processes where the com-

bination of state variables grows exponentially. In it, each transi-

tion corresponds to a production rule and the Petri net structure of

the model can be viewed as the interactions between the productions.

To understand the mechanism of an augmented Petri net, let us first

review some features of the Petri net as a modeling tool.
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Originally designed to model process concurrency and precedence

relations, the Petri net model has been used to model, specify, and

verify communication protocols (Peterson 1981). The definition of the

Petri net follows:

Definition 1 (Petri Net)

A Petri net, W, is a quadruple, W = <P,T,I,0>, where P is the set

of places, T is the set of transitions; I:T P* defines the input

function, and 0:T P* defines the output function.

A place is marked if it has one or more tokens; a transition is

enabled if each of its input places are marked. The firing of an

enabled transition removes one token from each of its input places and

adds one token to each of its output places. A token distribution

among the available places in a Petri net is called a marking of the

net

.

Corresponding to each Petri net and an initial marking, Petri net

language is defined as follows:

Definition 2 (Petri Net Language)

If there exists a Petri net, W = <P,T,I,0>, a labelling function

1 for the transition 1:T Z, and an initial marking A, then all the

possible sequences of transition firings constitute the Petri net

language

:

L(l) = {1(8) E Z*|B e T* and 6(X,B)}
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where 6 is the next-state function. For a sequence of transitions

t.,, t.~, .... t.. , 6(X, t.,t. nt.«»..t. 1 ) represents that the firing

of the transition sequence, t.., t. OJ up to t.. , is legal.
jl j2' r jk'

We now proceed to define formally an augmented Petri net:

Definition 3 (Augmented Petri Nets)

An augmented Petri net is composed of seven elements:

APN = <P,T,I,0,X,AP,D>

where <P,T,I,0> is a Petri net as defined in Definition 1; X is the ini-

tial marking of this net. The set of transitions, T, also defines the

set of productions, with each transition corresponding to one produc-

tion rule. D is the set of database elements in the production system

and AP is the set of active productions whose conditions are satisfied

by D.

A transition t in T is firable iff

(1) t e AP; and

(2) I(t) is marked; l(t) represents the set of input places of the

transition t.

In the augmented Petri net model, since there is a production

corresponding to every transition, we can label the transition and the

associated production rule with the same labelling function. The

Petri net language in the augmented Petri net can thus be seen as

either the set of all possible sequences of transitions or, alter-

natively, as the set of all allowable sequences of production rule

invocations. If each transition corresponds to an activity, the Petri

net language generates the correct sequence of activities.
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Task negotiations for several tasks are usually executed con-

currently. The manager cell may be ranking the incoming bids while

the potential contractors at the same time are collecting task-

announcements and deciding on whether to submit bids. Consequently,

the transfer of messages (e.g., task-announcements, bids) from one

cell to another requires synchronized activities among the cells

involved. Augmented Petri nets can help ensure the correct implemen-

tation of these synchronized activities.

To use the augmented Petri net model, the negotiation process can

be represented by two subsets: one (Figure 8(a)) models the necessary

actions of the manager cell who announces a task to other cells, pro-

cessing the incoming bids and awards the task to the selected cell;

the other sub-net (Figure 8(b)) models the corresponding actions of the

cells who receive the task-announcement (the contractor cells). This

sub-net deals with the decision on submitting bids.

Insert Figure 8 Here

Each activity in the process is represented by a production rule,

and the interactions among these activities are represented by the

Petri net. Each transition in the Petri net (denoted by a bar in the

figures) corresponds to one production rule. When a transition is

enabled (i.e., all input places are marked), the corresponding rules

will determine the firing condition.

Table 1 lists the set of production rules that correspond to the

transitions in the two augmented Petri nets in Figures 8(a) & (b)

.

Rules Tl to T9 correspond to the task-announcement process of the
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manager cell; rules T10 to T16 correspond to the bid-submitting pro-

cess of the contractor cell. At each step in the process, the aug-

mented Petri nets guide the negotiation process of all cells so

that the activities for task negotiation are correctly carried out.

The definition of the places used in the nets is shown in Table 2.

Insert Tables 1 and 2 Here

B. Controlled Production Systems

The Petri net language discussed in Definition 2 can serve as the

"control language" to regulate the invocation of production rules in

the production system during its inference process. Such a production

system whose control structure is represented explicitly is called a

controlled production system.

The control language in effect guides the allowable sequences of

production invocations, i.e., a production would not be considered

unless it is accepted by the control language. At each stage of the

execution, the control language acts to "focus" the control on a sub-

set of the productions and prohibits the other productions from being

invoked

.

When the Petri net language (Definition 2) is employed as the

control language, it can help ensure that the transitions are fired in

the right sequence according to the corresponding Petri net. Further-

more, since each transition represents a production rule in an augmented

Petri net, the Petri net language, when used as the control language,

essentially dictates the legal sequence of rule invocations.



Table 1

The Production Rules

T, if (NEW-TASK task) then (TASK-INITIALIZATION task)

T if (TASK-EVALUATE task) then (TASK-ANNOUNCEMENT task)

T~ if (BID-RETURN bid) and GEQ time-now deadline) then (BID-

PROCESSING bid)

T, if (LEO time-now deadline) then null
4

T
s

if (GT time-now deadline) AND (NE bid-list blank) then

(BID-AWARD bid-list)

T, if (GT time-now deadline) AND (EQ bid-list blank) then
b

(REANNOUNCE task)

T
?

if (REPLY-TO-AWARD accept) then (LIST-ASSIGNMENT task)

T if REPLY-TO-AWARD reject) then (RE-AWARD task)

T
9

if (NOT (TASK-EVALUATE task)) then (LIST-AGENDA task)

T
1Q

if (TASK-ANNOUNCED task) AND (BID-EVALUATE task) then (TASK-

RANKING task)

T,. if (EQ(PROCESSOR-FOR-TASK task) busy) then (LIST-ACTIVE-

TASK-ANNOUNCEMENT task)

T if (EQ(PROCESSOR-FOR-TASK task) idle) then (BID-REPLY (BID-

SELECT a-t-a-1))

T
13

if (GEQ time-now deadline) then (BIDDING task)

T if (BID-REPLY accept) AND (CELL-CONDITION normal) then (LIST-

AGENDA task) AND (REPLY-TO-AWARD accept)

T if (BID-REPLY accept) AND (CELL-CONDITION not-normal) then

(REPLY-TO-AWARD reject)

T if (BID-REPLY reject) then (RE-BIDDING(BID-SELECT a-t-a-1))



Table 2

The Definition of the Places Used in the Petri Nets

Condition for
Place Description Successor(s

)

Choosing the Successor

N
i

a task needs to

be done
N
2

N
2

initiating the task N
3

when the task needs
to be assigned

N
6

when the task can be
executed locally

N
3

broadcasting the N
4

when the submission
task-announcement deadline is reached
message

N
7

when no bid is submitted

N
3

before the deadline

N
4

a bid is submitted N
5

N
5

a bidder is selected N
6

the task is

to award the task to successfully assigned

N
8

when the awardee
rejects the task

\ the task is assigned null
to a cell

h the task needs to

be reannounced
N
3

N
8

the awardee rejected N
5

the assigned task;
re-award is needed

N
9

when a task- N
10

announcement message
is received

N
10

ranking the task along
with other received

ho when the cell is busy

announcement



Table 2 (continued)

Condition for

Place Description Successor(s) Choosing the Successor

Nn select a task to bid
on

N
12

N
12

submit a bid N
13

accept the task if

the cell is normal

N
14

reject the award if

the cell is faulty

N
ll

when the bid is not
successful

N
13

the task is awarded

N
14

reject the task
because of faulty
cell conditions
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Using control language in a rule-based production system gives two

advantages: first, the execution becomes more efficient because the

control language reduces the applicable set of production rules by

eliminating irrelevant production rules from consideration; second,

since the control structure is explicitly represented by this control

language, it can be modified without having to change the contents of

the production system. This separation between control and programs is

an important feature of the knowlege-based programming (Georgeff 1982,

Kowalski 1979). Now let us define a controlled production system and

its relation with the augmented Petri net model.

Formally, a production system can be defined as follows:

Definition 4 (Production System)

A production system is a triple

PS = <R,D,h>

where R is the set of production names, D is the set of database ele-

ments, and h is the interpretation of the production R, represented as:

h: R + (q,r)

q is the set of conditions and r the set of actions corresponding to

R. The state of the production system is defined by the contents of

the database elements. When the conditions of a production P., denoted

q(P ), is satisfied by the current database, then P is said to be

invocable. If P is invoked, then the database is transformed to a

new state, denoted by r(P.).
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Definition 5 (Controlled Production System)

A controlled production system is defined as a quadruple

M = <R,D,h,C>.

The subset <R,D,h> is a production system defined in Definition 4. A

state in the CPS is defined by a pair S = <u,X > with u e C and

X e D. A production rule p is said to be applicable if up e C. A

state <up,X„> is said to be derivable from the state <u,X..>, denoted

<u,X
1
> + <up,X

2
>

If p is applicable at <u,X > (up e C) and the database elements in X

satisfy the preconditions of p (q(X ) = TRUE), then the actions of p

change X to X
2

(r(X ) = X
2
>.

Based on Definitions 1 through 5, we can now propose a theorem which

equates the augmented Petri net model to a production system controlled

by the Petri net language.

Theorem 1 :

For any augmented Petri net

APN = <P,T,I,0,A,AP,D>

there exists a controlled production system,

M = <R,D,h,C>

such that APN and M generate the same sequence of production rules.

(The proof is described in the Appendix.)
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This isomorphism between (1) the augmented Petri net model and (2)

a production system model with a separate control language enables us

to deal with the task-sharing problem by using the production system

listed in Table 1, and the Petri nets can serve as the control struc-

ture. Such an algorithm is similar to the inference procedure used

in production systems, as the one used in 0PS5 (Forgy 1981). The only

difference is that in the beginning of each cycle the algorithm picks

the "applicable" rules by the control language.

Procedure - Task-sharing {executed by a manager cell}

Input: a task T, consisting of a set of decomposable subtasks (t.)

Begin

Repeat {Based on Controlled Production System}

(Step 1) <Control> —

Determine the set of productions accepted by the control language

* p';

(Step 2) <Selection> —

Select the productions among p
f which are invocable + CF {the

conflict set}

;

(Step 3) <Conflict resolution> —

Select a production from the CF set according to the conflict
resolution strategy;

(Step 4) <Execution> —

Activate the "then" part of the selected production;

Until the goal condition appears in the database;

end { task-sharing} .

The standard production system employs just steps 2-4 as the infer-

ence cycle. Step 1 is used to select only those rules whose corre-

sponding transitions are firable by the current marking in the Petri
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net. That is, the incoming places of those transitions all have a

token. This condition is guided by the Petri-net language serving as

the control language. Step 2 to Step 4 is the "recognition-action

cycle" used in standard production systems. A rule is invocable

whenever there are database elements that satisfy the conditions of

the rule. If more than one rule is invocable, then these rules are

collected into the conflict set CF. A conflict resolution strategy is

used in Step 3 to select one rule from the set CF . It can be as

straightforward as to select the first production rule that is

applicable (Nau 1983). 0PS5 provides two conflict-resolution strate-

gies called LEX and MEA that make it easy to add production to an

existing set and have the new productions fired at the right time.

The underlying firing rules for both LEX and MEA strategies are aimed

at achieving the following: (1) preventing rules in CF from executing

more than once; (2) directing the inference engine to attend to the

most recent data in working memory; and (3) giving preference to rules

with more specific conditions. Besides these recency rules in which

the selection criterion is based on the amount of time the data ele-

ments have been in the working memory, other selection rules available

include the special case rules and the distinctiveness rules

(McDerraott and Forgy 1978).

Step 4, in turn, makes changes in the database according to the

"then" component of the selected rule. The cycle continues until

either of two conditions occurs:

(1) the goal state is derived and the inference procedure is

successful; or
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(2) the goal state has not been achieved, but the conflict set in Step

2 is empty.

In the second case, the inference procedure has failed; an exception

handling routine will be called upon to take over.

C. Performance

The performance of the task-sharing algorithm is affected by two

factors: the performance of (1) the inference procedure in the

controlled production system and (2) the negotiation process among the

cells. The former is determined by the organization and search strate-

gies of the production system; the latter is determined by the param-

eters of the negotiation protocol. A simulation study evaluating the

performance of the negotiation process with a variety of ranking func-

tions is reported in Shaw (1987).

For a conventional rule-based production executing data-directed

inference procedure, the cycle time of the recognize-act cycle is:

T. cycle = T. condition-match + T. action

= (P x M x T. match) + ((A/P) x T.act),

where P = size of the production system;

M = size of the database (number of predicate literals);

T. match = Average time to find a match between preconditions

and the database elements;

A = number of action elements of all rules;

T.act = average time needed to execute the action parts of a

rule; and

A/P = average number of actions of a rule.
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Since the task-sharing algorithm utilizes a control language to

screen the applicable production rules first, the cycle time of the

production system is modified as

T. cycle' = T. control + (P' x M x T. match) + ((A/P) x T.act)

where T. control is the time needed to locate the applicable produc-

tions by checking the control language. In our case, it is the time

taken for the Petri net language to find the firable transitions based

on the current markings. P' is the size of the active production

rules decided by the control language; in general, P 1

< P.

V. Summary

The production system, the inference engine, and the database for

executing task-sharing are integrated into a knowledge-based system

implemented in every cell host. The major function of this component

is to distribute tasks and to coordinate the problem-solving activities—

primarily planning and scheduling—among the cells. This paper also

shows a network-wide negotiation procedure for achieving task sharing.

The major thrust of using augmented Petri nets and the corresponding

controlled production system to carry out the negotiation procedure is

that it provides a suitably powerful modeling language for executing

the process. Because of the problem-solving nature of the negotiation

procedure, the approach also has flexibility in achieving task sharing

intelligently. More research needs to be done in exploring the opti-

mization behavior of the negotiation process. Nevertheless, the

knowledge-based approach has proved very effective in its performing

the planning and control functions. In particular: (1) It enforces
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the separation of the knowledge description and the control structure.

Knowledge is described by production rules and the control structure

is represented by the augmented Petri nets. (2) It applies a uniform

approach to both the planning within each cell and the task sharing

among the cells. As such, each cell's knowledge based contains two

types of knowledge: the knowledge for planning and scheduling and the

knowledge for task sharing, coordination, and communication. (3) It

uses a decentralized scheme to perform planning and control. The

approach, therefore, enjoys the benefits associated with distributed

processing systems, such as graceful degradation, modularity, ex-

tensibilty, improved performance, and reliability (Enslow 1977,

Cristian and Skeen 1987).

Using the knowledge-based approach for real-time planning and

scheduling also permits incorporation of general heuristic knowledge.

In this context the information system for an FMS becomes a system

with networked knowledge sources cooperating to carry out the manu-

facturing process. This viewpoint is further elaborated in a separate

paper (Shaw 1987).
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Appendix

Proof for Theorem 1 .

For an augmented Petri net APN, the first five elements <P,T,I,0,A>

can define a Petri net language L(l). (Definition 2)

Since the active set of productions, AP, in APN is generated by

matching preconditions of the productions in T against the database

elements in D, AP is derivable from the production system <R,D,h> in M.

(Definition 4)

Now, if we let the Petri net language L(l) in APN be the control

language C in M, then:

(1) (-) If a transition t is firable in APN, t must satisfy (a) t e AP

and (b) I(t) is marked. These are equivalent to the conditions (a)

the production t is invocable in the production system <R,D,h> and

(b) t is accepted by the language C. Therefore, t is applicable

in M. (Definition 5)

(2) («-) If a production p is applicable in M, p must satisfy (a) p

is invocable in <R,D,h> and (b) p is accepted by the control

language C; these conditions are equivalent to the conditions (a)

p e AP and (b) p e L(l); therefore the transition corresponding to

p is firable in <P,T,I,0,X>. Thus, p is also firable in APN.

(Definition 3)

Q.E.D.
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