5,429 research outputs found

    Wearable Computing for Health and Fitness: Exploring the Relationship between Data and Human Behaviour

    Get PDF
    Health and fitness wearable technology has recently advanced, making it easier for an individual to monitor their behaviours. Previously self generated data interacts with the user to motivate positive behaviour change, but issues arise when relating this to long term mention of wearable devices. Previous studies within this area are discussed. We also consider a new approach where data is used to support instead of motivate, through monitoring and logging to encourage reflection. Based on issues highlighted, we then make recommendations on the direction in which future work could be most beneficial

    From Wearable Sensors to Smart Implants – Towards Pervasive and Personalised Healthcare

    No full text
    <p>Objective: This article discusses the evolution of pervasive healthcare from its inception for activity recognition using wearable sensors to the future of sensing implant deployment and data processing. Methods: We provide an overview of some of the past milestones and recent developments, categorised into different generations of pervasive sensing applications for health monitoring. This is followed by a review on recent technological advances that have allowed unobtrusive continuous sensing combined with diverse technologies to reshape the clinical workflow for both acute and chronic disease management. We discuss the opportunities of pervasive health monitoring through data linkages with other health informatics systems including the mining of health records, clinical trial databases, multi-omics data integration and social media. Conclusion: Technical advances have supported the evolution of the pervasive health paradigm towards preventative, predictive, personalised and participatory medicine. Significance: The sensing technologies discussed in this paper and their future evolution will play a key role in realising the goal of sustainable healthcare systems.</p> <p> </p

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Sensing behaviour in healthcare design

    Get PDF
    We are entering an era of distributed healthcare that should fit and respond to individual needs, behaviour and lifestyles. Designing such systems is a challenging task that requires continuous information about human behaviour on a large scale, for which pervasive sensing (e.g. using smartphones and wearables) presents exciting opportunities. While mobile sensing approaches are fuelling research in many areas, their use in engineering design remains limited. In this work, we present a collection of common behavioural measures from literature that can be used for a broad range of applications. We focus specifically on activity and location data that can easily be obtained from smartphones or wearables. We further demonstrate how these are applied in healthcare design using an example from dementia care. Comparing a current and proposed scenario exemplifies how integrating sensor-derived information about user behaviour can support the healthcare design goals of personalisation, adaptability and scalability, while emphasising patient quality of life

    Harnessing Technology: preliminary identification of trends affecting the use of technology for learning

    Get PDF

    Harnessing Technology: analysis of emerging trends affecting the use of technology in education (September 2008)

    Get PDF
    Research to support the delivery and development of Harnessing Technology: Next Generation Learning 2008–1

    CoachAI: A Conversational Agent Assisted Health Coaching Platform

    Full text link
    Poor lifestyle represents a health risk factor and is the leading cause of morbidity and chronic conditions. The impact of poor lifestyle can be significantly altered by individual behavior change. Although the current shift in healthcare towards a long lasting modifiable behavior, however, with increasing caregiver workload and individuals' continuous needs of care, there is a need to ease caregiver's work while ensuring continuous interaction with users. This paper describes the design and validation of CoachAI, a conversational agent assisted health coaching system to support health intervention delivery to individuals and groups. CoachAI instantiates a text based healthcare chatbot system that bridges the remote human coach and the users. This research provides three main contributions to the preventive healthcare and healthy lifestyle promotion: (1) it presents the conversational agent to aid the caregiver; (2) it aims to decrease caregiver's workload and enhance care given to users, by handling (automating) repetitive caregiver tasks; and (3) it presents a domain independent mobile health conversational agent for health intervention delivery. We will discuss our approach and analyze the results of a one month validation study on physical activity, healthy diet and stress management

    Roadmaps to Utopia: Tales of the Smart City

    No full text
    Notions of the Smart City are pervasive in urban development discourses. Various frameworks for the development of smart cities, often conceptualized as roadmaps, make a number of implicit claims about how smart city projects proceed but the legitimacy of those claims is unclear. This paper begins to address this gap in knowledge. We explore the development of a smart transport application, MotionMap, in the context of a £16M smart city programme taking place in Milton Keynes, UK. We examine how the idealized smart city narrative was locally inflected, and discuss the differences between the narrative and the processes and outcomes observed in Milton Keynes. The research shows that the vision of data-driven efficiency outlined in the roadmaps is not universally compelling, and that different approaches to the sensing and optimization of urban flows have potential for empowering or disempowering different actors. Roadmaps tend to emphasize the importance of delivering quick practical results. However, the benefits observed in Milton Keynes did not come from quick technical fixes but from a smart city narrative that reinforced existing city branding, mobilizing a growing network of actors towards the development of a smart region. Further research is needed to investigate this and other smart city developments, the significance of different smart city narratives, and how power relationships are reinforced and constructed through them

    Online learning of personalised human activity recognition models from user-provided annotations

    Get PDF
    PhD ThesisIn Human Activity Recognition (HAR), supervised and semi-supervised training are important tools for devising parametric activity models. For the best modelling performance, large amounts of annotated personalised sample data are typically required. Annotating often represents the bottleneck in the overall modelling process as it usually involves retrospective analysis of experimental ground truth, like video footage. These approaches typically neglect that prospective users of HAR systems are themselves key sources of ground truth for their own activities. This research therefore involves the users of HAR monitors in the annotation process. The process relies solely on users' short term memory and engages with them to parsimoniously provide annotations for their own activities as they unfold. E ects of user input are optimised by using Online Active Learning (OAL) to identify the most critical annotations which are expected to lead to highly optimal HAR model performance gains. Personalised HAR models are trained from user-provided annotations as part of the evaluation, focusing mainly on objective model accuracy. The OAL approach is contrasted with Random Selection (RS) { a naive method which makes uninformed annotation requests. A range of simulation-based annotation scenarios demonstrate that using OAL brings bene ts in terms of HAR model performance over RS. Additionally, a mobile application is implemented and deployed in a naturalistic context to collect annotations from a panel of human participants. The deployment is proof that the method can truly run in online mode and it also shows that considerable HAR model performance gains can be registered even under realistic conditions. The ndings from this research point to the conclusion that online learning from userprovided annotations is a valid solution to the problem of constructing personalised HAR models
    corecore