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Abstract

In Human Activity Recognition (HAR), supervised and semi-supervised training are

important tools for devising parametric activity models. For the best modelling per-

formance, large amounts of annotated personalised sample data are typically required.

Annotating often represents the bottleneck in the overall modelling process as it usually

involves retrospective analysis of experimental ground truth, like video footage. These

approaches typically neglect that prospective users of HAR systems are themselves

key sources of ground truth for their own activities.

This research therefore involves the users of HAR monitors in the annotation process.

The process relies solely on users’ short term memory and engages with them to

parsimoniously provide annotations for their own activities as they unfold. Effects

of user input are optimised by using Online Active Learning (OAL) to identify the

most critical annotations which are expected to lead to highly optimal HAR model

performance gains.

Personalised HAR models are trained from user-provided annotations as part of the

evaluation, focusing mainly on objective model accuracy. The OAL approach is con-

trasted with Random Selection (RS) – a naive method which makes uninformed an-

notation requests. A range of simulation-based annotation scenarios demonstrate that

using OAL brings benefits in terms of HAR model performance over RS. Additionally,

a mobile application is implemented and deployed in a naturalistic context to collect

annotations from a panel of human participants. The deployment is proof that the

method can truly run in online mode and it also shows that considerable HAR model

performance gains can be registered even under realistic conditions.

The findings from this research point to the conclusion that online learning from user-

provided annotations is a valid solution to the problem of constructing personalised

HAR models.
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Miu et al. [1]: T. Miu, T. Plötz, P. Missier, and D. Roggen, ”On strategies for budget-

based online annotation in human activity recognition” in Proceedings of the 2014

ACM International Joint Conference on Pervasive and Ubiquitous Computing: Ad-

junct Publication, UbiComp ’14 Adjunct, (New York, NY, USA), 2014.

Miu et al. [2]: T.Miu, P. Missier and T. Plötz, ”Bootstrapping Personalised Human
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Introduction

One of the key promises of Weiser’s vision of pervasive computing has been the prospect

of disappearing technologies that “weave themselves into the fabric of everyday life un-

til they are indistinguishable from it” [3]. Tremendous progress has already been made

towards making this vision a reality where smart environments, living labs, and espe-

cially mobile computing now constitute the central paradigm of this third generation of

computing [4]. As an enabling technology, automatic inference of the context and es-

pecially of the activities humans are engaged in (Human Activity Recognition – HAR)

plays a central role in a large plurality of pervasive and mobile computing applications.

Health – A Case for Physical Activity Recognition

HAR is primarily an observational tool suitable for monitoring lifestyle. By identify-

ing certain patterns, such as damaging behaviours, one has the possibility of changing

them by prioritising certain lifestyle decisions. A common damaging behaviour is gen-

eral physical inactivity which has been linked with serious health conditions including

cardiovascular disease [5, 6], diabetes [7–9], colon cancer [10], obesity [11] or depression

[12]. According to the World Health Organization, the incidence of such cases could

be reduced if physical inactivity was less pervasive [13].

The prevalence of these medical conditions has far-reaching consequences on how soci-

ety functions and sustains itself. For example, according to Hex et al. [14], in 2010/2011

the economic cost incurred by the UK’s National Health Service (NHS) for treating

diabetes stood at £9.8bn for direct treatment and an additional £13.9bn for treating

complications. The cost is projected to rise by 2035/2036 to £16.9bn for direct treat-

ment and £22.9bn for treating complications. In fact, diabetes accounts for approxi-

mately 10% of the total health expenditure for 2010/2011 and the share is expected

to rise to 17% in 2035/2036, according to the same source.

Astronomical health care costs are not singular to diabetes. In the UK, the healthcare

costs for major conditions partly caused by physical inactivity are still in the order

of billions of pounds: cardiovascular disease cost £8.6bn in in 2009 [15], while cancer
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cost £5.81bn in 2010/20111. It is estimated that between 1.5% to 3% of the healthcare

costs in developed countries is directly accounted for physical inactivity [16]. Physical

inactivity is also correlated with obesity [17], smoking [18, 19] or hazardous alcohol

consumption [20], each of which adds costs of the order of billions of pounds to NHS

expenditure [21]. With the UK GDP at £1800bn2, the cost of addressing diabetes and

other serious illnesses rises to single-figure percentages of the GDP.

According to Lee et al. [22], at a worldwide level, physical inactivity is estimated

to cause 6% of the cases of coronary heart disease, 7% type 2 diabetes, 10% breast

cancer and 10% colon cancer. In the UK, according to the same source, the effects are

more pronounced: 10.5% for coronary heart disease, 13% for type 2 diabetes, 17.9%

for breast cancer and 18.7% for colon cancer. With physical inactivity being linked

to serious medical conditions in double-figure percentages of all cases, it is clear that

society should strive to combat physical inactivity.

Interventions

People who are sedentary for long periods of time, such as office workers, face addi-

tional health risks. Sitting down for extended periods of time has been identified as

a health risk promoter, even for people who are otherwise physically active [23, 24].

Prolonged sitting can affect not only by causing physical discomfort, such as, for ex-

ample, muscoskeletal pain [25], but can also have serious health repercussions, such as

increased cardiovascular risk [26] or coronary heart disease [27].

As a whole, the negative societal impact of these medical conditions, which is partly

caused by physical inactivity, is set to increase and cannot be ignored. Therefore, at

this point in time, it is justified to allocate research resources to combat these medical

conditions, not only directly through treatment, but also indirectly, by addressing the

causes, such as reducing physical inactivity.

1https://www.gov.uk/government/publications/2003-04-to-2010-11-programme-

budgeting-data - Accessed 06.05.2015
2http://www.imf.org/external/pubs/ft/weo/2015/01/weodata/weorept.aspx?pr.x=83&pr.

y=16&sy=2015&ey=2015&scsm=1&ssd=1&sort=country&ds=.&br=1&c=193%2C273%2C223%2C156%

2C924%2C922%2C132%2C184%2C134%2C534%2C536%2C136%2C158%2C112%2C111%2C542&s=NGDPD%

2CPPPGDP&grp=0&a= - IMF estimates; Accessed 27.05.2015
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Research efforts include interventionary actions at the workplace to interrupt long

sitting times and promote other less sedentary behaviour such as standing. These

interventions were shown to be effective not only in changing behaviour in the short

term [28, 29], but also in reducing muscoskeletal pain symptoms [30–32]. It has been

suggested by Dunstan et al. [33] that short and regular interventions which break

sitting times with walking may reduce cardiovascular risk.

Office workers are sedentary a great deal of time, so the office is an ideal environment

to suppress physical inactivity and to promote healthier behaviours. Therefore, short

breaks from sitting, either by standing or by performing some form of physical exer-

cise, can have substantial effects in increasing physical comfort and maintaining good

health. However, these interventions are naturally disruptive. While it is beneficial

for office workers, for example, to regularly break their sitting times, this is not in

their short-term interest and, in addition, the benefits are not immediate. Without

instant gratification, it is questionable that office workers would voluntarily remember

to comply with the intervention protocol.

Consequently, in order to ensure greater compliance, these interventions can be sup-

ported by appropriate technological means. We argue therefore that technology can be

part of the solution. An enormous body of research, which has been dedicated to the

general problem of inferring context, has shown that HAR technology and techniques

can meet the needs for self-monitoring. For instance, it is now possible to measure

one’s expended energy [34–37] or register individual activities [37, 38]. In fact, multi-

ple dimensions of wellbeing can be monitored in parallel, such as sleep patterns, social

interaction and physical activity [39]. The user’s tracked behaviour can be summarised

in order to monitor progress and improve the intervention compliance. HAR can also

help with tracking behaviours which are symptomatic to serious underlying conditions,

such as, diabetes [40] or Alzheimer’s Disease [41].

Insight into what is worth monitoring and how to do so can be gained from the adher-

ents of the Quantified Self [42] community. These are individuals who track different

aspects of their life including sleep, dieting or time management and some of whom

are also inspired by the prospects of tracking physical activities. Choe et al. [43] show

that physical exertion is one of the top tracked objectives for quantified selfers. The
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reasons may lie with the desire to self-improve in different physically demanding ac-

tivities, such as sports or athletics, but they may also lie with maintaining an active

and healthy lifestyle and the benefits it brings.

HAR applications do not necessarily have to be strict monitors, but they can encourage

certain behaviours. This was demonstrated by Consolvo et al. [44] who have deployed a

system that displayed pleasant video feedback when the user attained certain physical

exertion goals. The authors report that most of their user study participants thought

the system would motivate physical exertion.

Once compliance is ensured and time is allocated to physical activity, then our goal is

to use HAR and to maximise its effects. Performing certain physical activities, such

as fitness ones, is a skill that can be improved with correct technique. Instead of

personal trainers, which may be a limited and expensive resource, HAR can be used

to automatically assess and provide feedback for such activities [45].

An important factor that led to the adoption and study of HAR by the research

community is the large scale adoption of consumer-grade wearable technology. The

wearables industry is developing to serve a considerable market of consumers. Ac-

cording to uk.businessinsider.com [46], 33 million units are going to be shipped by

the end of 2015. The size of the wearables market is on an upward trend with sales

expected to grow yearly by 35% until 2019, when a predicted 148 million units are

going to be shipped annually.

Personalising Wearable Devices

Given our societal need to reduce physical inactivity and the increasingly widespread

use of wearable devices, HAR is becoming an enabling technological driver for personal

interventions that can prevent or correct damaging behaviours. Activity recognition

may be further improved if the wearable devices are personalised, i.e. adapted to

the user’s lifestyle or movement idiosyncrasies. This is explained in greater detail in

Chapter 2.

The overarching concept we investigate in this thesis is user feedback as a form of

knowledge that can be used to personalise HAR models. We make the hypothesis that

- 5 -
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it is possible to construct fully personalised HAR models from gradual user feedback,

by starting from either zero or relatively little prior knowledge.

A HAR model is a description of a set of a user’s physical activities. The types of

models we are concerned with in this thesis are machine learning models, as discussed

in Chapter 2.4. Specifically, we focus on the user’s HAR model which monitors the

user’s stream of physical activities. In this context, a user’s model is an operational

description of the user’s physical activities which is used within a HAR monitoring

system to estimate what activities are exerted by the user. The type of model of

we investigate throughout this thesis are classification models – models that output

estimates over a discrete set of labels. We use terms model, classification model and

classifier interchangeably to designate the user’s HAR model. In this respect, and

as discussed in Section 2.2, a personalised model is a model which is constructed or

adapted in such a way so as to better monitor the target user, without regard to

a larger pool of separate users. When it comes to training personalised models, we

apply (1) semi-supervised machine learning techniques (introduced in Chapter 2 and

investigated in Chapters 3-6) to collect personalised training sets and (2) standard su-

pervised techniques to infer the parameters of standard classification models (outlined

in Chapter 2).

If this hypothesis is correct, then the user of the HAR system is in control of person-

alising her model. Continuous personalisation leads to improved activity monitoring

relative to previous versions of the model. Because this technical improvement even-

tually translates into improved wellbeing to the user, the user might be motivated to

participate in personalising her own HAR model. Additionally, as we demonstrate in

this thesis, the user can personalise her own model without external assistance, such as

a researcher or video footage of her activities. This not only frees researchers from the

costly process of labelling another person’s data, but also potentially allows user-led

labelling at a much larger scale than would be possible with external supervision. Also,

as we show in this thesis and also by means of existing research, in many situations,

personalised models are more accurate than non-personalised models.

Personalising HAR models is a challenging research problem because user feedback is

a valuable, but, at the same time, scarce resource. Exploiting it presents a problematic
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trade-off because, on the one hand, the more user input is requested, the greater the

personalisation, but, on the other hand, asking for feedback from a user is disruptive,

so the user should not be interrupted excessively. The difficulty, therefore, lies in

identifying the most critical inputs to request from the user and this creates two-fold

complications: Firstly, the requests for feedback should be simple and timely enough

for the user to answer, but, at the same time, critical enough to warrant interrupting

the user. As shown in Chapter 2, we rely on the user’s short-term memory to obtain

personalising feedback and this entails severe time restrictions over what the user can

reliably provide. Secondly, the frequency and volume of input requests, even if all are

highly critical, should not cross user interruption boundaries.

In this thesis we demonstrate different solutions of obtaining feedback from a user

and personalising her model in the context of several case studies. Encouraged by our

positive results, we argue that our methods may be applicable to a wider range of

HAR classes of applications.

HAR System Usage

Previously we have argued about the benefits of personalising HAR models and pro-

posed that personalisation could be achieved through user feedback. In this section we

go into more detail. We first illustrate how general HAR systems work without per-

sonalisation. Afterwards, we propose a mechanism of personalisation and look at the

consequences of our proposed mechanism of personalisation. To this end, we illustrate

how we envisage the process of HAR model personalisation from user feedback and

we exemplify it through a hypothetical scenario involving a fictitious character. We

draw parallels between and contrast a generic non-personalisable HAR system and a

personalisable one. We consider how personalisation affects the system usage and user

interaction.

System Usage – without Personalisation

Consider Anya – a typical office worker who is conscious about her health. Because her

work involves long periods of physical inactivity, she uses a generic wearable physical

activity tracker to monitor her levels of physical activity throughout the day. She relies
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on accurate reports so that she can break long sitting times or compensate physical

inactivity at the office with physical exercise after work. The monitor’s functioning

is completely passive. Fig. 1.1, which illustrates a schematic of its mechanics, shows

that the user does not supply input – Anya merely benefits from passive monitoring.

The device uses a “one size fits all” model which gives good results for a limited set

of activities and when averaged across a large population. However, the model may

not be very accurate for Anya in particular because some of her favourite physical

activities and her general movement idiosyncrasies are not taken into account.

Therefore, without personalisation, the model does not account for user-specific char-

acteristics, such as idiosyncrasies or lifestyle specifics. A generic system that supports

personalisation is illustrated in Fig. 1.2. Key user aspects can be captured via model

personalisation and this is expected to improve the recognition accuracy.

System Usage – with Personalisation

In this thesis we propose that HAR model personalisation is achieved through active

user participation. Specifically, we envisage a HAR monitor that parsimoniously in-

teracts with the user by requesting feedback which is then used to further personalise

the user’s model. The type of personalising feedback we choose to obtain from the

user are annotations. This format, discussed in detail in Chapter 2, assigns an activity

label to recorded signal data and can be used directly to personalise HAR models. We

use annotations throughout the rest of the thesis to train personalised models under

different scenarios and to evaluate their recognition performance.

Because the only types of HAR models investigated here are classification models,

intuitively, we use recognition success rate as a measure of HAR monitoring perfor-

mance. We use other similar terms, such as model performance, model improvement

classification accuracy, interchangeably. The objective measure behind recognition

success rate is F-Score and it is formally defined in Section 3.3.23, i.e. what insight

can an expert gain from examining the parameters of such a model.

3Models are therefore distinguished between themselves on a prediction-based criterion (i.e. how
successful the recognition of activities is). An alternative method of comparing models, albeit more
subjective, is based on inference – James et al. [47].
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Such a personalising system, shown in Fig. 1.3, can automatically diagnose when

feedback is most needed, but can also take into account the user’s propensity towards

interruption so that the provision of annotations is not overly taxing on the user. Now

that the system supports personalisation, this brings about a new pattern of usage of

the system, as illustrated in Fig. 1.4. With the addition of the annotation step, we

reroute the natural data flow of a generic HAR application to form a closed circuit so

that it can support progressive model personalisation.

Continuing our example, Anya decides she is willing to respond only to a very limited

number of annotation requests and, for instance, preferably evenly spread out through-

out the day. We discuss in Chapter 2 the user’s propensity to provide annotations on

demand. We accept that the user’s tolerance towards annotation interruptions is a

finite resource, so annotation strategies should account for limited compliance. There-

fore, we introduce the concept of a budget of annotations that models the sparsity

of input which the user could provide. The effects of budget-constrained annotation

methods are evaluated in Chapters 3 and 6.

We further propose that annotations are produced online, i.e. while the system is

being used and the activities are being monitored. This is a crucial distinction to

other proposals which focus on offline annotations, i.e. the annotations are attributed

upon retrospective inspection of the data and other sources of information such as

video footage. We argue against offline approaches in Chapter 2 because they require

extensive supporting infrastructures and support from other researchers or expert an-

notators. Instead, by focusing on online annotations, users can easily resort to their

short-term memory to parsimoniously annotate their most recent activities. As ex-

plained in Chapter 2, offline approaches are not compatible with a very short term

user memory.

In our example, suppose that Anya is on a break from working at her desk and she

starts performing a series of regular torso movements. This is a new exercise that has

been recently suggested to her and she hasn’t done it before, or has done it only a

few times, and this would be insufficient for accurate monitoring. The system runs a

fully automated procedure (one that does not require user feedback) to diagnose its

performance at classifying the activity. Because the system has no or limited data
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on this activity, it performs relatively poorly at recognising the activity, so it decides

that an annotation for this activity is important for improving Anya’s HAR model. As

soon as the system detects the end of this problematic activity, it issues an annotation

request to Anya for that activity. Anya does not have to recall into the distant past

and does not have to fall back to memory aids such as video footage. Instead, she can

easily remember what she was doing just seconds before the annotation request.

Going further with the example, after Anya is done with her torso exercise and provides

an annotation, she heads down to the common room to make herself some tea. The

system now detects she is walking and, because it already has several annotations

for this more common activity, it recognises the activity with very little uncertainty.

Consequently, the system decides not to ask Anya to annotate the activity, so she

proceeds uninterrupted.

Anya turns on the kettle and, while the water comes to boil, she performs again

the torso exercises. However, she had previously set up her HAR monitor to issue

annotation requests only very infrequently while she is at work. The HAR model still

diagnoses itself as not very adequate at classifying this exercise, but it suppresses its

current annotation request so that Anya does not become annoyed.

Considering the mechanics of the system, because it is now interactive, the pattern of

usage changes partially. In this case, the user is expected to engage occasionally to

provide annotations. Anya still relies on fully automated, passive and, for the most

part, non-intrusive activity recognition, but now the system occasionally asks her to

provide feedback which aids model personalisation. The mechanics of how an annota-

tion is deemed useful by the system – using active learning – is introduced in Chapter

2 and is a core concept which is evaluated in Chapters 4, 5 and 6. However, as we

discuss in Chapter 2, previously studied offline active learning methods are inappli-

cable to our scenario because, effectively, they are at odds with our assumption of

limited user memory recall. Instead, we apply an online method, called Online Active

Learning (investigated by Sculley [48]), which is able to identify critical annotations

even when operating over an extremely limited horizon of choices. In our case, the

horizon is limited to a single potential annotation at any one time which is the most

recently finished activity.
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Figure 1.1: Typical HAR Monitoring.
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Figure 1.2: HAR Monitoring with Model Personalisation.
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Figure 1.3: HAR Monitoring with User-Provided Annotations for Model Personalisa-
tion.
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Figure 1.4: Personalisation Loop.
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Contributions

We claim that HAR models can be personalised from user-provided online annotations

and throughout this thesis we use experiment-based approaches to support our claim.

As underlined previously, online annotations can be more easily supported than offline

annotations because online annotations can be provided by the users themselves while

resorting only to their short-term memory.

In our scenarios we start either from zero knowledge, i.e. the system does not know

anything about the user and it does not have any of the user’s annotations, or from

a relatively small corpus of annotations. With each annotation the user provides, we

bootstrap the model – we update or reconstruct the model so that it accounts for the

newly updated corpus of annotations.

We use a core concept, Learning from Online Annotations, to designate the process

of model induction from the annotations the user parsimoniously provides while using

the system. We introduce several methods and a complete system implementation and

we assess different aspects of our core concept, as illustrated in Fig. 1.5.

The principal assumption of our work is a technological evolution of physical activity

trackers. Even though, currently, activity trackers are usually passive sensing devices,

we propose to augment them with user interaction capabilities, so that the they can

engage with the user to learn from personalising feedback.

The contributions in this thesis are as follows:

Firstly, we model a user’s limited and varying propensity of providing annotations by

introducing the concept of a Budget of Annotations. We issue annotation requests

strictly according to the user’s predisposition towards interruptions, but without ac-

counting for the importance of each potential annotation towards model improvement.

We evaluate the impacts of the user’s predisposition on the recognition performance

of the user’s personal HAR model in Chapter 3.

Secondly, in Chapter 4 we exploit the observation that not all annotations increase

model accuracy by equal amounts. Here we shift focus from the user’s predisposi-

tion entirely to the importance potential annotations have for model improvement.
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Online Learning from User-Provided Annotations

Online Active Learning
- simulation-based experiment
- learning performance evaluation

Chapter 4

Budget-based Online Learning
- simulation-based experiment
- learning performance evaluation

Chapter 3

Online Active Learning
- field study deployment
- learning performance evaluation
- user feedback assessment

Chapter 5

Budget-based OnlineActive Learning
- simulation-based experiment
- learning performance evaluation

Chapter 6

Figure 1.5: Roadmap of Contributions.

Because some annotations are more beneficial towards model accuracy improvement,

we propose to use Online Active Learning, a method of identifying highly promising

annotations (from a model improvement point of view) from a stream of activities.

We obtain online annotations which clearly distinguishes our work from other Active

Learning methods which typically identify offline annotations, as explained in Chapter

2. Our results demonstrate that performance gains on recognition performance can be

obtained by using our Online Active Learning approach to accumulating annotations.

Encouraged by these results, in Chapter 5, we provide a complete system implemen-

tation of our Online Active Learning method for HAR and we deploy the system

within the setting of a naturalistic user study. We propose a HAR framework that

incorporates a suite of methods supporting Online Active Learning and implement

a mobile application for online activity recognition using body-worn wireless sensors.

The results are threefold:

1. the deployment of our system in a user-centred field study shows that modern

mobile platforms could support our concept implementation and, so, it serves as
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proof of concept for our Online Active Learning method;

2. post-experiment analysis shows that models improve their recognition accuracy

as they are increasingly personalised. Therefore Online Active Learning method

is robust enough to operate under realistic conditions, not only under simulated

conditions as in Chapter 4;

3. the compilation of subjective user feedback on interacting with the system reveals

that Online Active Learning is disruptive and taxing on user tolerance, but not

necessarily excessively, so it can arguably be adopted in moderation to drive

model personalisation.

Finally, in Chapter 6, we propose a hybrid criterion of requesting input that combines

the Online Active Learning method from Chapters 4 and 5 with the Budget-based

online learning method from Chapter 3. Our results show that the seemingly compet-

ing Online Active Learning and Budget-based online learning methods can actually

be blended to yield, on the one hand, active learning-specific performance gains while,

on the other hand, still closely adhering to the limitations of an imposed budget of

annotations.

Overall, as we show in Fig. 1.6, we are, roughly speaking, exploring a two-dimensional

space of parameters for our annotation method of obtaining online annotations and

evaluating the effects on HAR model performance.

Thesis Organisation

The rest of the thesis is structured as follows. In Chapter 2 we provide an overview of

the state of the art in HAR model personalisation and related directions of research.

In Chapter 3 we present an exploration of the effects of a budget-based online learning

strategy that models a user’s tolerance towards interruption. After that, we temporar-

ily depart from budget constraints and instead focus on Online Active Learning as

a method to identify important annotations for model improvement. In Chapter 4

we provide simulation-based experiments to evaluate Online Active Learning, while in

Chapter 5 we test the feasibility of the method on a live user study. In Chapter 6 we
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Model Performance

Interruptions

Importance of Annotations

Ch. 6Ch. 
4 &
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Figure 1.6: Parameter Space of the Annotation Method.

unify the budget idea from Chapter 3 and the Online Active Learning from Chapters

4 and 5. Finally, in Chapter 7 we reflect upon our contributions and place them in the

context of future exploration.
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Chapter 2: Foundations

Introduction

In the previous chapter we presented the motivation behind our research and a general

overview of the significance of the contributions in this thesis. In this chapter we

provide the research background for the rest of the thesis.

Because constructing personalised HAR models through user input only and without

external supervision is a complex multi-stage problem, a series of inter-related design

choices have to be made. In this chapter, for all design decisions we make in future

chapters, we consider relevant related and background research.

Definition of an Annotation

For a continuous timeseries of sensor readings which capture movement about physical

activities, we define an annotation as a labelled contiguous subsequence of sensor data

which is representative for the underlying activity. An annotation therefore consists,

in part, of a start timestamp and an end timestamp which designate the first and,

respectively, the last readings of a segment – the contiguous sub-timeseries that cor-

responds to the underlying activity. In addition, an annotation carries a segment label

– a name of the respective activity class.

The annotations are collected into a training set which is then used to construct a

HAR model. Further details concerning how this is achieved are presented in Section

2.4.4.

Our Contributions in Context

Supervised learning is a dominant approach for HAR applications. However, obtaining

reliable and sufficient ground truth annotations for training data is challenging, largely

due to practical as well as ethical reasons, especially in mobile ubiquitous computing

settings.

We involve the user in the annotation process and, like Intille et al. [49], we propose

that users parsimoniously provide annotations for their own activities. We therefore

remove expert annotators and other external sources of ground truth, such as video

- 18 -



Chapter 2: Foundations

footage, from the annotation process and, pass the responsibility of annotation to the

prospective users of the HAR system themselves. The annotations are then used to

construct fully personalised HAR models for each user in turn. This style of anno-

tation provision and others are explicated in Section 2.2. As discussed in Chapter

1, even though user engagement entails disruption, users would arguably be moti-

vated to interact with the system and provide annotations because this would lead

to improved monitoring accuracy. User disruptions, their effects and mechanisms to

alleviate annoyance are discussed in Section 2.3.

In this thesis we are concerned only with wearable HAR systems. By definition, these

are attached and in close proximity to the user and, so, they can be carried across

different environments. Not only do they have to provide effective monitoring by

design, but the mechanism for collecting annotations should also function regardless

of where the user may be. Since not all contexts will be instrumented, external sources

of ground truth such as video footage are not always available and so they cannot be

relied upon.

A key source of ground truth for annotations, therefore, is the user’s short-term mem-

ory. We propose an interactive HAR system which makes use of this recent human

memory in order to obtain annotations for the user’s own activities. The activities at

which annotation requests are aimed need to have occurred very recently; otherwise,

as Eisen et al. [50] show, human memory recall deteriorates with the passage of time.

In order to simplify the annotation process and to increase the robustness in user

feedback, we only target the last activity the user performed. In Section 2.2.2 we use

existing research to show that such timely feedback can accurately represent reality.

In fact, with the benefit of hindsight, according to the results in Chapter 5, the event

is so recent, that users have no problems remembering.

In Section 2.5.3 we use supporting literature to show that not all annotations are

equally beneficial in terms of accuracy. Before prompting the user to provide an

annotation, it is possible to estimate its potential performance gains using a learning

methodology called Active Learning [51]. Learning methodologies in general, including

active learning, are discussed in 2.5.

In order to exploit the user’s short-term memory, which is inherently finite, and still use
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Active Learning, one needs to compromise on a technical level. For example, a widely

used class of active learning techniques are pool-based or offline. These require, at any

one time, a relatively large corpus of potential annotations from which to choose the

one which is expected to maximise the gain in model accuracy. However, any sizeable

sequence of activities would not be robustly recalled by the user because it would be

beyond the user’s limited short-term memory. To circumvent this problem, we adopt

a stream-based or online active learning technique developed by Sculley [48]. Instead

of operating over a large corpus of potential annotations, this Online Active Learning

approach considers only one activity at a time – the most recent one – and decides for

each activity in turn whether to annotate it or not.

An interactive HAR monitor that supports collecting user-provided annotations and

constructing personalised models is an entire ecosystem of automated procedures and

algorithms that ultimately support its core machine learning-related functionality.

Consideration to the characteristics of auxiliary functions and the technological impli-

cations of HAR systems is given in Section 2.6.

Chapter Outline

Having established our contributions and the necessary context for them in Section

2.1.2, we proceed to outline the rest of the chapter:

• Section 2.2 Obtaining Annotations discusses different types of annotations

in human activity recognition. We focus on how the acquisition mechanism of an-

notations affects not only the quality of the annotations, but also the interaction

mechanism with the user

• In Section 2.3 The User’s Perspective we outline key ideas in how users

perceive interruptions. Additionally, in order to exploit the user’s emotional

variations towards interruptions, we draw inspiration from existing research on

the notion of a budget of annotation – treating interruptions as a finite resource.

• In Section 2.4 Machine Learning we discuss general mechanisms of creating

HAR models from annotated data. We review a pipeline of data processing and
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model building which is routinely used in HAR research and which we also use

in this thesis.

• Section 2.5 Learning Methodologies for Model Learning deals with more

advanced Machine Learning concepts. While the previous section (2.4) deals with

supervised model building methods, we now investigate unsupervised and semi-

supervised methods. A semi-supervised method of particular importance to our

thesis is Active Learning. In this section we describe the model accuracy benefits

that Active Learning can bring and we also discuss how to adapt Active Learning

to our proposed annotation mechanism.

• Finally, Section 2.6 Machine Learning in HAR Applications gives a prac-

tical perspective of applying machine learning for HAR and techniques used in

this thesis.

Obtaining Annotations

Personalising activity models, i.e. fine-tuning a model to the user being monitored, has

been shown to lead to improved recognition accuracy over non-personalised models, for

example by Lane et al. [52]. Personalisation, and therefore model improvement, can be

obtained directly from gradually accumulating personalised annotations about a user,

as Rebetez et al. [53] show, or by leveraging existing corpora of non-personalised data

that can supplement the personalised annotations, like, for example, Cook et al. [54] or

Stikic et al. [55]. Obtaining annotations is a critical step towards model improvement

and different methodologies of collecting annotations exist.

Retrospective Annotations

In HAR research, typically, while movement data is readily collected through sensors,

the participants are observed by a researcher who annotates the data as the user’s

activities are performed, like Lester et al. [56] or Morris et al. [57], or by examining

retrospective video footage of the participants, like Chavarriaga et al. [38] or Pham

and Olivier [58].
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An example tool for annotating used in HAR is ELAN [59]. It allows expert annotators

to synchronise the video ground truth with sensor data and then to annotate the

sensor data: they inspect the ground truth, establish temporal segment boundaries

and declare the label for identified segments.

Retrospectively annotating activity data is suitable for one-off research investigations,

such as collecting a dataset of annotations for offline analysis. However, in more

realistic settings, this approach presents several limitations:

• Because of the involvement of an expert annotator, retrospective annotation does

not scale well to increasing user bases because this requires increasing the team

of annotators proportionally. Bagaveyev and Cook [60] and Lasecki et al. [61]

have suggested crowdsourcing the annotation task. While this approach removes

the bottleneck in human annotation, extensive ground truth in the form of video

footage still needs to be collected, which can still limit the context of the anno-

tations.

• The possibility to annotate is limited to the environment where the ground truth

collection infrastructure is present. This greatly reduces what can be annotated

and annotations may not be representative of a user’s entire lifestyle. Portable

cameras are a possibility (for instance, Maekawa et al. [62] suggest computer

vision techniques to assist automated activity recognition), but, examining video

footage is arguably tedious and time consuming, so users may not participate in

the annotation process as much.

• If examined by a human annotator, the collection of video footage may be a

source ground truth for annotations, but it may also be revealing in unexpected

ways and so video footage can raise serious privacy concerns.

User-Generated Annotations

Retrospective methods typically do not involve the users in the annotation process and

instead require external assistance from expert annotators. The ubiquitous computing

research community has recognised the importance of leveraging user-generated an-

notations. Similarly to Intille et al. [49], we also propose that users, not researchers,
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occasionally provide annotations for their own activities as they happen. Engaging di-

rectly with the users (1) relieves the annotation bottleneck by expert annotators and

(2) ensures that the annotations are collected in a more naturalistic context where users

do not feel excessively monitored (i.e. by video footage or in the constant presence of

a human annotator).

A central issue with user-provided annotation is their timeliness. A self-reporting

method, Ecological Momentary Assessment (EMA), described by Smyth and Stone [63],

which is also known as Experience Sampling Method (ESM) according to Intille et

al. [49, 64], is successfully used in medical research to allow patients to report rele-

vant symptoms, conditions or circumstances as and when they occur. Data integrity

levels in EMA/ESM are high and Smyth and Stone [63] argue this may be due to the

timeliness with which input is given. We too take advantage of this timeliness and

we propose that the user takes ownership of annotating some of her own activities

as they happen. In addition, we continually monitor user context and identify which

activities should be annotated so that the user’s participation translates in optimal

model improvement.

Obtaining annotations straight from the users creates opportunities to reinforce or

adapt known contexts and to augment the set of contexts. For instance, Nguyen et al. [65]

propose to adapt a crowdsourced acoustic model from annotations generated (with-

out expert supervision) by the users themselves in the environments they visit. In

terms of context augmentation, SoundSense (Lu et al. [66]), uses the microphone on

a smartphone to monitor not only predefined categories of sound (speech and music),

but also a variable category of ambient sound. The authors use unsupervised learning

to automatically discover frequent novel patterns in the user’s monitored data. When

such a pattern is identified and if it is dissimilar to previously discovered ones, the user

is asked to provide an annotation for it. This approach allows the user to increase the

vocabulary of contexts or activities, in similar fashion to Hossmann et al. [67].

Given the typical limited amount of annotations that can be collected through typical

observational studies, Kawaguchi et al. [68] proposed collecting physical annotations

on a large scale, directly from users. Aided by a smartphone app, users could opt

in to generate annotations for their activities with the consent that their data would
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be uploaded to a centralised HAR database. Similarly to the authors of ActiServ

Berchtold et al. [69] or Hossmann et al. [67], the user must be conscious about her

intention to execute a physical activity. Therefore, the user must first signal on the app

that she is about to exert an activity and when the user is done, she must again inform

the app as soon as the activity ended. While the interactions with the annotation

device are very granular, the advantage of obtaining annotations in this way is that the

user is ultimately in control of when annotations are provided – she is not interrupted

with potentially intrusive annotations requests.

Some authors recognised that this kind of repetitive input on a smartphone can be te-

dious, so voice commands have been proposed instead of tactile input by Harada et al. [70]

(VoiceLabel), Hoque et al. [71] (Vocal-Diary) and van Kasteren et al. [72]. van Kasteren

et al. [72] report near errorless voice recognition, but Hoque et al. [71] have shown that,

in a different context, the precision for some labels can drop to 80%. The added layer

of voice recognition may result in additional errors in the activity model. We want to

avoid such errors and we suggest that annotations be collected using an unambiguous

interface, such as a tap-only interface on a mobile device.

However, using interruptions on a smartphone to require (as opposed to the previ-

ous paragraph, where annotations were merely provided by a purely benevolent user)

physical activity annotations from users has been also tried before, for example, by

Cleland et al. [73], Abdallah et al. [74, 75] and by Miluzzo et al. [76] in the CenceMe

application. As discussed later, in our approach, we apply a heuristic to reduce the

number of user interruptions and this distinguishes our work from Cleland et al. [73] or

Miluzzo et al. [76] who do not apply heuristics to identify potential annotations which

might not make the most of the users’ annotation effort. The differences between our

work and Abdallah et al. [74, 75] are more technical (they revolve around the timing

of annotations) and they are discussed in detail in Section 2.5.3.

Reducing the number of interactions is known to be an important factor and has been

researched (in Section 2.3 we discuss some key papers for our work). For example, the

authors of YouSense Linnap and Rice [77] define a trade-off between the importance

of an annotation and the cost of interrupting the user. Their work, however, is aimed

at geo-contexts, so their heuristic function which values geographical coverage is not
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applicable to our scenario.

Proactive Annotations

Users may be asked to proactively initiate the annotation process by declaring in

advance that they are going to perform an activity and provide a label when the

activity will have finished. This may be done for model personalisation, as suggested

by Berchtold et al. [69], or simply as part of the experimental protocol for collecting

user-provided annotations, as done by van Kasteren et al. [72].

However, by essentially providing an annotation before the usefulness of obtaining that

annotation can be estimated, one denies the possibility of directing annotation effort

only towards the most promising annotations.

Reactive Annotations

Not all annotations bring equal improvement to the model. This has been shown, for

example, by Longstaff et al. [78] and it is a concept we leverage in Chapters 4, 5 and

6 where we seek to find the annotations that overall bring greater performance gains

than randomly provided annotations. Annotations are reactive in the sense that the

annotation process is initiated after the activity has finished.

Because reactive annotations are, by definition, aimed at activities which occurred

in the past, user-driven retrospective annotation techniques (as explicated in Section

2.2.1) could potentially be used with the user performing the role of the annotator.

However, either the user benefits from the same ground truth collection infrastructure

(since memory recall deteriorates with time [50]) or steps have to be taken to simplify

the annotation task.

If the user has the same access to the same collection of ground truth as an expert

annotation, she may inspect the video footage and identify segment boundaries and

assign activity labels. Nonetheless, the annotation process can be simplified if in

addition the segment boundaries can be automatically estimated. This shields the

user from the relatively complex task of delineating her own activities and, instead,

has to provide only a label for the activity. As we discuss later, activity segmentation
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is a difficult problem, and especially so in the absence of prior annotations. In this

case, the following reactive annotation scenario is applicable:

1. The system would identify what segments are most useful for annotation (i.e.

are expected to bring a relatively large gain in terms of activity monitoring

accuracy).

2. The user would then be prompted with ground truth video footage for that

segment and would be asked to provide a label.

The techniques that quantify how a segment is deemed “useful” are discussed at length

in Section 2.5.3.

Nonetheless, if segment boundaries are detected automatically in real-time or online

and the usefulness of annotating the most recent segment can also be estimated in real-

time, as Abdallah et al. [74, 75] propose, then the user does not need an infrastructure

for ground truth – she may simply use her short-term memory.

In this thesis we present several case studies where we either employ a fully automated

online segmentation procedure or assume a perfect online segmentation procedure that

produces segments which are suitable for online annotation by the user.

Proactive versus Reactive Annotations

Proactive and reactive annotations differ essentially in the moment in time when an

annotation is provided. Proactive annotations are provided before an activity starts,

whereas reactive annotations are provided after an activity starts. The timing has

important implications on the entire annotation process. Using a proactive approach,

segments cannot be assessed in terms of their usefulness because the decision to an-

notate precedes the segment. Therefore, in the proactive case, the user needs to guide

the annotation process, but this robs the system of the opportunity of annotating the

most critical segments, which are the focus of reactive annotation.

However, the two annotation schemes are not exclusive of each other and could be

used in tandem. Reactive annotations can be more efficient in terms of accuracy gains
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(when compared to proactive annotations), but, as we discuss in Section 2.5, this is

true only if there is already enough class diversity in the collected annotations. This

initial class diversity can be expanded through proactive annotation, because proactive

annotations for completely new activities can help increase the training set diversity

which in turn boosts the effectiveness of the reactive annotations. Nonetheless, as

we show, reactive annotations can bring classification accuracy improvements over

proactive annotations.

Relation to our Work

In Section 2.1.2, we described the outline of our proposed annotation process. As we

pointed out, in our approach, the responsibility of providing annotations rests with the

user who is involved in the annotation process – the user provides the activity labels for

annotations of her own activities. Since we focus on a mobile scenario, we cannot rely

on a heavy infrastructure for collecting ground truth which is typical of smart homes

[79] and which benefits from video footage. Instead, in a mobile setting, users find

themselves in uninstrumented environments and the only definitive source of ground

truth is their memory. This annotation scenario, in order to be compatible with the

user’s memory limited power of recall, must be compatible with online processing.

Data must be processed in a timely fashion so that all annotation requests reference ac-

tivities which have finished in the near past. Therefore, the EMA/ESM-style of ground

truth provisioning is suitable for our scenario. Moreover, we support EMA/ESM with

necessary technological means which support online activity data processing, which

include the detection of activity boundaries or the construction of personalised activ-

ity models. As soon as a boundary is detected, we propose to ask the user to provide

an annotation for this activity if the annotation is expected to substantially improve

the HAR model.

The User’s Perspective

Tolerance to interruption while performing an activity is naturally idiosyncratic, as

personal patience and inclination to collaborate come into play. Clearly explaining to
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the users the purpose of the interruptions and the benefits that can be expected is

one way to try and increase their tolerance. Key acceptance factors include the nature

of the task, and user awareness that a device is gathering information about the task

itself.

In this context, the notion of intelligibility, introduced by Lim and Dey [80], has been

adopted by the ubiquitous computing community to measure and improve upon the

capabilities of interactive systems. Intelligibility emphasises the need to explain to

the user the decisions of a context-aware application. However, this works only if the

user perceives the application to perform high-confidence actions, i.e. actions which

the user can rely on. Therefore, the user should be made aware that her annotation

effort leads to the improvement of the HAR model and that the improvement should

be observable.

Meschtscherjakov [81] has shown that users become emotionally attached on different

levels to their devices, so this can be leveraged to attract the user to interact with

the device more often. The user’s emotional involvement can be further exploited by

nudging [82], i.e. instilling subtle desired bias in one’s actions, so that users can be

influenced to act in a desired way, namely to provide annotations for their own actions.

For example, Consolvo et al. [44] have shown that an attractive design with seemingly

pleasing and rewarding animations can change users’ behaviour – in this case, even

causing them to be more physically active.

Interrupting the User

There exists a significant corpus of prior art that explores how appropriate it is to

interrupt users. The effects of interruptions on task performance were explored by

Bailey and Konstan [83], who showed that user interruption not only reduces effec-

tiveness in performing and completing tasks, but it may also increase user annoyance.

Interruptions, however, are not fundamentally or entirely negative. For example, Sa-

hami Shirazi et al. [84] point out that, while notifications are disruptive by nature,

the users do value notifications if they are about their own context. Consequently, if

a user is motivated by improving her activity recogniser, then it is arguable that the

user will put some effort into annotating her activities.
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Assuming some notifications are deemed important, then one must also take into ac-

count whether interrupting the user at a certain point in time is appropriate. For ex-

ample, Pejovic and Musolesi [85] propose using a non-disruptive method of modelling

the suitability of interruption using a multidimensional mobile phone trace including

current time, accelerometer data and location. In an online setting where the user’s

sentiment toward interruption is predicted, the authors report large variations in pre-

cision and recall, but also large discrepancies between the two. This suggests that

interruption models can suit a large spectrum of preferences: from users who are strict

about not being interrupted outside their preferred intervals of time to users who prefer

not to miss important notifications with less regard to when they happen. Similarly,

Fogarty et al. [86] leverage context cues such as video footage to model the suitabil-

ity for interruption. Using audio processing, computer vision-based techniques and

retrospective manual annotation, the authors construct models of suitability for inter-

ruption. Using a different approach, Kapoor and Horvitz [87] used a desktop-based

application that not only monitored application use and other contextual information,

but also probed the user to continually adapt the interruption model.

This general direction of research is complementary to ours because their focus is on

the user’s sentiment towards disruption, while ours is on maximising the performance

of a personalised activity model by carefully selecting what sample data to ask the

users to annotate.

Budget of Annotations

Given that a user’s emotional involvement is limited and that user interruptions are

taxing, user interruptions are a finite resource. Taking this into account, we motivate

our work on two fronts. Firstly, we introduce the budget concept for obtaining HAR

annotations in Chapter 3, which allows for an annotation mechanism that takes into

account time-varying user tolerance towards annotation.

Secondly, in Chapters 4 and 5 we attempt to make the most of the user’s annota-

tion effort and optimise the accuracy of the activity recogniser by asking the user to

annotate only the most promising activities.
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Finally, we combine these two concepts in Chapter 6 and maximise the accuracy of

the model even if the user’s inclination towards annotation changes in time. Our

approach takes into account not only a finite budget of annotations, like Helmbold

and Panizza [88] or Attenberg and Provost [89], but also respects a time-varying user

disposition to how frequently annotations can be requested.

Relation to our Work

In this thesis we accept that asking users to provide annotations is generally disruptive

to them. However, we assume that users are still motivated to provide a limited number

of annotations distributed according to a priorly-agreed-upon distribution. In line with

the notion of intelligibility, we assume that if the user’s HAR model can be improved

and such improvements are made observable by model performance evaluation, then

the user would commit to provide annotations on the established limited basis.

While we do not quantify what are the actual user’s tolerance levels, we nonetheless

provide a generic budget-based mechanism to cope with any such levels of involvement.

These mechanisms prioritise the timing of annotation requests so that the resulting

time distribution of annotations matches the user’s expectations.

We explore budget-based annotation strategies in Chapter 3 where user tolerance,

modelled as an annotation budget, is the sole criterion of requesting annotations. This

approach is taken further in Chapter 6: we apply Online Active Learning as a means

of acquiring critical annotations, but we also overlay the restrictions that come with an

annotation budget. The end result is a mixed effect between budget-based annotation

and Online Active Learning, where highly critical annotations are still identified by

Online Active Learning, while the shape of the distribution of annotation requests

approximates the desired one.

Machine Learning

Machine learning lies at the heart of HAR and it is a toolbox of methods and techniques

which allow the automatic monitoring of physical activities. Typically, several stages of

data processing are composed to form a pipeline for model building and classification,
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Figure 2.1: Machine Learning Classification and Model Building Pipelines.

as illustrated in Figure 2.1. The activity model, which is the central piece of a machine

learning pipeline, is, essentially, a mathematical function which takes as input signals

(movement data) and output activity labels (the estimated activities).

The classification pipeline deals with estimating labels for newly registered activities,

whereas the model building pipeline fine-tunes the activity model which improves the

end results of the classification pipeline. These first three steps in the pipelines, namely

Sensor Data Acquisition, Preprocessing and Feature Extraction, are identical so that

classification and model building are compatible. In our framework, input sensor data

are partitioned into segments, which are examined in turn by the activity model, and

the final outputs are the estimated corresponding labels.

Sensor Data Acquisition

The prevalence of sensing hardware such as that found smartphones with embedded

sensors, wearable sensors and ambient sensors has greatly enriched the sensing options

HAR application designers have at their disposal.

In this thesis, we explore the mobile scenario exclusively, so our focus is on wearable

sensors. These are also a widely used means of collecting data on a wearer’s movement,

for example, by Chavarriaga et al. [38], Kurz et al. [90] or Morris et al. [57]. Portable

sensors can also be found in modern smartphones and have been used to support HAR

applications, like in Berchtold et al. [69], Zhao et al. [91] or Kwapisz et al. [92].
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Smartphones are an enabling technology not only in terms of potential sensing, but also

in terms of connectivity and general computation. Connectivity-wise, smartphones

have been used, for example by Pärkkä et al. [93] or Xuel and Jinl [94], as a base

station, i.e. to collect sensor data from worn sensors. In addition, Abdallah et al. [75]

have shown that smartphones pack sufficient computational resources to support a full

machine learning pipeline that provides classification and model personalisation.

Also, a wide range of sensor modalities have been employed in HAR, such as ac-

celerometers, magnetometers, gyroscopes, microphones, pressure sensors, as reviewed

by Shoaib et al. [95] or Lara and Labrador [96].

Preprocessing and Feature Extraction

Sensor data preprocessing is a curation and organisation step that prepares sensor

data for meaningful feature extraction. The preprocessing operations include high-

frequency noise filtering using a low-pass digital signal processing filter (for instance

Anguita et al. [97] or Morris et al. [57]) and/or, very commonly, a sliding window,

as noted by Bulling et al. [98], which splits a stream of sensor data into windows –

contiguous chunks of sensor readings that are further processed individually.

Each window is then transformed into a feature vector which is meaningful for ma-

chine learning. This feature extraction step transforms a high-dimensional window

into a smaller-dimensional data product which is suitable for a large class machine

learning model building algorithms. For the purpose of feature extraction, numerous

data transformations have been attempted in HAR. These include statistical measures

[99], such as the means of the values of an axis within a window, their variance, the

correlation between different axes, but also many others, such as harmonic content

[99, 100] or timeseries auto-correlation features [57].

While features for classification can be manually defined, as we have shown previously,

recent advances in machine learning, namely in the direction of deep learning [101] have

demonstrated that it is possible to automatically infer high-level features from low-

level data, such as individual image pixels [102] using Deep Belief Networks (DBNs).

Plötz et al. [103] have applied the same concept to HAR. They proposed to learn
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a high-level feature schema from raw sensor signals and to further use the resulting

features for classification. Their results show that, for classification of human activities,

deep features work relatively well when compared with other sets of manually defined

features.

An alternative to extracting features from sensor data is to compare whole sensor

time series. A standard algorithm for measuring dissimilarity between timeseries is

Dynamic Time Warping (DTW) [104, 105]. For example, in HAR, Muscillo et al. [106]

have shown that physical activities recorded with an accelerometer can be reliably

recognised by a DTW-based classifier.

Activity Segmentation

Numerous techniques on how to detect segment boundaries in activity streams have

been developed. For example, in environments instrumented with on/off sensors, La-

guna et al. [107], Krishnan and Cook [108], Chua et al. [109] and Okeyo et al. [110] have

exploited discrete sensor changes to segment activities. However, these methods are

not applicable to our scenario because our sensing framework is based on continuous

acceleration signals.

Signals from continuously-valued sensors1 have been automatically segmented using

a plethora of methods. For example, Hidden Markov Model (HMM) methods [111]

which account for the temporal dependencies in non-periodic gestures and physical

activities (i.e. [38]) were used to find segment boundaries by Deng and Tsui [112].

Alternatively, Krishnan et al. [113] and Junker et al. [114] suggest modified versions

of Adaboost [115] as an alternative to HMM-based segmentation. Other methods

include detecting segment boundaries with Dynamic Time Warping [105] (Hsiao Ko

et al. [116]), with string matching using Dynamic Programming [117] (Stiefmeier et

al. [118]), or with time-series based measures such as autocorrelation-derived features

(Morris et al. [57]). Some assumptions can be built into the sequence of activities (i.e.

Cleland et al.[73] assume that higher energy activities are always followed by being

stationary) so that a simple segmentation procedures can be used. However, these

1These are actually digital sensors with a resolution much higher than 1 - the resolution of the
aforementioned on/off sensors.
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assumptions are not generally true for a naturalistic environment where the user may

engage in different activities in unpredictable order.

These methods, however, are not applicable in our scenario because they assume a

prior corpus of annotations to inform the segmentation decision, which is in contrast

to our assumption of bootstrapping personalised models from scratch – i.e. assuming

no initial annotations exist. Instead, we draw inspiration from the video segmenta-

tion literature and adapt an online segmentation procedure devised by Cooper [119]

to physical activities recorded with accelerometers. This segmentation technique is

detailed in Chapter 3.

Model Building and Classification

Model building, which we refer to as the application of a supervised learning algo-

rithm [120], entails using the training data to approximate a hypothesis, i.e. mapping

from the feature vectors to the corresponding labels. Typically, for a given dataset

of labelled examples, supervised learning implies the search of a hypothesis which is

optimal in some way like, for example, one that minimises the prediction error. A

general difference between different classes of learning algorithms is how the space of

hypotheses is explored to yield an optimal one.

A plethora of model builders have been reported in the HAR literature and Shoaib

et al. [95] and Lara and Labrador [96] outline numerous such works. These model

builders yield activity models which are subsequently used for classification, i.e. the

act which entails estimating labels for continuously monitored sensor data.

Relation to our Work

In this thesis, we set up a number of machine learning pipelines for different HAR con-

texts. In these we include standard machine learning techniques and algorithms like

the ones previously discussed. Our focus is entirely on accelerometer data from wear-

able sensors as this sensor modality is common to wearables and smartphones. For the

most part, we use a typical sliding window approach over a continuous timeseries of

acceleration sensor readings. Because the machine learning pipeline serves not only to
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recognise human activities, but also to acquire annotations, possibly from scratch (zero

starting knowledge), the pipeline must not assume prior knowledge. Consequently, we

adopt knowledge-agnostic approaches such as extracting typical statistical features

(means, variances and correlations) or using Dynamic Time Warping to contrast time-

series directly. Deep Belief Networks (DBNs) could be an alternative mechanism for

extracting signal features, but these need a relatively large amount of unlabelled data

that ideally covers all activities of interests. However, at the beginning of the boot-

strapping process, not all activity classes may have occurred, so a trained DBN at this

point might not be sufficiently representative of all activity classes.

As we have shown, automatic activity segmentation is still an ongoing research prob-

lem. Challenging cases which necessarily combine activity segmentation and activity

recognition into one typically require a prior corpus of annotations. This is inapplica-

ble to our scenario because we cannot assume forms of prior knowledge. Instead, we

apply a knowledge-free segmentation method.

In terms of classification models for activity recognition, we applied model builders

commonly used not only in HAR, but also in numerous other fields. For most cases, we

enhanced the capabilities of the Naive Bayes classifier by constructing an ensemble of

individual classifiers using Bootstrap Aggregation. Alternatively, when it is beneficial

to retain certain characteristics of the timeseries, such as temporal structure for non-

periodic activities (discussed in Chapter 4), we compared timeseries directly using

Dynamic Time Warping and use a k-Nearest Neighbours classifier.

Learning Methodologies for Model Building

Supervised learning, discussed previously in Section 2.4.4, is not the sole approach to

constructing HAR models. In this section we consider unsupervised learning, which

does not require personal annotations, and semi-supervised learning, which seeks to

complement a supervised model with non-personalised labels, unlabelled examples or

incorporating data or knowledge gained from other sources.
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Unsupervised Learning

Unlike supervised learning, which uses personalised annotations to construct a model

that maps feature vectors to labels, unsupervised learning does not require the accumu-

lation of personalised annotations to improve a user’s model. For example, Chavarriaga

et al. [121] use unsupervised learning to correct for variability in sensor placement and

rotation. Maekawa and Watanabe [122] avoid personalised annotations altogether by

constructing individual training sets based on a user’s physical characteristics, such as

age, height and weight.

While purely unsupervised approaches bring some improvement, ignoring supervised

learning techniques does not, in general, fare well for classification performance. In

fact, both supervised and unsupervised techniques can improve HAR models. As

we discuss further, supervised and unsupervised techniques can be unified into semi-

supervised techniques to use personalised annotations as a springboard for deriving

new knowledge from auxiliary sources, including the user’s own unlabelled data or

other users’ annotations.

Semi-Supervised Learning

Obtaining personalised labels has been recognised as a difficult endeavour by numerous

researchers [55, 78, 123, 124] who proposed to improve existing classifiers by leveraging

large corpora of unlabelled examples which are easy to collect or corpora of data

representative of similar contexts [52, 54, 90, 122, 125, 126].

In this section we explore prior work of using personalised corpora, i.e. which contain

both labelled and unlabelled examples belonging to the user for which personalization

is made. Several techniques, including self-training [78, 123], co-training [78, 123]

and multi-instance learning [55, 124], utilise the user’s activity model to infer labels

that further the user’s training set. We also look at prior work on transfer learning

[52, 54, 90, 122, 125, 126] which attempts to adapt non-personalised examples (e.g.

collected for other users). Finally, we investigate active learning [48, 51, 53, 60, 74,

75, 78, 88, 89, 96, 123, 126–129], another semi-supervised methodology which seeks to

expand the user’s training set, but, unlike self-training, co-training and multi-instance
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learning, the user is asked to label some of her own unlabelled examples.

Some of these methods usually rely on an initial corpus of annotations in order to

infer labels for new examples which are then used to complement the initial corpus.

A notable exception is active learning which can work without any prior annotations.

In particular, in the case of active learning, this is not without technical difficulties,

as pointed out by Sculley [48]. At the very beginning of the bootstrapping process

when there is very little or no class diversity, active learning may be misleading in

terms of annotation decisions. This problem is explored in detail in Chapter 5 where

we propose mechanisms to alleviate this issue.

In general, existing research has shown that improvements for HAR models can be

obtained by employing these semi-supervised techniques. In the case of non-active

learning methods, the direction of research is largely complementary to ours because we

focus on mechanisms to obtain definitive personalised labelled examples for activities.

In existing non-active learning research, these initial corpora of labelled examples can

be further enriched with unlabelled data or non-personalised annotations.

Self-Training

One way to increase the quantity of labelled examples is to include in the training set

the examples which are classified with the greatest confidence by the current classifier.

These initially unlabelled examples, which are personal to the user, are labelled with

the activity label inferred by the classifier. This was done by Longstaff et al. [78] and

Stikic et al. [123]. Essentially, from the activity classifier’s point of view, the examples

with the greatest confidence in classification are assigned as ground truth labels the

estimated ones from classification. We too use classifier confidence, but we do not self-

train and infer labels because the latter may be incorrect. Instead, we decide whether

to obtain a definitive label for an unlabelled example from the user herself.

Co-Training

In similar fashion, Longstaff et al. [78] and Stikic et al. [123] have used classifier

confidence to infer new labels. They have split the features of labelled examples in
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groups which are independent given the label. A classifier trained on each group

passes to the other classifiers labels for its own most confidently classified examples.

The process iterates a number of times and the most confidently classified are then

assigned inferred labels. Again, this process may yield incorrect annotations and, so,

is no substitute for definitive annotations.

Multi-Instance Learning

Stikic et al. [55, 124] proposed extending known activity labels to unlabelled examples

which are temporally or structurally close to the labelled examples. An unlabelled

example is temporally close it was registered shortly before or after a labelled example.

Similarly, a labelled example is structurally close if the feature representation is not

dissimilar to a known labelled example.

Transfer Learning

Transfer Learning, as surveyed in general by Pan and Yang [125] and by Cook et al. [54]

for activity recognition, entails the existence of two data domains: a source domain,

which abounds in data, and a similar, but not necessarily identical, target domain for

which data from the source domain must be adapted.

Lane et al. [52] seek to personalise models by leveraging existing corpora of unlabelled

examples collected from other users. In addition to an initial corpus of annotations,

they exploit a set of similarity measures between users (at the level of raw sensor read-

ings, at the level of physical body measurements and at the level of lifestyle) to decide

what other examples to include in a user’s training set. The use of personalised labels

differentiates this approach from Maekawa and Watanabe’s [122] method, described

earlier, which is focused purely on inter-user physical similarity.

Transfer learning has been used by Kurz et al. [90] to adapt to changing sensor con-

figurations that are expected to happen if sensors are discarded (for example, the

user removes an article of clothing with an embedded sensor) or, conversely become

worn again. They adopt a teacher-learner methodology within sensing networks where

nodes may come alive unexpectedly. Classifiers corresponding to newly integrated sen-

sors lack labels, so existing classifiers monitor new activities and pass estimated labels
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to the new classifiers. New classifiers are “taught” labels by adopting as ground truth

the predicted labels from classifiers trained with data from existing sensors.

Another example of transfer learning is outlined by Shi et al. [126]. They similarly

apply labels from a source domain to construct a classifier that estimates labels for the

target domain data points. However, if the classification accuracy is low, then they

seek to complement transfer learning by obtaining labels from expert annotators. This

latter technique falls in the realm of active learning and it is described next.

Active Learning

Active learning is another semi-supervised learning paradigm. Instead of augmenting

training sets with uncertain labels, as do self-training, co-training or multi-instance

learning, active learning identifies unlabelled data points which, if annotated, are

expected to bring considerable improvement to the performance of the model.

Active learning is therefore a trigger for annotation requests. Requests can be alterna-

tively requested at random, something called Random Selection, but the mechanism

behind active learning weighs possible annotation requests and selects those that are

expected to bring the greatest improvement to model accuracy. Consequently, the im-

provement to classification due to annotations triggered with active learning has the

potential to be greater than the improvement due to annotations triggered randomly

[51].

Active learning is governed by a heuristic function that examines unlabelled data and

yields decisions over whether or not to annotate those data. The function is heuristic

because it does not predict what the improvement in accuracy is going to be or even

if there will be an improvement. Rather, it outputs a quantitative measure which it

is believed (by the designer of the system) to be positively correlated with, but not

proven to guarantee, optimised performance gains. For instance, if a large quantity

of unlabelled examples is available and one annotation has been made, there exist

heuristics, such as the confidence in prediction of the classifier [51], which output the

ranking of all examples corresponding to the expected gains in performance.

Because active learning requires the inspection of unlabelled data, it suits reactive
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annotation strategies. On the contrary, random selection does not inspect the data,

so it can support both reactive and proactive annotation strategies.

Pool-Based/Offline Active Learning

As mentioned earlier, in HAR, users should only be asked to annotate limited amounts

of just the most relevant data because overly frequent requests can lead to reduced

user compliance. For example, in a bid to obtain sufficiently many user-provided anno-

tations for supervised model building and evaluation, Intille et al. [49] have generated

annotation requests every 15 minutes for two weeks. The resulting level of user com-

pliance was very low and the authors believe this is due to the excessive disruption

that competes with normal living. In our approach, we propose that annotation re-

quests are informed by the user context, so that only the most beneficial activities

are annotated by the user. In addition, as we show in Chapter 6 using budget-based

techniques, annotation requests can be suppressed if they would occur more frequently

or in a larger volume than that specified by the user.

Active Learning (AL), serves to orchestrate the accumulation of labelled segments in

the training set in such a way that it improves the gains in recognition accuracy over

random discovery of training data (Random Selection). In HAR, many attempts focus

on pool-based active learning – offline datasets are used and the annotation of data is

simulated by revealing one or a few labels at a time from the entire dataset or from

a large subset, as done by Rebetez et al. [53], Stikic et al. [123], Longstaff et al.[78],

Alemdar et al. [127], Bagaveyev and Cook [60] or Hoque and Stankovic [130].

In general, a heuristic function examines the input datasets and identifies the most

promising data instance to annotate. A good choice of the heuristic function and a

comprehensive view of large parts or the whole dataset promise good optimality in

choosing what points to annotate, but, from a user perspective, this places unrealistic

expectations on the user memory. In reality, people cannot be expected to precisely

remember the individual activities which took place in the distant past or the associ-

ated exact start and end times. If the source of ground truth was the user’s memory

such approaches would lead to unreliable annotations.

In a mobile scenario, users do not benefit from an intricate infrastructure for collecting
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ground truth, so, in order to annotate their own activities, they would have to use

their short-term memory. Pool-based active learning is not directly applicable because

annotation requests are not generally timely, so we have to investigate other approaches

which are compatible with this user limitation.

Stream-Based/Online Active Learning

Simulations that operate on datasets of annotations curated by researchers and experts

can afford pool-based Active Learning or similar approaches. In reality, in many cases,

activities unfold sequentially, so it is logical to construct a stream-based HAR system,

like Abdallah et al. [74, 75] who propose that each annotation decision is aimed at

clusters of potentially multiple activities. Additionally, annotation requests are aimed

at recent segments in the stream of activities.

Stream-based Active Learning, which we will refer to as Online Active Learning be-

cause annotations are requested as a result of real-time processing, goes hand-in-hand

with EMA/ESM. By using a heuristic that operates only on a user’s most recent seg-

ments, stream-based active learning parsimoniously asks the user to annotate those

segments.

Nonetheless, stream-based active learning is justifiable if it can outperform random

selection. In this scenario, random selection corresponds to the randomly selecting

recent activities for annotation, so the user’s short term memory could still be used as

a source of ground truth.

Abdallah et al. [74, 75] apply active learning to a stream of activities by selecting

entire clusters of activities for annotation. Online Active Learning, in this application,

is a means of personalising a prior model trained with non-personalized annotations.

While they provide curation techniques that remove most of the outliers to keep only

the predominant label in a selected cluster, the activities considered are not very di-

verse. In contrast, we propose to direct annotation requests at individual activities

and we evaluate the system against more diverse activities. Additionally, we bootstrap

personalised models, i.e. progressively training from zero knowledge or existing anno-

tations, as opposed to adapting existing models. Furthermore, we evaluate the learning

performances which are the result of the annotation strategy and we show that our
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online active learning method registers performance gains over soliciting annotations

at random.

To this end, we modify an existing Online Active Learning technique already elab-

orated for spam classification by Sculley [48], discussed in detail in Chapter 4, and

adapt it for activity recognition.

Helmbold and Panizza [88] propose another Online Active Learning method. They

provide theoretical guarantees provided the classification is performed by an ensemble,

i.e. a group of individual classifiers whose predictions are combined into one, for

example, by majority voting. However, this method is not applicable to situations

when a sole single classifier is used, which is extremely common in HAR [96].

Other Online Active Learning approaches have been suggested, such as Attenberg and

Provost [89]. By assuming some recurrence of unlabelled examples and a misclassifica-

tion cost function, they estimate the label distribution at run-time and identify highly

critical training examples which lead to classification improvement over random se-

lection. However, not all of the authors’ assumptions are valid for HAR applications.

While a misclassification cost function has been used, for example, by Abidine et

al. [128], to moderate activity predictions, one cannot assume that identical examples

repeat. This is because, using wearable sensors, activities are registered by high resolu-

tion sensors sampled with high frequencies [131], so virtually no two activity timeseries

would be identical.

While the previously mentioned work focused on streams originating from fixed dis-

tributions, Žliobaitė et al. [129] investigate how to correct the annotation behaviour

of Online Active Learning when the underlying distribution changes with time, a phe-

nomenon known as concept drift. The problem of concept drift has been investigated

in the context of activity recognition by Smith et al. [132], but, to the best of our

knowledge, we are unaware of a similar application for stream-based active learning.

Finally, Zhu et al. [133], Vlachos [134] or Laws and Schätze [135] observed that the

performance due to annotation by active learning increases up to a point and then can

decrease gradually. In order to prevent this degradation, they have developed stopping

criteria, i.e. heuristics that end the annotation process. However, for HAR, we are
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unaware of analogous work. In some of the experiments in this thesis we also observe

such a performance decline, but we do not attempt to replicate their work on stopping

criteria.

Relation to our Work

In this thesis, a large portion of the contributions revolve around using active learning

as a means of identifying critical annotations for constructing fully personalised HAR

models. While other learning techniques have been outlined in this chapter, these

can nonetheless be combined with active learning. For example, active learning can

generate an initial corpus of annotations which could then be used in conjunction with

other semi-supervised methods to augment activity models.

While substantial research has been done on active learning in HAR, most of the time

only pool-based/offline active learning has been considered. As shown previously, in

order for offline active learning methods to be applicable, they need to inspect a large

corpus of potential annotations at any one time. Due to the deep disparity between the

time an activity took place and the instant its annotation is requested, these methods

work well only in conjunction with a definitive source of ground truth, such as video

footage. However, because of the mobile context in which we operate, the only available

source of ground truth is the user’s short-term memory, which is insufficient for offline

active learning. Therefore, we resort to an online variant of active learning which

limits annotation requests only to the most recently finished activity – something we

assume the user can remember unaided.

The main difference to numerous applications of active learning to HAR is mainly qual-

itative – we incorporate Online Active Learning over the offline counterpart. While

functionally identical (offline and online active learning achieve the same thing – a cor-

pus of annotations), non-functionally, they are incompatible. Offline active learning

has virtually no temporal constraints2. Consequently, offline active learning, is simply

inapplicable to our mobile scenario because users cannot be expected to provide an-

notations for historic activities without a definitive source of ground truth, like video

2Any substantial temporal constraint, i.e. limiting the horizon of time in which to ask for an
annotation, will severely limit the effectiveness of the method.
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footage. In contrast, Online Active Learning can adhere to soft real-time constraints

[136]. This means that, as soon as enough movement data has been acquired, the

system should issue an annotation request with, preferably, as little a delay as pos-

sible. Since Online Active Learning, has a different modus operandi, it fits our user

memory-related limitations.

Nonetheless, as pointed out previously, regardless of the variant of active learning,

it has to outperform Random Selection in terms of HAR model accuracy. Random

Selection, in our case, equates to requesting annotations in an uninformed/random

fashion. We underline another contribution which is now quantitative: As the bulk of

our results in the rest of the thesis show, in terms of recognition accuracy, our variant

of Online Active Learning outperforms Random Selection.

Machine Learning in HAR Applications

Using Active Learning

Active learning-based deployments typically integrate an annotation heuristic into a

larger, more complex machine learning pipeline that matches the requirements for

particular contexts. An example of such a complex pipeline is presented by Shi et

al. [126]. As discussed previously, they seek to improve classifier accuracy primarily via

transfer learning, but fall back to active learning when transfer learning is insufficient.

In HAR, Abdallah et al. [75], integrate active learning into a light-weight machine

learning pipeline for a mobile application that provides online monitoring and user

interaction. Our proposed application is similarly restricted to a mobile platform.

Classifier confidence, as identified by Settles [51] in his survey, is a popular measure

used in active learning annotation heuristics. Classifier confidence has been very pop-

ular in HAR in particular. It has been shown, for example, by Abdallah et al. [74, 75],

Stikic et al. [123] or Longstaff et al. [78], that an active learning heuristic based on

classifier confidence leads to model accuracy improvements when compared to random

selection of annotations.
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Mobile and Continuous Monitoring

Activity recognisers help their users keep track of important events in their life or

their lifestyle, such as the amounts of exerted physical activity. To achieve this, it is

desirable for tracking to happen continuously. There has been a commercial explosion

of specialised continuous activity tracking devices3. These devices typically work in

conjunction with a mobile smartphone app, typically in order to upload data to re-

mote servers for processing. Given the ubiquity of physical sensors in modern mobile

hardware (accelerometer, gyroscope, light sensor, etc.), standalone smartphone apps

leverage available sensors to deliver continuous activity recognition4.

Real-time activity recognition is not a new idea. For instance, Tapia et al. [137] have

implemented such a system on mobile hardware back in 2007. Another example of is

by Lu et al. [138] who continuously collect microphone, accelerometer and GPS sensor

data in order to track multiple dimensions of a user’s context.

In fact, Mart́ın et al. [139] argue that it is possible to compromise between recognition

accuracy and resource consumption on a mobile device. The authors demonstrate

how one can fine-tune an activity model in order to reduce the computational cost or

memory usage associated with continuous activity recognition. Similarly, Abdallah et

al. [75] decrease CPU usage by monitoring not individual activity instances, but rather

groups of activity instances.

While the computational resources on a mobile device are nonetheless limited, for

our proposed application and the hardware we used, we were not hampered by CPU

power, memory or battery life, so it was not necessary to address optimising these in

any special way, except for using online data processing methods only.

From a usability point of view, the ultimate purpose of continuous monitoring for

physical activities is the accurate recognition of these activities. Statistics can be

further derived from these estimates into reports. We argue that the plethora of

techniques developed for HAR can be funnelled into applications that present reports

3http://uk.pcmag.com/activity-trackers/159/guide/the-best-activity-trackers-for-

fitness - Accessed 19.03.2015
4http://www.techradar.com/news/phone-and-communications/mobile-phones/10-best-

fitness-apps-for-android-1145635 - Accessed 19.03.2015
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to users. For example, the user’s wellbeing [39] or the amount of expended energy [37],

can be distilled and presented to the user so that insight into key lifestyle aspects can

be gained and informed decisions can follow.

Relation to our Work

As mentioned in Section 2.5.3, we propose Online Active Learning as a means of

obtaining critical annotations. However, our proposed Online Active Learning method

needs to be supported by a full complement of machine learning algorithms and user

interaction functionality, as shown previously in Fig. 2.1.

These algorithms too need to operate in online mode and we justify why our chosen

algorithms are indeed online. By online, we understand that the system does not use

more computation or more memory as more movement is monitored. Firstly, we argue

later in Chapter 5 that both Online Active Learning and the supporting algorithms

operate in online mode because they require constant time and complexity. Finally,

also in Chapter 5, we apply Online Active Learning in a realistic user deployment and

we demonstrate by example that the pipeline is truly online.

A limited resource for mobile devices is electrical energy. In our user-study in Chapter

5, the energy provided by the batteries of the sensors and of the phone were enough

to cover the duration of the individual experiments.

Conclusions

In this chapter, we summarised the technical aspects of our contribution. We consol-

idated the logic behind design choices by making critical references to a substantial

body of existing research.

Our contribution revolves around interoperating HAR monitoring with collecting an-

notations with the aim of constructing personalised HAR models. We exclude the

possibility of any artificial sources of ground truth or external supervision and in-

stead rely on the user to provide annotations for her activities, as they occur in time.

Additionally, all annotations must be timely, i.e. directed at very recent activities;
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otherwise the user might not be able to remember correctly. By self-reporting under

such time constraints, we draw inspiration from EMA/ESM techniques which have a

proven track record of good recall.

We enhance EMA/ESM with computational resources so that the user’s context is

continuously monitored. Activity boundaries are identified in real-time and, for the

most recent activity, the usefulness of acquiring an annotation is computed. It is not

realistic to assume that the user can be interrupted every time to provide annotations.

Therefore, we only require a subset of the most critical annotations. An Online Active

Learning method automatically decides whether an annotation is useful enough to

justify interrupting the user. In order for this to work, the Online Active Learning

method must be part of a larger data processing pipeline which combines general

machine learning algorithms and user interaction capabilities.

In what follows, we review the major research contributions by others which relate to

our contributions or which we adopt to support our claims.

Obtaining Annotations

Annotations, depending on the mechanism of delivery can be retrospective, if an ex-

ternal expert annotator provides them after reviewing ground truth sources (such as

video footage) or self-reported, if the annotations are supplied by the same user who

is being monitored. Self-reported annotations can also be proactive, if the user pro-

vides the annotation in advance of the actual activity being exerted (i.e. she promises

to perform an activity which is going to be recorded), or reactive, if the activity has

already happened and now an annotation is requested for that activity. In this thesis,

we are concerned with self-reported reactive annotations and we investigate the effects

of user involvement on personalised HAR model performance.

The User’s Perspective

In this thesis we accept that, even though the user is involved in the annotation process,

the user’s willingness to provide annotations is limited and time-varying. Existing

research [85–87] shows that it is possible to estimate when it would be appropriate

to interrupt a user. Taking interruptions further, by budgeting them, it is possible

to distribute the annotation effort in time [88, 89], so that a user’s expectations with
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respect to her availability can be met.

Machine Learning

A central aspect of HAR is model building and, in particular, supervised model build-

ing [98]. These approaches presume a typical data processing pipeline, as shown in

Fig. 2.1, which chains together preprocessing, feature extraction, segmentation and

model building algorithms to create HAR models. A huge corpus of research has

demonstrated how different types of data can be used to infer user context [95, 96].

Learning Methodologies for Model Building

When supervised model building results in unsatisfactory recognition performance,

models can be improved further with semi-supervised learning. In Section 2.5, we doc-

umented semi-supervised methodologies including self-training [78, 123], co-training

[78, 123], multi-instance learning [55, 124] or transfer learning [54, 125]. These tech-

niques augment the existing set of annotations with knowledge from other sources of

data – unlabelled data or data from other users.

Another semi-supervised class of methods, called active learning, seek to improve

model performance, not by mining external sources of data, but, instead, by discovering

annotations in the user’s own unlabelled data. Active learning has been investigated in

HAR contexts and, typically, pool-based or offline variants [51, 53, 60, 78, 123, 127, 130]

have been attempted. Pool-based active learning operates over a long history of unla-

belled data and, so, annotations from this set of unlabelled data cannot be provided

from the user’s memory and, instead, require other sources of ground truth, such as

video footage.

In order to keep an active learning-style of annotation in line with the limitations of

the user’s short term memory stream-based or online [48, 74, 75, 88] variants of active

learning can be employed. These variants operate on a stream of activities and the

only the latest activity in the stream is eligible for annotation. This means that the

user can respond to annotation requests by reporting the label of her most recent

activity.

In this thesis, because we focus on self-reported reactive annotations, we must create

the right conditions for the user to engage with the annotation system in a suitable
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way. This includes making it feasible for the user to remember the activities she would

be asked to annotate. Therefore an ESM/EMA style of annotation is timely enough

to match a user’s memory model where the most reliable annotation, at any point

in time, is for the most recent annotation. ESM/EMA annotation is supported via

Online Active Learning which, in addition, attempts to improve the performance of

the HAR model relative to a HAR model constructed on annotations requested at

random.

Machine Learning in HAR Applications

Finally, in Section 2.6 we discuss critical issues on applying an Online Active Learn-

ing annotation system. One of the design choices when constructing a system for

HAR is the annotation heuristic. Research has demonstrated that, for the most part,

confidence-based active learning heuristics perform better (in terms of model perfor-

mance) than others. Also, the issue of computing resources for continuous monitoring

is also brought into discussion. We show through existing work that there exists a

great deal of flexibility on what can be inferred and what resources can be dedicated

to the task. For example, one can set up a compromise between resource consumption

and recognition accuracy [139].
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Introduction

As an enabling technology, automatic inference of the activities humans are engaged

in plays a central role in the majority of ubiquitous and mobile computing applica-

tions. Targeting real-world scenarios, Human Activity Recognition (HAR) techniques

are often developed in “field deployments”, i.e. keeping prospective users in the loop

from early stages of the development process. For example, model personalisation

is of importance for healthcare settings, which require individual input to generate

personalised feedback during physical exertion [140], or to target individual medical

conditions [141]. Often, user involvement becomes a technical necessity, where user

models need to be adapted or even bootstrapped from scratch, i.e. without having

access to prior information – be it training data or existing models that could be

adapted.

In contrast to lab-based developments, in such contexts it is often difficult to obtain

ground truth annotations required for deriving automatic recognisers. Reasons for this

can be of a very practical nature, e.g. it is often simply impossible to follow a user

of mobile HAR technology for the sake of labelling sample data. More importantly,

ethical restrictions often prevent direct observations aimed at obtaining ground truth

annotations such as in private (smart) homes. Alternative annotation strategies engage

users directly, e.g. through self-reporting of activities [142], or through experience

sampling, i.e. prompting users to provide labels for current or previous activities [143].

Such user involvement is disruptive as it interferes with ongoing activities with what

appears to be mundane support for a technical system – a task that is typically not the

primary focus of the user. Arguably, the tolerance for such active user participation is

thus limited.

In this chapter we focus on a technical solution that enables prompting in online

annotation contexts such that the user’s preferences towards interruption are taken into

account. Especially for bootstrapping HAR systems this is a non-trivial endeavour.

Existing approaches, such as some variants of active learning [144] or semi-supervised

learning [55, 78, 123], are not applicable because they require prior knowledge about

the activities to be recognised, i.e. annotated data for estimating the underlying
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Figure 3.1: Influence of annotation strategies on online activity recognition systems
(schematic): Accelerated (red) vs. slower learning (blue).

distributions, or the timeliness with which annotation requests are generated is not

appropriate for our case.

Our working assumption is the existence of a fixed budget of user provided annotations

that a HAR system may spend during its bootstrapping phase. Spending one unit of

the budget corresponds to asking the user for the label of an activity. Focusing on

online annotation we assume a “worst memory” scenario where users will only provide

reliable information regarding their most recent activity. A request for annotation can

be made at any given time as long as there is budget available and we assume the

provision of reliable annotation.

With these assumptions we explore the effectiveness of possible budget allocation

strategies. We aim to explore how annotation strategies impact model performance.

Fig. 3.1 illustrates how an upfront strategy (red), one which expends the annotation

budget immediately, translates in faster model performance than a uniform strategy

(blue), one which distributes the annotation budget at regular instances of time. While

accelerated learning (red) results in a reliable model earlier on, this may come at a

cost in terms of aggravated user tolerance which may impact further interaction with

the annotation system. The slower strategy (blue) learns more slowly but might be

preferred by the user in the long run.

The main contribution of this chapter is an experimental exploration of various config-

urations and trade offs between budget levels and spending strategies on one side, and

accuracy of the HAR models that can be learned in such settings, on the other. Our
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findings serve as guidelines for designers of interactive online annotation interfaces to

support them in user-centred studies. Specifically, we develop and evaluate budget-

based strategies for online annotation of HAR by means of an extensive case study

where we simulate online annotation scenarios. We use the Opportunity challenge

dataset [38], which comprises of a blend of diverse periodic and non-periodic activi-

ties, each recorded at different levels of repetitions using multiple sensors and feature

types. We use this realistic simulation to study different problem configurations in

detail and in an objective, reproducible way.

Our findings suggest that effective online annotation of human activities can be achieved

using a deterministic upfront budget spending strategy or a probabilistic strategy em-

ploying an exponential distribution function. Furthermore, the proposed approach

extracts and annotates training examples, which also allows us to suggest realistic

budget sizes for online annotation tasks. Given that Opportunity is regarded as a

realistic and at the same time challenging HAR dataset, these findings are very en-

couraging for related real-world deployments of budget-based online annotation.

A Budget-based Online Annotation Framework

Overview

The focus of our work is on exploring strategies for online annotation of human activ-

ities, with special emphasis on mobile and ubiquitous scenarios. In such scenarios:

• Ground truth annotations are provided by the prospective user of a mobile HAR

technology.

• A budget is available for annotation. Our hypothesis is the existence of a fixed

budget which models limited levels of tolerance.

Experimental evaluation in mobile and ubiquitous computing applications is a chal-

lenge in itself as interactive scenarios are difficult to replicate, which poses a challenge

to objective judgements and is not appropriate for in-depth exploration. In response

to this, we systematically assess the effects of different budget spending strategies by
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realistically simulating interactions aimed at selectively acquiring user annotations.

This gives us complete control over the selection of the subsets of annotations to use,

and provides a level of repeatability which would be very difficult to achieve using a

field experiment (in addition to being more practical and economical overall).

Budget-Based Interactive Annotation Framework

We address a HAR scenario where the system bootstraps a recogniser that is custom-

made for each user, by occasionally collecting input from users while they go about

their daily living. The system continuously records sensor readings and, according to

a schedule (established prior to the start of monitoring), prompts the user to annotate

recently identified activities. Because user compliance to interruptions is a limited

resource, not everything is annotated, but, rather, a convenient budget and schedule

of interruptions can be specified in advance.

We model the user’s preference for the annotation requests with a budget of annotations

defined as a triplet (Horizon,BudgetSize,BudgetStrategy) where, intuitively:

The Budget Horizon is the interval of time the user is willing to reply to occasional

annotation requests.

The Budget Size is the total number of annotations the system is going to ask the

user until the Horizon expires.

The Budget Strategy is a theoretical distribution of annotations over time which

models how the total number of annotations Budget Size is distributed in time

until the Horizon expires.

In Chapter 6 we present a mathematically rigorous definition of the budget which is

needed for subsequent mathematical derivations and proofs. However, for the purposes

of this chapter, the added level of detail from Chapter 6 is unnecessary and the current

intuitive definition suffices.

In order to streamline the interactive bootstrapping process, we propose a data pro-

cessing framework that combines standard HAR data processing and machine learning
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Figure 3.2: Budget-Based Interactive Annotation Framework

procedures, with the capability to collect user-provided annotations. We assume an

interaction model focused on annotation requests directed at the user that drive the

recogniser bootstrapping process. The interactive pipeline is inherently modular so

that one has the freedom to adapt it to the specifics of the HAR application under

consideration. Fig. 3.2 illustrates the design of the framework.

Preprocessing This step centralises automatic sensor readings and provides the core

machine learning preprocessing functions such as sliding window. This involves

building a vector of feature sets, by extracting a feature set from the readings in

each window [98].

Segmentation The preprocessing step produces a sequence of frames. When a frame

captures the full characteristics of an entire periodic activity such as walking

or running, frames can be used as individual training examples. Composite

activities such as those considered here, however, are only fully expressed across

multiple frames, suggesting that training examples should consist of sequences of

contiguous frames, called segments and denoted Si. Segments are derived solely

from sensor data and do not necessarily carry a label, unless they are annotated.

This aspect is illustrated in Fig. 3.2, where the output to the segmentation stage

is a sequence of unlabelled segments (Si,−). It is these segments that the user

is asked to annotate and that are used to bootstrap the activity recogniser.
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Budget The decision of when annotation requests should be made to the user is

controlled by a budget spending strategy, as defined earlier.

User Interaction The interaction with the user is triggered by the Budget compo-

nent and it is responsible for obtaining annotations from users in the form of

labels (−, Li). Because we simulate a field study where the user’s short term

memory is the only available source of ground truth, the output of this compo-

nent is driven entirely by simulation. Annotation requests always refer to the

most recently identified segment.

Model Update When the training set is extended with a new training example (a

segment with an associated label), the system re-trains the activity model so that

its capabilities additionally reflect the latest example in the training set. As an

initial model, we use a strawman classifier which, without consideration to the

input features, randomly predicts an activity label from a uniform distribution

over the activity labels.

Classification The classification stage takes, as input, unlabelled segments (Si,−)

and produces, as output, estimated labels L∗i for the input segments. Since the

activity classifier is bootstrapped using incrementally collected activity labels,

classification accuracy is expected to increase with the growing size of the train-

ing set, as more labels are obtained. Thus, in addition to the final accuracy

(corresponding to the point where the entire budget has been spent), in our re-

sults we also report the learning rates. These are the intermediary classification

accuracy scores measured at every stage of the bootstrapping process, namely

every time a new training example is supplied and the model is updated.

Annotation This component acts as a bridge between the machine learning and the

interactivity parts of the pipeline. The annotation stage fuses together segments

and user-provided activity labels into training examples which are further used

to improve the accuracy of the activity recogniser.

In line with our argument regarding the recall capacity of users’ memory, prompt-

ing is always done for the most recent segment. When a user provides an anno-

tation, the resulting activity label is associated with the most recent segment for
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which a prompt was invoked. However, if, for a given segment, an annotation is

not required, then the segment is discarded.

Experiments and Key Results

We used the previously described HAR framework in a simulated case study where we

study the effectiveness of budget-based online annotation. In particular, we focus on

the influence of different budget sizes and spending strategies of model performance

throughout the bootstrapping process.

Segmentation and Budgeting

Segmentation

In the initial set of experiments we study the effects of budget configurations on recog-

nition performance. We ignore possible segmentation errors, by assuming, as part of

our simulation, a perfect segmentation procedure which identifies all and only the cor-

rect boundaries between segments, at the exact point in time when there is an activity

change. This assumption is ideal for two reasons:

1. An output segment contains data for only one activity.

2. Segmentation does not split a contiguous activity in more than one segment.

The first assumption guarantees that, if a segment is annotated with a single activity

label and if the label is correct, then no label noise is introduced, i.e. an activity label

is not extended to the data of another activity. The second assumption ensures that

segments are as long as possible, so that a single annotation accounts for as much of

an activity as possible.

It is unreasonable to expect ideal segmentation in the real deployment, but we use

it to set an upper bound against which we contrast our own realistic segmentation

procedure in Section 3.4. We expect that annotating ideal segments leads to improved

learning and, because of the lack of label noise, the resulting performance is maximal.

In our simulations which use ideal segmentation, we segment the data according to the

ground truth labels provided with Opportunity by retrospective human annotators.
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Budget Horizon

In this chapter, the time (which is used to compute budget schedules) is expressed in

terms of the number of monitored segments. We therefore defined the budget horizon

to be equal to the total number of segments present in the user’s training dataset. The

exact figures naturally depend on the particular dataset and, in our case, the details

are provided later in Section 3.3.3.

Budget Sizes

The larger the annotation budget, the more annotated segments are available to train

an activity model, which results in better recognition performance. Although, re-

alistically, the budget size may be limited by human user, context and application

considerations, we are interested in studying only the relationship between recognition

performance and budget.

Thus, we experiment with three budget sizes: small (10 annotations), medium (40 an-

notations) and large (100 annotations). This choice of budget sizes is purely technical

as it not only provides insight into expected recognition performance, but also ex-

emplifies how additional annotation effort translates into increased performance. For

comparison, as a reference we use the theoretical best-case scenario where the entire

sequence of segments is annotated. This baseline provides us with an upper bound in

model accuracy.

Budget Spending Strategy

Having decided on a budget size, the next design choice is how to spend the budget.

The system uses an online segmentation mechanism, meaning that at any point when a

segment is identified, the system must decide whether to interrupt the user to annotate

the most recent segment, or to discard it.

We implement the distribution of annotation requests as distribution over a numbered

sequence of segments with the horizon defined as the length of the sequence of seg-

ments. This approach allows us an entire pass through the user’s data with each

segment being monitored exactly once. As a consequence, each segment will either be
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annotated once or zero times. Using a distribution over segment sequence numbers

instead of over physical time (e.g. expressing the distribution over the duration of a

day) is a consequence of the limited amount of HAR data. This limitation and the

usage of physical time is discussed in Chapter 7.

For the distribution of interruptions, we use the following strategies:

Uniform Random The interruptions are scheduled at random within a horizon of

time, according to a uniform probability density function.

Uniform Constant The interruptions are scheduled to occur periodically, on each

occasion after a fixed interval of time.

Upfront The budget is spent as quickly as possible. For every detected segment, an

annotation request is prompted until the budget runs out.

Exponential The density of interruptions is an exponentially decaying function. In-

terruption times are sampled from an exponential probability density function,

so more interruptions are likely to happen at the beginning and very few toward

the end of the horizon of time.

Strategies can be chosen such that the budget is expended as soon as possible (Upfront),

more quickly at the beginning (Exponential) or more evenly across time (Uniform

Random or Uniform Constant). Mathematically, the budget size and budget

strategy, are used to sample individual schedule over the interval [0, 1]. Following

this, the schedule timings is scaled linearly with respect budget horizon so that the

annotation requests now lie within the budget horizon.

Because, in this chapter we are interested in the impact of budget strategies on recogni-

tion performance, we evaluated the budget-based bootstrapping of personalised HAR

models as a one-off process (i.e. we consider exhausting a single iteration). The al-

ternative approach which would entail multiple iterations is not evaluated, but it is

nonetheless discussed in Chapter 7. In short, multiple iterations would allow one to

more accurately approximate the distribution of activities throughout the day and to
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target ”interesting” activities in future iterations. For this purpose, however, we pro-

pose alternative methods in Chapters 4-6 which do not necessarily require multiple

iterations of budget exhaustion.

Evaluation Methodology

We use a publicly available dataset to simulate online bootstrapping of a HAR recog-

niser using user-provided annotations. For simulation purposes, we segment the avail-

able labelled data in segments. Consequently, a user’s activity exertion is simulated

by replaying segments in sequence – as if the user was performing those activities and

the data were recorded as a result of continuously monitoring the user. User interac-

tion, by means of annotation requests, is simulated by revealing segment labels from

the dataset’s ground truth labels (which are provided offline together with the set of

sensor readings). We control (1) the number of interruptions by specifying the size of

the budget and (2) the occurrences of interruptions by the strategy of spending the

budget.

Performance Measure

We measure model accuracy using a separate test set, which is itself segmented, so

that testing is done at segment level. We then calculate the model’s F-Score with

regard to the segments in the independent test set:

F =
∑
i

2wi
PiRi

Pi +Ri

where Pi and Ri are the precision and recall, respectively, of the classifier on the

activity class ai. The weighting factor wi is defined as the relative numerosity of ai,

wi = Ni/
∑
Ni, where Ni is the number of segments belonging to ai in the test set.

Segment Shuffling

We report the learning curves of the classifier during all stages of the bootstrapping

process. As learning curves from a single budget expenditure are very jagged, in order

to reduce performance spikes or drops, we perform 50 repeated randomisations of

activity segments and then report the average F-scores over all randomisations.
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Dataset

We use the Opportunity dataset [38] as a means of evaluating our budget-based anno-

tation method. The Opportunity dataset is a publicly available benchmark dataset,

which is widely used in current HAR research. Opportunity is known to pose hard

learning problems, so it is an excellent benchmark for tools that promise to advance

the state-of-the-art in terms of HAR.

We use Opportunity to perform a set of experiments on how to bootstrap recognition

systems using budget-based online learning techniques. By using Opportunity and by

describing our experimental setup, we have ensured that we ground our conclusions

on a non-trivial classification task and that our research is reproducible.

Opportunity contains contiguous sequences of readings from a set of 23 sensors worn

by the participants while they perform a vocabulary of common gestures or activities

of daily living (ADLs). Opportunity contains data collected independently for four

subjects. Each subject has six data files: ADL1, ADL2, ADL3, ADL4, ADL5 and Drill. In

our use of the dataset, we follow the gesture recognition task in the challenge definition

(Task B2) set out in [38]. As specified, we use the gesture sequences in the subsets

ADL1, ADL2, ADL3, and Drill as the training set from which we draw activity segments,

and the sequences in subsets ADL4 and ADL5 as the fixed test set, by which we evaluate

the classifier’s accuracy at each step of the learning curve. We use a subset of the

23 body-worn sensors available in the files, namely we used signals from five tri-axial

accelerometers (upper right arm, lower right arm, upper left arm, lower left arm and

back), as done previously by Rebetez et al. [53].

Each atomic activity, or gesture segment, consists of a sequence of adjacent frames

annotated with the same activity label, for instance “Open Fridge”. In a realistic

application scenario (for example in Chapter 5) we would prompt the participating

subject to annotate her activities on this segment-level, i.e. the system would ask

for one label per activity instance and then assign the same label to all frames this

very segment subsumes. In the results presented in this section we assume that the

boundaries of each activity have been identified using an existing segmentation proce-

dure (Opportunity Task B1). In the next section, we report on experiments where a
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realistic segmentation procedure has been put in place.

We follow the suggestion of Rebetez et al. [53] who reduced the Opportunity gestures

to seven by aggregating similar ones, namely Open/Close Fridge, Open/Close Drawer,

Open/Close Door, Clean Table, Open/Close Dishwasher, Switch Light and Drink [53].

Overall, the extracted segments represent any of Opportunity’s 17 mid-level gestures

[38].

Opportunity contains the null class activity label which designates any activity outside

the predefined vocabulary of interest – resulting in the aforementioned 17 gestures. We

chose to ignore segments labelled as null because the semantics of such segments are

too loose and would not generalise well to a realistic deployment. We argue that in a

real scenario the user would either give a definitive non-null answer (e.g. “Clean Table”)

or may simply ignore or dismiss the interruption. In our experiments, therefore, we

spend budget units only on actual non-null gesture segments and our recognisers only

discriminate between non-null gesture classes.

The user’s data is segmented (using an ideal segmentation procedure, as in Section 3.3,

or using an automated, but imperfect segmentation procedure, as in Section 3.4) and

we set the budget horizon to the total number of resulting segments. This allows the

annotation method a single pass through the entire data and each segment can either

be annotated once or none at all, according to the annotation schedule sampled from

the budget definition.

Finally, we note that the Opportunity dataset includes activities that are attributed

to each of the four participants. All experiments presented here were performed on

a per-subject basis, consistent with our target scenario where it is desired to learn a

different HAR model for each of a (possibly large) set of users. We did not mix data

belonging to different subjects for training, nor for testing and we did not average

results across different users.

Classification Backend

Given that the focus of our work is on exploring effective annotation strategies, we

employ a standard analysis approach for human activity recognition, which shall be
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deemed to provide reasonable classification accuracy results [98]. The overall procedure

can be summarised as follows:

Input data In this study we focus on tri-axial accelerometer data. Note that this is

not a limitation of the presented approach but rather a practical consideration,

consistent with the popularity of accelerometry in contemporary HAR applica-

tions.

Feature extraction We employ a standard sliding window procedure (e.g. [145])

that translates the continuous stream of sensor data into a sequence of small

analysis windows capturing 500ms of consecutive sensor readings, and overlap-

ping by 50%. For every frame we then calculate the mean of each signal repre-

senting a simple yet reasonable local feature representation (and is in line with

the baseline Opportunity system as described in [146]). Concretely, there are 16

sensor readings in a frame from five sensors, each with three axis, which results

in a frame dimensionality of 240. On this data we perform the sliding window

based pre-processing and feature extraction procedure as outlined in the previ-

ous subsection. This translates the 240-dimensional frames into 15-dimensional

feature vectors, which are then fed into the classification backend.

Classification These feature vectors are then fed into a classification backend, for

which we utilise a standard C4.5 decision tree Witten et al. [120]. In doing so we

adopt the approach developed by one of the participating, very successful teams

in the original Opportunity challenge [38]. When simulating the annotation of

a segment, we include the feature vectors from all of its frames in the training

set and then retrain the activity model from scratch. In order to classify a

segment, we first classify all the frames in the segment. Afterwards we designate

the segment label as the the predominant predicted label (the mode) across all

frames in the segment. Sometimes there exist ties between two or more predicted

labels. In this case we break ties by randomly choosing one of the offending labels

as the segment label.
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Small(10) Medium(40) Large(100) Baseline
UR 0.39 0.62 0.64

0.78
UC 0.39 0.59 0.65
Upfr 0.39 0.58 0.65
Exp 0.39 0.60 0.65

Table 3.1: Final recognition accuracies (F-scores; Opportunity challenge test set) for
different budget configurations under ideal segmentation.

Results

We perform an initial set of experiments with the most straight-forward parametri-

sation, to show how budgeting works in our online setting. We report the results for

the Opportunity Subject 1 (out of a total of four subjects) because, for this machine

learning pipeline, this subject yielded the greatest performance. Our focus is not on

performance optimisation, but rather exploratory. We are interested in exploring the

effects of budgeting on performance and Subject 1 presents us with highly visible per-

formance contrasts. This, in turn, allows us to present a large range of performance

values caused by different budget configurations and to describe the effects. The pre-

sented results are representative for the whole of the Opportunity dataset, but the

other participants have less visible performance contrasts.

Ideal segmentation for Subject 1 yields 383 segments, so we use a budget horizon of 383

segments. We refrained from analysing null-class segments (as previously explained),

as well as from processing segments shorter than the length of a sliding window, and

those segments containing missing sensor readings. Evaluation was done against Sub-

ject 1’s fixed testing set which contains 115 segments.

The results from the initial set of experiments show that it is possible to bootstrap hu-

man activity recognisers by involving the user in an online annotation process. Table

3.1 shows the asymptotic performance that can be expected using our proposed bud-

get configurations. As expected, more annotated segments result in better recognition

ability. However, it is important to note that gains in performance from additional

annotations decrease as the number of annotations increases. For example, with 30

additional annotations from Small(10) to Medium(40), recognition accuracy is boosted

with approximately 0.2 from 0.39 to around 0.6. However, if the budget was increased
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with 60 annotations, therefore advancing from Medium(40) to Large(100), the perfor-

mance gain would in fact drop substantially to about 0.05, thus increasing the F-Score

from approx. 0.6 to only 0.65.

It is also clear that the budget strategy does not affect the end performance, but it has

an effect on the learning rate of the activity model. Figure 3.3 shows that the strategy

impacts the speed with which the recogniser is bootstrapped. We have plotted the

performance of all strategies for the Medium budget size (40 units) and also for the

baseline. As explained before, if the budget size is strictly less than the total number of

segments, not all processed segments are annotated. Figure 3.3 shows that strategies

which request annotations early on, such as Upfront or Exponential cause a steeper

learning rate – they reach the end performance level sooner, whereas lazier strategies

such as Uniform Random or Uniform Constant delay the production of a reliable

activity model.

Note that the Upfront strategy does not follow the graph of the baseline exactly. This

is because, as explained earlier, during classification it is possible to have ties between

two or more segment labels, in which case we randomly choose one of the offending

labels. These cases have a slight impact on performance, as can be seen in Figure 3.3,

but do not significantly alter reported performance.

We have isolated the learning curve of the baseline illustrated in Figure 3.3 and dis-

played it in Figure 3.4. This shows an exhaustive analysis of budget sizes, where

the x-axis represents the budget size and the y-axis is the expected end recognition

accuracy. The budget strategy, as we have seen, determines how quickly the end

performance is going to be reached.

This pattern of analysis can be replicated prior to field deployments. Researchers may

collect relatively large corpora of annotations from a few motivated participants and

simulate different patterns of user interaction. The results may be used to inform

budget parametrisations of subsequent field deployments.
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Figure 3.3: Influence of budget strategy over model bootstrapping speed.

Conclusions for Key Results

So far we have shown that it is possible to bootstrap a personalised activity recogniser

using online learning, where user annotations are controlled by a budget spending

strategy. The results presented in this section indicate that a wide range of performance

outcomes can be obtained by varying the budget size or budget distribution. In the

following section, we are going to present extended results obtained by relaxing our

assumptions on segmentation.

Extended Results

In Section 3.3 we employed an ideal segmentation procedure which assumed the best

case scenario when the exact boundaries of segments can always be detected. We
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Figure 3.4: Obtaining performance estimates from baseline graph.
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Figure 3.5: Automatic Segmentation Strategy (Schematic)

now relax this assumption and evaluate the impact of a realistic automatic segmen-

tation procedure. We adapted this procedure, illustrated in Fig. 3.5, from the video

segmentation literature [119].

Segmentation Procedure

We operate a fixed-length sliding window over the stream of detected feature vectors.

We compare the feature vectors in the first half of the window to those in the second

half. If the registered dissimilarity between the two halves is great enough, then a

change in activity is deemed to have taken place.

More precisely, we consider a window size K = 2L, with L > 0, covering the most

recently produced feature vectors. We refer to the feature vectors indexed by 1, 2, ..., L

as the first half of the segmentation window and L+1, L+2, ..., 2L as the second half of

the window. We then compute an aggregate distance defined as the mean of the pair-

wise dissimilarity between the vectors in the first half of the window and the vectors

in the second half of the window. If the dissimilarity is greater than a predefined

threshold θ, then a segment boundary is signalled between the frames indexed L and

L + 1. This means that the last feature vector of the current segment is L and the

first feature vector of the new segment is L + 1. The process is repeated with every
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new feature vector that becomes available. This segmentation procedure yields the

sequence of segments, each of which, according to the online active learning method,

the user may be asked to annotate.

The dissimilarities are computed on pairs of feature vectors scaled to the interval

[0, 1]. This ensures that the numeric contributions to the dissimilarity value are roughly

uniform across features. We therefore assume that the ranges of the features are known

in advance and, so, they can be scaled online. This is a reasonable assumption because,

in a real deployment, reliable range values can be trivially obtained without user

intervention. For example, the minimum and maximum values for each feature form

the range for that feature and, so, can be used to scale that feature. The ranges can

be potentially updated with every new feature vector if an extreme value is exceeded.

In fact, this is our approach when scaling a stream of feature vectors in Chapter 5

concerning the user study.

As a dissimilarity measure, we compute all pairwise Euclidean distances between the

scaled feature vectors in {1, 2, ...L} and those in {L+1, L+2, ..., 2L} and then compute

the average. Let {dk}k∈N be the sequence of average distances generated from the

stream of feature vectors. A segment boundary is flagged between the frames causing

dk if dk is a local maximum (dk > dk−1 and dk > dk+1) and dk is above a fixed threshold

θ (dk > θ).

Our segmentation procedure is online because it continuously operates only on a recent

sub-stream (the latest 2L feature vectors) in order to decide whether a segment has

ended. A new segment is detected with a delay of L+ 1 frames, as shown in Fig. 3.5,

so the horizon within which users are requested to provide annotations is limited to

the duration of just a few frames.

We performed an initial experiment with L = 3 and θ = 0.55. We replayed the

dataset in its original order and applied our online segmentation procedure. We chose

the parameter values because they resulted in a list of 371 segments, very close to the

383 ground truth segments. For this reason we shall refer to this configuration as best-

effort segmentation. This entails that overall this setup did not over- or significantly

under-segment the data. Just as we did in the first set of experiments, we shuffle the

order of the generated segments, apply our budget configurations, bootstrap the model
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Small(10) Medium(40) Large(100) Baseline
UR 0.33 0.48 0.52

0.47
UC 0.32 0.47 0.52
Upfr 0.32 0.49 0.51
Exp 0.31 0.47 0.52

Table 3.2: Recognition performance as a function of budget configuration. Real seg-
mentation.

and evaluate its accuracy at every step.

We emphasise that only the training set data was subjected to our segmentation pro-

cedure. When evaluating the classification performance in terms of F-scores over the

test set, we did not apply our segmentation procedure on the test set. Instead, we used

the original ground truth segments found in Opportunity, exactly as in the previous

section.

We reiterate that a segment is annotated with a single label which is passed to all its

constituent frames. Imperfect boundary estimation leads to the introduction of label

noise within the segments, i.e. some frames are attributed an incorrect label and the

model will be trained partially from noisy data.

Table 3.2 contains the classification F-scores of the model trained on segments from

our segmentation procedure. If we contrast them with the classification F-scores of

the model trained on ideally segmented data from Table 3.1 we can see that the label

noise indeed impacts recognition performance on the long term. The accuracy of

the model plateaus early around 0.47-0.52, well below 0.78 from the previous section,

when employing ideal segmentation. Figure 3.6 illustrates that all strategies encounter

learning difficulties due to noise.

According to Table 3.2, end accuracy is not conditioned on the budget strategy. The

rate of learning is, however, impacted by the strategy. This generalises our conclusion

from the previous section to the current scenario of imperfect segmentation.

The threshold parameter θ controls the strictness with which segment boundaries are

admitted. As explained, for a fixed input, lower values of θ generally cause more

segments to be generated, which may lead to over-segmentation (a single activity is

split into several segments), whereas higher values of θ cause less segments to be
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Figure 3.6: Budget strategies with best-effort segmentation.
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generated, which may lead to under-segmentation (a segment contains data from more

than one activity, possibly including the null activity).

Imperfect segmentation alters the quantity and quality of annotated data. Under-

segmentation is likely to reduce the quality of examples because it promotes label

noise, but increases data quantity, because it tends to find longer segments. Over-

segmentation, on the other hand, is stricter in terms of data quality, short segments

are less likely to be polluted with label noise. However, data quantity is affected

because segments are forcibly shorter.

We have seen that a substantial amount of noise is introduced even in the best-effort

configuration. We now lower the threshold to θ = 0.35 and obtain 866 segments.

This is well over the original 383, so this is clearly over-segmenting. While this makes

segments shorter, Figure 3.7 shows that learning is not substantially impacted. On

the contrary, compared to the best-effort configuration, learning is improved and even

comes close to the ideal segmentation setup. We are only interested in the direct com-

parison with the other baselines so we only plotted the first 383 data points. The end

performance for over-segmentation setup is 0.75, very close to the ideal setup presented

in the previous section. Also, the learning rate is not affected by over-segmentation

compared to ideal segmentation, despite the fact that the training examples are shorter.

Clearly very little noise is introduced now and this has a positive outcome on recog-

nition accuracy. The effect on performance is noticeable since the over-segmentation

learning curve comes very close to the ideal segmentation one. Furthermore, it seems

that the general reduction of segment lengths bears very little impact on learning rate.

Learning with over-segmentation is almost as fast as learning with ideal segmentation.

We conclude that for our scenario revolving around the Opportunity dataset, the qual-

ity of data coming out from the segmentation stage is pivotal to online bootstrapping of

activity models. Cautious segmentation results in shorter segments with little possible

overlap between activities. When such a segment is annotated by the user, very little

label noise is introduced, so the newly provided training example reflects a focused

span of an activity.
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Figure 3.7: Baseline performance with different segmentation configurations.
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Conclusions for Extended Results

In this section we relaxed our assumption that segment boundaries can be identified

perfectly. Instead, we applied a straightforward thresholding scheme in order to extract

segments from sensor readings. However, the resulting segments may not be perfectly

aligned with the ideal ones, leading to noise in the corresponding labels, and thus to

loss in recognition accuracy. Our evidence suggests that conservative segmentation,

while it may produce a higher number of smaller segments than needed, is a reasonable

action to reduce the overall accuracy loss.

In the case of imperfect segmentation we have shown that, while the choice of budget

spending strategy does not affect the final accuracy, the strategy still impacts the rate

of learning and thus the speed with which a reliable activity model is bootstrapped.

Results show that this generally holds for training examples of varying degrees of

quality obtained from different segmentation setups.

Summary and Discussion

Learning accurate Human Activity Recognition models requires training examples

which are often difficult to acquire in practice. Our work is set in the context of

online learning, where further challenges arise. Firstly, the labelled examples only

become available incrementally, as the activities unfold. Secondly, labels must be ac-

quired through proactive interaction with the user, who may have limited tolerance for

such interruptions, as well as limited memory to recall past events. This leads to the

notion of a budget of available user interactions, whereby the user is asked to identify

the type of activity associated with the most recent sequence of gestures. Thus, a

third challenge is that, for the labels themselves to be reliable, the system first needs

to accurately detect the boundaries of individual activities, i.e. by properly segment-

ing the raw sensor data. The combination of these factors leads to a scenario where

the learning process can only afford a set number of interactions, which are aimed

at labelling the type of activity that is being observed, and under the assumption of

imprecise segmentation.
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Summary of Contributions

In this chapter we have proposed a principled way of analysing the trade-offs between

the number of available interactions (budget), the way the budget is spent over time

(budget spending strategy), and the accuracy of the HAR models that can be improved

under such budget constraints. Our approach involves extracting segments from the

Opportunity challenge dataset and simulating interactions that occur during sequences

of activities for an extensive set of budget configurations.

Our main contribution is an experimental method which is generally applicable to

the online learning setting. Our results indicate that (i) recognition accuracy close to

the baseline (the upper bound model that assumes every activity is labelled) can be

achieved by using about 50% of the labels that are potentially available; (ii) the choice

of budget spending strategy has little bearing on overall accuracy at the end of training,

however it does affect the learning rate, which certainly has massive implications on

the overall acceptability of user-involvement in online learning of HAR systems; and

(iii) a simple segmentation method, which is decoupled from the recognition task, is an

adequate surrogate for ideal segmentation, which is not available in a realistic setting.

Moving Forward: From Simulation to Field Studies

The work presented in this chapter is based on the premise that one can simulate user

interactions to explore the effects, on recognition accuracy, of various assumptions re-

garding the user’s tolerance to interruptions and propensity to react to prompts. We

now discuss how our findings may inform user-centred studies, leading to practical

impact. Open questions concern the impact of imperfect segmentation on the effec-

tiveness of user interaction, as well as the determination of realistic budget sizes and

of budget spending strategies.

Firstly, it should be clear that imperfect segmentation may affect the interaction with

the user. Over-segmentation, which produces more segments than necessary, may

result in the user being interrupted in the middle of an ongoing activity, while under-

segmentation may span multiple actual individual activities, leading to user confusion

when asked to identify the most recent gesture using a single label.
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A related issue is the gap between the time at which the sensor readings correspond-

ing to the transition become available, and the time when the transition is detected.

This gap is due to the length of the segmentation window, which requires subsequent

readings to be made. For example, a window of size 2L where L is three overlapping

frames causes a delay of one second (one frame window of 500ms and two overlaps of

250ms each). In Chapter 5, we present the results from a real deployment that person-

alises HAR models from annotations provided by real human participants. We employ

the same segmentation strategy and, because of longer windows in the sliding window

procedure, the time delays due to activity segmentation amount to approximately 15

seconds. Subjective feedback reveals that even such a delay is not a problem for users

to deal with, because they can remember the most recently finished activity.

Regarding the determination of realistic budget sizes, we expect our results to be in-

strumental to inform future user studies. This is a complex problem in Human Com-

puter Interaction, where assumptions on user motivation and tolerance to interruptions

are being challenged by new generations of wearable devices aimed at self-monitoring.

For example, in [147] people were reminded by the monitoring device to expend physi-

cal energy after periods of inactivity. A well thought-out user interface can even make

interaction with the device enjoyable [44], and techniques such as nudging [82] may

be employed to try and influence user disposition to interaction. With respect to

budget strategies, in this thesis (including in the current chapter and in Chapter 6)

the strategies are defined as distributions over the expected sequence of segments. As

noted before, this was done in order to make the best use of the data – this ensures

a single pass through all the data with each segment being annotated once or none

at all. However, such strategies are arguably not intuitive to the user, but rather

distributions over physical time would be more easily understood. This distinction is

discussed in more detail in Chapter 7.

The space of options to address usability is potentially broad. For example, one may

try to determine whether the current user context is favourable for user interruption

[148, 149] and therefore block annotation requests while the user is busy. Also, one may

investigate adaptive strategies that attempt, heuristically, to optimise budget spend-

ing based on various factors such as the expected performance gain from individual
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annotations. In Chapters 4 and 5 we investigate strictly the effects of Online Active

Learning on model performance. While budget spending strategies are temporarily

ignored in these chapters, in Chapter 6 we combine both Online Active Learning and

budget-based spending into a single method which attempts to optimise model perfor-

mance using Online Active Learning but is subjected to underlying budget spending

constraints.
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Introduction

In this chapter we present and evaluate an Online Active Learning technique to

bootstrap fully personalised activity models from scratch, i.e. to start from a zero-

knowledge setting and accumulate user-provided annotations that gradually improve

the models. In Chapter 3 we proposed obtaining annotations according to a prede-

fined schedule that matched given budget configurations. In contrast, in this chapter

we assume there are no budget restrictions and we no longer employ a fixed annotation

schedule, but rather the decisions to annotate are made while the user performs the

activities. We propose an annotation method which continuously monitors the user’s

activities and which relies on her to occasionally provide annotations for some of her

activities. Any decision to annotate an activity is deferred until that activity has fin-

ished. Because of this, we use an Online Active Learning (OAL) approach to inspect

the movement data of the last identified activity and to inform the decision of whether

or not to annotate that activity. We evaluate our proposed Online Active Learning

method on publicly available human activity recognition datasets and results show

that the accuracy of activity models bootstrapped with OAL is improved when com-

pared to the corresponding naive annotation method, Random Selection (RS), which

triggers annotation requests at random, i.e. completely uninformed1.

Our annotation method constructs fully personalised activity models for the wearer

starting from zero knowledge – no prior annotations are required. Others, such as

Abdallah et al. [75], start from an existing corpus of annotations and use Active

Learning to personalise an existing generic HAR model. While this is a valid approach

in some scenarios, some limiting assumptions have to be made about the application

of such a system. Firstly, not all target activities may be known in advance. The

personalising system should not restrict the addition of new activities by the user.

Also, some activities may not be of interest to the user who may never perform them.

From a technical point of view, building this unnecessary knowledge into the recogniser

allows for potential recognition errors – namely false positives for these superfluous

1Online Active Learning and Random Selection ultimately identify which annotations to request
from the users. Therefore, both support the bootstrapping of fully personalised HAR classification
models.
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activities. Secondly, the sensor configuration indirectly plays a critical role in what

activities can be recognised with prior knowledge. A prior corpus of annotations can

be used directly only if the wearer’s sensor placements match exactly. If the sensor

locations differ, it may be possible for the the prior data to be adapted using Transfer

Learning techniques, as discussed in Chapter 2, i.e. Cook et al. [54].

In this chapter we focus on the performance gains made solely by personalised an-

notations (i.e. the annotations provided by the user) using OAL. As mentioned in

Chapter 2, models constructed from personalised annotations may be further refined

with existing personal data (Self-training or Co-training [78, 123] and Multi-instance

learning [55, 124]) or non-personal data or knowledge (Transfer Learning [54]), but we

do not duplicate these research efforts.

Contributions

The main contributions in this chapter are as follows:

• Analysing an OAL annotation decision heuristic. We propose an OAL

annotation decision heuristic that operates over a data stream corresponding

to ongoing activities. Similar to other active learning approaches, our heuristic

attempts to optimise model performance through informed decisions over what

annotations are requested from the user. However, in contrast to previous appli-

cations of active learning to HAR, our heuristic does not need a long history of

potential annotations. Instead, it works in the severely limited case when only

the most recent activity is available for annotation. This ensures that annota-

tions can be reported from the user’s short-term memory and that the HAR

model performance could be improved with respect to RS.

• Designing a framework for bootstrapping activity recognisers using

Online Active Learning. We integrated our OAL annotation decision heuris-

tic into a machine learning framework. The framework provides multi-stage

processing, with the option of specifying concrete algorithm implementations for

each step, depending on the type of data being monitored. The framework con-
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tinuously monitors a user’s activities and bootstraps a personalised model from

user-provided annotations.

• Evaluation through simulations (in the lab). We use public HAR datasets

to simulate the acquisition of user-provided annotations, as opposed to a natu-

ralistic user study (in the wild), which we do in Chapter 5. We evaluate OAL on

both non-periodic activities, using the challenging Opportunity dataset [38], and

on periodic activities, using the USC-HAD [150] and PAMAP [151] datasets.

In the case of periodic activities, we additionally adopt a method for activity

segmentation, which exploits the repetitive nature of the movement to identify

segments (contiguous subsequences that ideally span a single activity). Our

results show that OAL constructs personalised models which exhibit superior

accuracy over models constructed with RS: up to 5% for non-periodic activities

and up to 8.5% for periodic activities. In addition, when comparing the num-

ber of annotations from RS and OAL, equivalent levels of performance can be

obtained from OAL by reducing the number of user annotations by up to 60.8%

from the RS case.

In both situations, using our annotation method shows that informed annota-

tion decisions via OAL can accelerate the bootstrapping of a fully personalised

activity recogniser. By applying our method to the non-periodic and periodic

cases, we show that our method would be potentially compatible with a large

corpus work on classification for HAR [95, 96]. In terms of recognition accuracy,

we show that our proposed annotation method, which uses a heuristic function

to inform annotation decisions, outperforms the corresponding naive method,

Random Selection (RS), which annotates segments at random.

The core of our OAL approach deals with obtaining labels, meaning that we assume

a user is willing to respond to annotation requests and to provide the correct labels.

However, as noted in Chapter 2, annotations also comprise of segment boundaries.

We address the segmentation problem separately for each non-periodic/periodic case

in turn. For the non-periodic case, a zero knowledge segmentation procedure, such

as that described in Section 3.4.1, is not compatible with our OAL method and our
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classification pipeline in this chapter. Consequently, for the non-periodic case, we only

assume a perfect segmentation procedure, which has the advantage of isolating the

effects of OAL and RS on HAR model accuracy. For the periodic case, we consider both

ideal segmentation and the segmentation procedure from Section 3.4.1. The results

show that OAL outperforms RS regardless of whether the segmentation procedure is

ideal (perfect segment boundaries) or best-effort (some segment boundaries may be

misplaced, which introduces noise in the training set).

Annotation Decision Framework

In this section we present our framework for bootstrapping personalised activity models

from user-provided annotations. We propose that annotations are obtained from user

feedback, similar to Intille et al. [49]. However, we also draw cues from the continuously

monitored user context to identify the segments which, if annotated, would be highly

beneficial for model performance improvement.

Online Active Learning Heuristic

The framework detects segments in a continuous stream of activity data, and, using

an Online Active Learning heuristic, segment annotations are occasionally requested

from the user. Intuitively, the framework maintains a current version of the activity

classifier. The confidence levels of the classifier are used to determine the probability

that an annotation be requested on the current segment in the stream. Every new

annotation obtained from the user is added to the training set, and used to produce a

new version of the classifier.

Our annotation decision heuristic, which selects segments to be annotated is adapted,

from one proposed by Sculley [48] for online spam classification. In order to adapt the

heuristic to HAR, we integrate it into a framework – a multi-stage data processing

pipeline with algorithm placeholders for every stage. Depending on the characteristics

of the data, different framework instances can be created by plugging in concrete

algorithms. The framework is illustrated in Fig. 4.1.
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Figure 4.1: Overview of the annotation method.

The end goal of the framework is to produce updates of the HAR model for every new

annotation and we evaluate the performance (recognition accuracy) of each of these

models. For each newly observed segment in the stream of activities, an annotation

request will be issued with probability pask . This value is computed from the confidence

associated to class predictions for that segment, as follows. Firstly, the current segment

is classified by the current version HAR model. This generates a probability pjpred for

each of the activity classes known to the current version of the classifier. We use

pconf = maxj p
j
pred as our measure of overall confidence in the classification. We then

define the probability pask of issuing a new annotation request for that segment as:

pask = exp(−γpconf ) (4.1)

In Eq. 4.1, γ is a tunable parameter that controls the asking behaviour. As can

be seen in Fig. 4.2, for a fixed γ, the probability of asking to annotate a segment

increases as the classification confidence of the model decreases. This means that

low confidence values pconf increase the likelihood that the segment will be annotated,

triggering an update of the classifier. Therefore, annotation requests select only highly

critical training examples. Furthermore, increasing γ has two consequences, as shown

in Fig. 4.2. Firstly, given a fixed pconf , the probability of asking for an annotation

decreases. Overall, this results in fewer annotation requests. Secondly, when pconf

- 83 -



Chapter 4: Online Active Learning in the Lab

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pconf

p a
sk

γ = 1

γ = 2

γ = 6

γ = 10

Figure 4.2: The probability of asking as a function of classification confidence.

decreases, the decline in asking probability is more pronounced with higher values of

γ. Effectively, with an increased γ, segments with high pconf are far more likely to

be ignored. Thus, the system is more likely to focus the user’s annotation effort on

segments with low pconf .

Throughout this chapter, we use a fixed value of γ = 6 for our analysis (except on

one occasion in Section 4.4.4 where we contrast results for γ = 6 and γ = 2). This

particular value was chosen empirically because, on the one hand, it is large enough

to reject with high probability annotating segments which are relatively confidently

classified (which results in clear accuracy gains of Online Active Learning over Random

Selection) and, on the other hand, it is still low enough to not reject segments extremely

frequently (which allows the simulations to finish in reasonable time). Chapter 6,

however, varies the γ parameter extensively: we explain there how these values are

calculated and what this controlled variability achieves.

Part of our proposed OAL framework, we complement the annotation decision heuristic

with a data processing pipeline that automatically detects activity segments, makes

informed annotation requests to the user and improves the model by propagating
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back the annotations so that the activity model is updated. The overarching concept

was illustrated in Fig. 2.1, whereby the annotation task is a coordination between a

segmentation procedure and an annotation heuristic that obtains labels from the user.

Starting with Fig. 4.3, we now present our solution pipeline that combines automated

data preprocessing with user involvement in order to improve the activity model.

The Sensor Array includes the set of sensors which are continually monitored to infer

user context. We focus on multiple sensors with a single sensing modality. This ho-

mogeneity in sensor data allows the operation of a single Sliding Window procedure

over all sensor data streams to obtain a single stream of frames. Feature Extrac-

tion changes the representation of the data to a suitable one for machine learning.

The resulting stream of feature vectors from the Feature Extraction stage follows dual

processing. Firstly, the feature vectors are used in the Segmentation stage to esti-

mate segment boundaries using the procedure detailed in Section 3.4.1. Secondly, the

resulting feature vectors are used for Classification, where the model estimates the

classification probabilities for known activities. The classification confidence is then

used to decide whether a user annotation is needed in accordance with Eq. 4.1. If an

annotation is needed, then the User Notification is invoked and the label provided

by the user is used in the Annotation stage. Ultimately, the new annotation is used

to by the Model Improvement stage to update the activity classifier. In this chapter

we assume that the user has the technical means to provide annotations (examples of

prior work about user provided annotations are given in Section 2.2). In contrast, in

Chapter 5, we describe a mobile application for collecting user-provided annotations

which was used in a user study.

General Simulation Procedure

In this chapter, because we are analysing HAR datasets which are already collected

and annotated, we simulate the interaction with the user in the annotation process. In

particular, whenever an annotation is deemed necessary, the ground truth labels are

revealed by the computer simulation environment and the activity model is retrained

to account for the updated training set.

The model bootstrapping process is fully personalised by being done strictly for each
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Figure 4.3: Interactive Annotation Pipeline.
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subject independently (as all the datasets we consider here have data partitioned on a

per-subject basis). That is, we repeat the process for every subject in the dataset and

we only sample data segments collected for that subject only. Models are evaluated

on a subject’s own data, so we obtain a true reflection of how well the personalised

model performs for the relevant subject.

We simulate annotating from a continuous stream of activities by maintaining a set

of not-yet-annotated data and replaying data points from this set. Due to the limited

size of the data, we replay activity segments several times until a target number of

annotations is achieved. With the exception of an outlined portion of analysis in

Section 4.4.4, segments which are annotated are permanently removed from the stream.

This avoids duplication of data in the training set and makes model evaluation harsher

and more realistic. Conversely, data segments which are not annotated are potentially

“recycled”, i.e. possibly re-sampled into the stream in the future.

The procedure to reach a decision of whether or not to request an annotation according

to Eq. 4.1 is based on sampling using pseudo-random number generation, as illustrated

in Algorithm 1.

input : γ – the hyperparameter for the annotation heuristic in Eq. 4.1

si – ith segment in the stream of activities

output: dask – the decision to ask the user for an annotation

ppred = predict(si)

pconf = max (ppred)

pask = exp(−γ · pconf )

threshold = sample uniform from([0, 1]) /* generate random threshold */

dask = threshold < pask
Algorithm 1: Simulating the annotation process.

Non-Periodic Activities

In this section, we present the evaluation of the applicability of our OAL annotation

method on the publicly available Opportunity dataset [38]. The dataset was previously

described and analysed in Chapter 3. However, for the purposes of this chapter, we
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diverge from that data processing and machine learning treatment and adopt a different

approach aimed at exploiting the temporal structure of the activities. Because, in this

chapter, we are interested in improving model recognition performance to a greater

extent, we use a new machine learning pipeline which is able to work with a larger

number of activity classes and which substantially increases the recognition accuracy

scores.

Preprocessing and Segmentation

In Chapter 3 we aggregated all 17 labels into seven labels and used a generic machine

learning pipeline (sliding window, feature extraction, frame-based model builder) that

yielded clear increases in performance. The choice of the machine learning pipeline was

not based on maximising recognition accuracy, but it was rather based on replicating

a very common sliding window-based classification analysis pattern for HAR, like, for

example, Rebetez et al.[53].

However, in this chapter, we are motivated to obtain generally high classification scores

and to improve them further using Online Active Learning. To this end, we no longer

aggregate the labels, but, rather, we use the full vocabulary of 17 labels and, so, we

evaluate how well the pipeline discriminates between all activities. Furthermore, the

machine learning pipeline better accounts for the temporal dependencies which are the

important characteristics of non-periodic activities.

We assume an ideal segmentation procedure – the existing ground truth was used to

segment the data in the Opportunity dataset, which allowed for ideal segmentation.

Accurate segmentation of non-periodic activities was shown to be possible, for example

by [112–114, 116], but only if one already has a corpus of annotations to guide the

segmentation process and this is in contradiction with our assumption of starting from

zero knowledge. By using a perfect segmentation procedure, we better isolate and

evaluate the effects of OAL on recognition accuracy. In Chapter 3 we applied the seg-

mentation procedure from Section 3.4.1. However, for this machine learning pipeline,

which relies on continuous segments (as opposed to sequences of frames in Chapter 3),

this segmentation procedure is not appropriate. Segmentation procedures specialised

for non-periodic activities have been documented in Section 2.4.3 (for example, Deng
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and Tsui [112], Krishnan et al. [113], Junker et al. [114]), but these assume a pre-

existing corpus of annotations, which is conflicting with our assumption of no initial

annotations.

Learning Machinery

We do not extract features from the acceleration signals, but instead classify entire

activities based on their acceleration timeseries. We use k-Nearest Neighbours (kNN)

[152] model to distinguish between activities and, as a dissimilarity measure of accel-

eration timeseries, we use Dynamic Time Warping (DTW) [153].

DTW is a method for quantifying dissimilarity between timeseries. Intuitively, DTW

finds the associations between all points in one timeseries to all the points in the other

timeseries according to shape characteristics (e.g. peaks are matched to peaks, troughs

are matched to troughs and intermediary values to the the closest intermediary values).

Shape mismatches are quantified in a distance metric which we use as a measure of

dissimilarity. DTW-based classification approaches for HAR are not new; for example

Muscillo et al. [106] show that physical activities recorded with an accelerometer can

be reliably recognised by a DTW-based classifier. In our simulations, we used the dtw 2

[153] R package as a DTW implementation.

kNN is used as follows: We use the data from the five accelerometer positions used

in Chapter 3 (upper right arm, lower right arm, upper left arm, lower left arm and

back). Model building, in the case of kNN, simply means storing all individual labelled

segments, called templates, in a template database. At classification time, the segment

which needs to be classified is compared with all templates (a linear search within the

template database). There exist template search methods [120], such as exploring a

KD Tree [154], which may reduce the complexity of the search step, but, in general,

these do not improve upon the correctness of linear search. The metric of comparison

is the resulting DTW dissimilarity between the current segment and the template.

Finally, in order to fulfil the classification, the closest k templates to the segment give

a mean vote on the label probabilities. kNN has been used previously in HAR with

good classification accuracy results, for example, by Bicocchi et al. [155].

2http://cran.r-project.org/web/packages/dtw/index.html Accessed 12.01.2015

- 89 -

http://cran.r-project.org/web/packages/dtw/index.html


Chapter 4: Online Active Learning in the Lab

Figure 4.4: Learning Curve for Opportunity; Legend: S1 – Subject 1, AL – Online
Active Learning, RS – Random Selection.

We take advantage of the standard train/test split in the Opportunity dataset and we

apply the same train/test evaluation procedure we used throughout Chapter 3.

Results

We have replayed segments and used them as input to the annotation method, as

explained in Section 4.2.2. Segments that were marked for annotation by Eq. 4.1

were included in the template database of the kNN classifier. Conversely, segments

that were not annotated at a point in time, were made available again for future

annotation.

As each new segment was annotated, we evaluated the performance of the model

against the standard testing set of the corresponding participant and obtained a learn-

ing curve. We repeated the annotation process 10 times and averaged the results for

each participant.

Fig. 4.4 illustrates for every subject the performances accrued from Online Active

Learning and Random Selection, while Fig. 4.5 shows the same performances averaged

over all participants. Online Active Learning was stopped after accumulating 200
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Figure 4.5: Active Learning versus Random Sampling on Opportunity. Average per-
formances.

annotations because, after this point, most segments would be classified with very

high classification confidence. This not only slowed down simulations, but, because of

the constantly high classification confidence, segments could not be differentiated, so

the annotation mechanism effectively became Random Selection.

Fig. 4.5 also includes two additional accuracy levels. Firstly, we included the average

accuracy of all four personalised models (All Annotations – red dashed line), i.e. one

model per participant, trained with all available annotations for the corresponding

participant. This serves as an upper performance baseline for OAL and RS, meaning

that, both these methods will eventually reach this accuracy when annotating all

data. The marked difference between OAL and RS is that OAL comes closer this

accuracy score sooner than RS. Secondly, we underline the importance of personalised

models by including the performance level of a non-personalised population-wide model

(Population Model – black dotted line) using a leave-one-subject-out cross-validation.

This means that, for each user, we trained a model using the data from the other users

and evaluated the predictive performance of the resulting model using the initial user’s

testing set. The results show that greater performance results can be obtained by using

personalised data instead of relying exclusively on non-personalised annotations.
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Figure 4.6: Performance gain on Opportunity due to Active Learning. Empirical
Cumulative Distribution Function.

The performance gains of OAL over RS are illustrated alternatively in Fig. 4.6. It

depicts the Empirical Cumulative Distribution Function (ECDF) of the difference in

recognition performance between Online Active Learning and Random Sampling, for

every size of the training set. We conclude that 87.5% of the points on the averaged

learning curve for Active Learning exhibit performance gains of at most 5% over the

corresponding points on the Random Sampling learning curve.

Figs. 4.4, 4.5 and 4.6 highlighted the vertical differences between OAL and RS – the

differences of performance between the two methods when the training sets were the

same size. Figs. 4.7-4.10 illustrate an alternative interpretation of the performance

gains of OAL over RS. Specifically, they show the horizontal differences between OAL

and RS – the differences in the number of annotations required to reach a certain

performance level.

For each subject, the plots were obtained as follows: The x-axis values nOAL ∈

{1, 2, ..., 200} represent the sizes of the training sets obtained with OAL. For each

training set size nOAL, the performance of the model PnOAL
is computed. The y-axis

value corresponding to nOAL is the size of the training set obtained with RS (nRS) such
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Figure 4.7: Comparison of annotation effort; Opportunity Subject 1.
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Figure 4.8: Comparison of annotation effort; Opportunity Subject 2.
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Figure 4.9: Comparison of annotation effort; Opportunity Subject 3.
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Figure 4.10: Comparison of annotation effort; Opportunity Subject 4.
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Subject Points Above Line (%) Mean (%) Max (%)
Subject 1 164 (82%) 47.5 (12.6%) 120.4 (42.1%)
Subject 2 192 (96%) 53.7 (29.7%) 127.3 (60.8%)
Subject 3 183 (91.5%) 47.9 (24.9%) 184.8 (52%)
Subject 4 184 (92%) 48.8 (26.1%) 104.5 (48.5%)

Average 180.7 (90.3%) 49.5 134.2

Table 4.1: Summary of Opportunity Equi-Performance Lines

that the performance PnRS
of the model constructed with nRS is equal to PnOAL

. We

introduce a concept which we call the Equi-performance line between OAL and RS –

it contrasts the annotation effort required between OAL and RS to achieve the same

level of activity recognition accuracy. The hypothetical line nRS = nOAL marks the

improvement boundary (black dotted line) such that equi-performance points above

it designate OAL training set sizes smaller than RS training set sizes. These points

correspond to the cases when OAL reaches a performance level with fewer annotations

than RS.

Figs. 4.7-4.10 show that the majority of equi-performance points lie above the improve-

ment boundary which means that OAL-based annotation reduced user annotation ef-

fort, as summarised in Table 4.1. The Points Above Line column represents the number

of equi-performance points above the improvement line. The Mean and Max columns

represent the mean and, correspondingly, the maximum number of annotations the

user was spared from providing by using OAL instead of RS.

In summary, for non-periodic activities, our simulation results show that, as an an-

notation method, Online Active Learning outperforms Random Selection not only in

terms of objective accuracy scores (87.5% of the points on the learning curve are im-

proved by up to 5%), but also in terms of the number of annotations required to reach

a certain level of accuracy (user annotation effort is reduced by up to 60.8% when

using OAL instead of RS).

For the majority of points on the learning curves, Online Active Learning registers

performance gains over Random Sampling. We conclude that, even for a technically

challenging dataset such as Opportunity, our method accelerates the bootstrapping

process of activity models.
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Periodic Activities

In this section, we apply our Online Active Learning annotation method on the publicly

available USC-HAD and PAMAP periodic activities datasets. The USC-HAD dataset

consists of movement data collected about 12 activity classes from 14 participants. The

PAMAP dataset consists of movement data collected about 12 activity classes from 9

subjects. The activities in both datasets are periodic, which is typical for healthcare

and fitness applications.

Preprocessing

We used only the tri-axial accelerometer data to infer activities. As noted in Chapter

3, this is common practice in activity recognition.

We applied a sliding window procedure over the acceleration data timeseries. The

length of the sliding window was 5 seconds and there was no overlap between adjacent

windows. For every window we extracted feature vectors characterised by the following

9 features: X axis mean, Y axis mean, Z axis mean, X axis variance, Y axis variance,

Z axis variance, X and Y axis correlation, Y and Z axis correlation, Z and X axis

correlation. This resulting feature-based representation of the data is suitable for

human activity recognition via machine learning.

Recognition Performance Evaluation

The USC-HAD and PAMAP datasets contain relatively limited amounts of data for

each participant (at the low extreme, USC-HAD contains one of the participants with

247 labelled frames, while PAMAP contains one participant with 282 labelled frames).

Two typical performance evaluation procedures are k-fold cross validation [120] and

evaluating against a fixed test set [120]. In our incremental scenario, which involves

repeated model evaluation across a large range of training set sizes, neither of these

two procedures are suitable because none of the procedures uses all available testing

data. In order to robustly evaluate the performance of an activity model across such a

large spectrum, we have designed a performance evaluation procedure that makes use

of all available data, at all times.
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Figure 4.11: Model evaluation procedure; 7th round of cross-validation.

On the one hand, at the beginning of the bootstrapping process, when the size of the

corpus of annotations is small, there is a relatively large amount of data which is not

used for model training (the annotations which have not yet been discovered). In fixed

testing set evaluation, this latter proportion of data is transformed into a relatively

large test set which is arguably representative of the domain. However, k-fold cross-

validation (the alternative evaluation procedure), at any one time, uses k−1
k

of the

annotated data for model training and, so, only 1
k

of the annotated data is available

for testing the model. This latter testing set is relatively small and unrepresentative at

the beginning of the bootstrapping process, so the resulting model accuracy scores are

not reliable. Therefore, at the beginning of learning, fixed testing set is more robust

than k-fold cross-validation.

On the other hand, towards the end of the bootstrapping process, the size of the corpus of

annotations is large and the usefulness of the two evaluation procedures is now reversed.

Only a relatively small amount of unused data is left (a relatively small number of

annotations remain undiscovered) and, so, evaluating against a fixed testing set is

unrepresentative. With a large corpus of annotations, however, k-fold cross-validation

is now the more robust performance evaluation procedure.

To account for this volatility across training set sizes, we propose a hybrid between k-
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fold cross validation and fixed testing set validation, which is exemplified in Fig. 4.11.

Our proposed evaluation method blends the two very common evaluation procedures

and gradually shifts focus from fixed testing set evaluation, at the beginning of the

learning process, to k-fold cross-validation as new annotations are collected towards

the end of the learning process. We use k-fold cross-validation and we augment each

testing fold with any data which is unused in the training set. This guarantees that

the size of the testing set is maximised (in general, our procedure uses more testing

data than either k-fold cross-validation or fixed testing set evaluation), thereby making

evaluation more stringent and realistic. Our procedure also but also ensures that there

is no overlap between training and testing sets at any point during the evaluation.

Learning Machinery

As an activity model builder we used a Bootstrap Aggregator [156] with 30 Naive

Bayes [157] base learners. In our analysis, this model builder yielded superior perfor-

mance over others commonly used in HAR (logistic regression, decision trees, k-Nearest

Neighbours).

The default implementation of the Bootstrap Aggregator does not allow for updating

(incremental learning), but instead requires complete re-building of the model with any

arrival of new data. While this is a limitation in terms of applicability to online learning

scenarios, we show later in Section 5.3.2 that the model builder can be modified to

allow updating. This is a critical modification we bring forward in order to deploy

a fully Online Active Learning pipeline in a realistic participants-based context in

Chapter 5.

Results

We evaluated our proposed annotation method under three different conditions. Firstly,

we generate a stream of segments consisting of single frames. This scenario looks at

what happens if there is no segmentation procedure and hence no segmentation noise.

Annotation requests are directed at individual frames, which are automatically gener-

ated by the sliding window procedure. The results isolate the performance difference
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between two annotation decision heuristics, Online Active Learning and its correspond-

ing naive correspondent – Random Selection.

Secondly, we generate a stream of segments, each consisting of several frames and we

operate the automatic segmentation procedure detailed in Section 3.4.1. The output

from the segmentation procedure is a sequence of segments. A segment is associated

with a single label, which is simulated to be provided by the user and which is extended

to all the frames in the segment. However, because the segment delineation does not

always match the ideal boundaries, some segments may contain label noise – frames

from more than one activity which are assigned the label. In this scenario, we report

the results of how imperfect segmentation affects the model bootstrapping process in

addition to the effects of the annotation decision heuristic.

Finally, we generate a stream of segments, but we additionally alter the activity class

distribution in the stream. Specifically, we simulate a more sedentary lifestyle by over-

sampling sedentary activities. In this scenario, we focus on how this class imbalance

affects the annotation process in terms of not only model accuracy, but also class dis-

tribution in the training set. The results in this final case reveal how Online Active

Learning reduces user involvement by distributing annotation requests more evenly

(compared to Random Selection) across activity classes.

First Scenario: 1-Frame Segments

We begin by evaluating our annotation method on single-frame segments. This al-

lows us to emphasise the merits of OAL by controlling every individual frame which

is selected for annotation. Fig. 4.12 shows that our annotation method improves the

recognition performance over Random Selection on the USC-HAD dataset. Specifi-

cally, for 95.5% of the points on the learning curve, the difference in F-Score between

OAL and RS is positive and peaks at 7.4%. Fig. 4.12 also shows that unpersonalised

models (the Population Model line) perform substantially worse than fully personalised

ones (the Online Active Learning and Random Selection curves).

The gain in performance illustrated in Fig. 4.12 was obtained by parametrising Eq.

4.1 with γ = 6. In our analysis, this was a relatively high value for the parameter

and sustained highly informed accumulation of training data. Fig. 4.13 contrasts the
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Figure 4.12: Active Learning versus Random Sampling on USC-HAD. Average per-
formance for 1-frame segments.
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Figure 4.13: Active Learning versus Random Sampling on USC-HAD. Performance
ECDF comparison between γ = 2 and γ = 6.
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Figure 4.14: Active Learning versus Random Sampling on PAMAP. Average perfor-
mance for 1-frame segments.

distribution of performance gains over Random Selection (F-Score of OAL minus F-

Score of RS for all points on the learning curve) for γ = 6 and, separately, for γ = 2.

Higher values for the γ parameter make the annotation process more informed and

the results show that the performance gains of Online Active Learning over Random

Selection can be reduced if low values for γ are used.

Fig. 4.12 additionally illustrates a known phenomenon, namely that Online Active

Learning may reach a peak performance and, if training is continued with additional

annotated data beyond this point, the performance will gradually decrease. As noted

in Chapter 2, this phenomenon was also observed by Zhu et al. [133], Vlachos [134]

or Laws and Schätze [135]. In our particular case, this is evident by the performance

of Online Active Learning which overshoots the performance obtained by k-fold cross-

validation on the entire set of annotations (which is ultimately obtained when all

annotations in the dataset are discovered).

For the PAMAP dataset, the performance contrast between OAL and RS is pictured

in Fig. 4.14 which shows that, for 95.5% of the points on the learning curve, OAL
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Figure 4.15: Active Learning versus Random Sampling on PAMAP. Performance
ECDF comparison between γ = 2 and γ = 6.

outperforms RS by up to 7.8% in terms of F-Score. The effect of the γ parameter is

illustrated in Fig. 4.15. Similar to the USC-HAD dataset, the higher the value of the

γ parameter, the greater the overall improvement in F-Score of OAL over RS.

Overall, when annotating 1-frame segments of periodic activities, our results show

HAR model F-Score improvements of Online Active Learning over Random Selection

by up to 7.4% for the USC-HAD dataset and 7.8% for the PAMAP dataset. Addi-

tionally, we have also shown that higher values of the γ parameter result in greater

performance gains than smaller values.

Second Scenario: Imperfect Segmentation

While noise-free segments are always preferable, in a realistic deployment it is not clear

how these can be consistently detected. 1-frame segments, which are automatically

detected by a sliding window procedure, can be used (as was done in our previous

set of analyses), but these segments are very short, so the user’s annotation effort is

inefficiently used. Instead, in the following, we investigate what happens when anno-
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tating longer segments – their constituent frames are annotated with a single label. We

present results for periodic activities when we integrate the automatic segmentation

procedure described in Section 3.4.1. This is a realistic best-effort activity stream seg-

mentation method, but, as explained, the segmentation procedure may unintentionally

introduce noise in the training set.

We generate a stream of activity data by continually concatenating ground truth seg-

ments of 3-6 frames to the end of the activity stream3. At the same time we operate

the automatic segmentation procedure detailed in Chapter 3 and discover estimated

segments, which are annotated. The estimated segments boundaries and ground truth

segments boundaries may not align perfectly and, so, a degree of label noise may be

introduced.

As new segments are detected we decide whether or not to annotate these. If an

annotation is requested, we simulate receiving a response to the annotation request

by calculating the mode of the frame labels4 in the detected segments (as was done in

Section 3.4) and using this as the segment label.

Fig. 4.16 illustrates the impact imperfect segmentation has on recognition accuracy.

Due to the resulting label noise, general recognition performance drops – both the OAL

and RS learning curves are lowered with respect to the cases corresponding to ideal

segmentation. Nonetheless, for 92.5% of the points on the learning curve, the difference

of performance between OAL and RS is positive and up to 8%. Additionally, Fig. 4.17

contrasts Figs. 4.12 and 4.16 and shows that annotating whole segments at once,

although at the sacrifice of asymptotic F-Score, converts user involvement (number of

provided annotations) more quickly into F-Score gains.

We have included the results for Online Active Learning with automatic segmentation

for the PAMAP dataset in Fig. 4.18. These exhibit clear improvement of up to 8.5%

for 92.5% of the points on the learning curve and reinforce our conclusion that, for

periodic activities, Online Active Learning outperforms Random Selection. Similarly

for the PAMAP dataset, Fig. 4.19 shows that annotating whole segments results in

faster performance gains than when annotating single-frame segments, even though

3The length of the segments is limited due to the data size limitations in the datasets.
4The predominant label in the segment.
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Figure 4.16: Active Learning versus Random Sampling on USC-HAD. Average per-
formance for automatically delineated segments.
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Figure 4.17: Active Learning versus Random Sampling on USC-HAD. Performance
contrast between 1-frame segments and imperfect segments.
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Figure 4.18: Active Learning versus Random Sampling on PAMAP. Average perfor-
mance for automatically delineated segments.
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Figure 4.19: Active Learning versus Random Sampling on PAMAP. Performance con-
trast between 1-frame segments and imperfect segments.
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some end accuracy is lost due to segmentation noise.

The reduction in performance is primarily attributed to label noise arising from im-

perfect segmentation. Segmentation introduces a degree of label noise because of the

proposed annotation mechanism which assumes that a segment can have only one label

(the one provided by the user) which is distributed to all the frames constituting the

segment.

Third Scenario: Long Activity Sequences

In this section, we change the simulation conditions by no longer removing segments

from the stream of activities when they are annotated. Instead, the segments are

periodically replayed for potential annotation. By removing the previous data replay

restrictions, we can get a better understanding of (1) how the performance gap between

OAL and RS can be affected by label imbalances in the sequence of activities and (2)

what activity labels the annotation process is going to favour.

For each user we simulate the monitoring of long activity sequences – we repeatedly

replay a fixed sequence of activity segments sampled from the dataset. We consider

two scenarios. In the first scenario, we split the data in perfectly delineated segments

and replay these in the same order repeatedly5. Each segment is then presented to

the OAL heuristic which may or may not annotate it. In the second scenario, we

additionally duplicate the number of sedentary activities in the day by a factor of 10.

We train the models regardless of the duplication in the training set, but, in order to

fairly quantify the effects on model performance, all duplication is removed from the

training set (this was the case throughout all analyses in this chapter). We perform

this process only for the PAMAP dataset because the activity instances are roughly

evenly distributed among the activity classes and only two of the 12 activities can

be considered sedentary (lie and sit). We could not create equivalent experimental

conditions with the USC-HAD dataset because it is not clear whether some activities

are sedentary or non-sedentary.

5The previous results demonstrate the merits of imperfect segmentation. However, for the purpose
of analysing the label distribution of the annotated data, not introducing label noise better isolates
the effects.
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Figure 4.20: Active Learning versus Random Sampling on PAMAP. Average perfor-
mance for balanced activity classes (initial class distribution).
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Figure 4.21: Active Learning versus Random Sampling on PAMAP. Training set class
label entropy for balanced activity classes (initial class distribution).
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Figure 4.22: Active Learning versus Random Sampling on PAMAP. Average perfor-
mance for imbalanced activity classes (artificially imbalanced class distribution).

For the first scenario, Fig. 4.20 represents the performance contrasts between OAL

and RS for the PAMAP dataset. As expected, OAL-driven annotation maintains a

performance margin over RS. We quantify the label diversity in the training set by

calculating the entropy of the numerosity of the activity classes. Fig. 4.21 shows the

contrast of entropy between OAL and RS for the PAMAP dataset when the class

distribution is virtually non-existent. This implies that both OAL and RS register

roughly equal training set class entropy showing that with the current class distribution

in the activity stream OAL did not induce imbalances in the training sets, relative to

RS.

For the second scenario, Fig. 4.22 represents the performance contrasts between OAL

and RS. As the class distribution in the sequence of activities is more imbalanced

(in this case, sedentary activities are 10 times more prevalent than in the previous

scenario), then the benefits of employing OAL become more apparent. In this case,

the probability of RS annotating rarer activities is lower, and this has clear penalties on

model accuracy because other activities are neglected. The effect of what activities are
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Figure 4.23: Active Learning versus Random Sampling on PAMAP. Training set class
label entropy for imbalanced activity classes (artificially imbalanced class distribution).

targeted is illustrated in Fig. 4.23 which shows that OAL corresponds to higher class

entropy (more balanced distribution of labels in the training set) than RS. While the

class diversity corresponding to RS is ultimately influenced by the relative numerosity

of each activity class in the stream of activities, OAL tends to reinforce difficult classes

and, so, it distributes the annotation effort more evenly (relative to how RS does it)

across all classes.

Because Online Active Learning overshoots the peak Random Selection performance

point, we did not repeat the Equi-performance analysis from Section 4.3.3 (some points

on the OAL curve are never matched or surpassed in value by any other points on the

RS curve). However, because OAL outperforms RS vertically for the majority of time,

it also reduces annotation effort relative to RS.
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Conclusions

In this chapter we continued our exploration of bootstrapping personalised HAR mod-

els from user-provided annotations. Using the motivation from Chapter 2, where we

discussed the limitations concerning the user’s memory, and similarly to Chapter 3, we

employed an online approach to collecting annotations and constructing a personalised

HAR model from these. However, unlike Chapter 3, in this chapter we are not con-

cerned with the budget of individual annotations, but, instead, focus entirely on how

to bring performance improvements the HAR model. We proposed an Online Active

Learning decision heuristic for annotation which operates on an online stream of ac-

tivities and identifies activities which, if annotated, are expected to bring considerable

improvement to the accuracy of the HAR model.

We apply this annotation method and simulate its use in two different contexts –

one focused on periodic activities, which are frequent in healthcare scenarios, and

non-periodic activities, which are specific to more specialised applications, such as

monitoring daily activities in a smarthome. Even though annotation decisions are

informed only by a very limited recent history of the activity stream, results show that

the recognition performance of a personalised model can be enhanced by using our

Online Active Learning method over Random Selection – a naive annotation method

which selects annotation segments at random.

We additionally proposed a data processing framework (a directed graph of algorithm

placeholders) which includes stages for machine learning (sensor data preprocessing,

feature extraction, classification, model updating, activity segmentation), a function

for interacting with the user and a heuristic for deciding on what annotations to

request. Actual algorithms can be plugged into the framework and create framework

instances which can be used to obtain annotations from users in order to bootstrap

a personalised HAR model. Using this framework, we evaluated the influence of the

annotation heuristic on HAR model performance. The significance of our results in

this chapter is four-fold:

1. For the same number of annotations, in most cases, the recognition performance
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of a model trained from OAL-based annotation requests is greater than that of

a model trained from RS-based annotation requests.

2. In order to obtain the same performance using OAL and RS, typically one re-

quires fewer annotations through OAL than RS.

3. In case the monitored stream of activities is highly imbalanced, i.e. one or more

activity classes greatly outnumber the rest (as is the case, for instance, of seden-

tary lifestyles where sedentary activities are more prevalent than non-sedentary

ones), OAL favours annotating the rarer activities more than RS. Random Se-

lection is ultimately influenced by the numerosity of each activity class in the

stream and it is therefore less likely to annotate rarer activities. In addition, by

annotating from a more imbalanced stream of activities, the performance gap

between OAL and RS is increased compared to when the activities are more

balanced.

4. For periodic activities we additionally investigated the effects of a realistic seg-

mentation method by plugging it into our annotation framework. We argue that

this framework setup is sufficient for bootstrapping personalised HAR models

(and we demonstrate its application in a real user study in Chapter 5). Re-

sults show that the label noise due to imperfect segmentation has a negative but

nonetheless small effect on accuracy (relative to the case when no noise is in-

troduced). In this scenario as well OAL outperforms RS in terms of recognition

accuracy.

Our annotation method works in an online setting, which is, in terms of computational

complexity, compatible with a realistic deployment involving accelerated bootstrapping

of a personalised activity model outside of an instrumented environment. We use the

results in this chapter as motivation to further our investigation by enacting a user

study which revolves around an actual deployment of the annotation system described

in Chapter 5.
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Introduction

In this chapter we build upon the results of Chapter 4 where we proposed Online

Active Learning (OAL) as a method to collect annotations that accelerate the boot-

strapping of personalised HAR models. There, we evaluated OAL on a public dataset

and demonstrated clear objective performance gains. In this chapter, we apply the

previously analysed methods for collecting annotations in a field deployment involving

a panel of participants. We describe the implementation of a complete system using

only online methods including Online Active Learning, sensor data preprocessing, au-

tomatic segmentation, model building and classification. The implementation itself is

proof that it is feasible to construct a mobile and autonomous Online Active Learning

deployment.

We embody the system in a mobile app which allows us to collect real-time data

wirelessly from wearable sensors and to process the data using an OAL-based machine

learning pipeline, similar to our proposition in Chapter 4. We set up a field deployment

involving a panel of participants and deploy the app in a naturalistic environment.

This allows us to evaluate not only the objective performance of OAL in a naturalistic

setting, but also the subjective impressions the participants experienced while using

the system.

Contributions

The contributions of this chapter are as follows:

Firstly, we enhance the machine learning pipeline from Chapter 4 by incorporating

an additional module, the Novel Activity Detector (NAD) that further accelerates the

learning process by discovering new activities or activities with unusual executions.

We detail why the Online Active Learning method detailed in Chapter 4 is sometimes

too slow to improve the model and therefore important annotations may be missed.

We show that the NAD can impact the quantity of useful annotations that can be

obtained during the limited exposure of the user to the annotation method.

Secondly, we demonstrate that model boostrapping from genuine user-provided on-

line annotations of activities performed in a naturalistic environment leads to clear
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model improvement: When compared with a strawman classifier (a simplistic classi-

fier that systematically predicts the most numerous activity class in the training set),

the performance due to OAL surpasses the strawman by 38-60% in F-Score. We did

not perform Random Selection because, as we explain later in this chapter, due to

the nature of the experiment protocol, for most target activities, an estimated 43% of

annotations would have been lost if Random Selection had been used instead of Online

Active Learning. This complements our findings in Chapter 4, which were based on

simulations of online methods on previously collected data, with this chapter’s results

based on annotations collected under live and realistic conditions and without expert

supervision. Results suggest that only a few annotations for each activity are enough

to register improvement to a fully personalised activity model, relative to a simple

strawman.

Finally, we gauge the perceptions of the participants who provided the annotations as

part of the user study. We present insight gained from analysing user feedback, at key

stages of the user study, reflecting their view on how the system behaves. We show

how this subjective feedback can be used to to “close the loop” and to alter the design

so that users’ expectations are better met. Finally, we compile summary opinions from

our participants and explain how using an OAL-based system affects them and, also,

how it could be applied to other contexts.

Overview of Field Study

In this chapter we explain the design and implementation of a fully personalised in-

teractive mobile activity monitor which, at its core, uses Online Active Learning to

collect user-provided annotations for automatically segmented activities as they oc-

cur. We explain how we deployed it in an office environment as part of a user study

involving 10 participating office workers. We finally present quantitative and qualita-

tive results regarding user interaction with the activity monitor and how these results

impact potential applications in the area of physical activity exertion at the office.

In order to support our claims and enact personalised activity recognition for office

workers, we have set up a field study that incorporates the following elements:
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Experiment Design We designed a user-centred field study which involved partic-

ipants performing a set of light physical activities while providing annotations

on demand, according to an OAL-based asking heuristic. We explain why the

experiment protocol is in line with our assumptions on self-provided annotations

and why this in turn validates the applicability of the methods and techniques

to the context of office workers in a office environment.

Machine Learning Pipeline We applied a modified version of the machine learning

pipeline from Section 4.4, which now accommodates an extra module – the NAD

–, which works in parallel to the OAL module and which accelerates learning

further by soliciting some annotations more quickly than OAL alone.

Mobile App We implemented a mobile app which implemented the online machine

learning pipeline and which acted as the point of user interaction for answering

annotation requests. We describe the architecture of the mobile app we employed

in the user study to monitor users and collect annotations. We focus on how

we integrate purely online modules in our data processing pipeline and how this

supports the central feature of requesting relevant annotations through Online

Active Learning.

Objective Performance Evaluation We derive objective recognition performance

measures for individual participants. While the quantity of annotations is smaller

than for the datasets used in Chapter 4, we demonstrate that online learning from

live annotations in a naturalistic environment is a valid solution to the problem

of bootstrapping a personalised model. Our results show that live on-demand

annotations are suitable for bootstrapping a personalised activity recognizer and

that the resulting personalised models exhibit improvements in recognition per-

formance.

Subjective Usability Questionnaires Participants were asked to fill in question-

naires at different stages of the experiment where they would express their sub-

jective views on the usability of the system as a whole and potential of the

annotation method in the current and other contexts. We used the feedback to

not only reflect how some design choices affect usability, but also to respond to
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a criticised issue – the NAD module– and address it by changing its behaviour

to better meet user expectations.

In terms of quantitative analysis, the user study was aimed not at replicating the type

of results in Chapters 3 and 4, but rather the purpose of the study was two-fold. Firstly,

we aimed to obtain insight into how users respond to this class of notifications and

how they can integrate the level of disruption in their daily routines. This is discussed

further in 5.6. Secondly, we aimed to show that, although the quantity of annotations

is more limited compared to other offline datasets like Opportunity or USC-HAD or

PAMAP, it is possible to accumulate useful self-reported annotations and to conclude

that these lead to increased activity recognition accuracy.

Experimental Design

We have highlighted in Chapter 1 not only that sedentary behaviour is detrimental to

health, but also that prolonged sitting, which is typical of many office workers, carries

additional health risks. We envisage a mobile scenario where office workers combat

excessive sitting by using a smartphone app which monitors their activities at the office

and which improves by parsimoniously asking for annotations.

Our goals are two-fold: Firstly, we explore the technical feasibility and objective merits

of the suite of methods we employed in a realistic deployment. The learning techniques

used in this experiment are largely those used in Section 4.4, but they are now applied

to a live setting where annotation decisions are informed by live data streams generated

by sensors worn by our participants. We create a mobile app to integrate the data

processing infrastructure with interactive functionality to collect labels for activities as

they occur. This is in direct contrast to the simulations from Chapter 4 where offline

data was simply sequentially replayed in order to artificially create the restriction of a

data stream.

Secondly, we examine the subjective usability of such an interactive activity monitor

aimed at office workers. We therefore introduce written questionnaires as a means of

collecting the participants’ impressions at different stages of the experiment. With this
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feedback we are able to better understand how users perceive this type of interaction

and how useful this type of adaptive application would be in the current and different

contexts. We also use the feedback to alter the application to correct a problematic

aspect of the interaction with the user.

To these ends, we have designed a compatible experimental setup which consists of

a set of activities with an associated context in which they are performed and an

experiment protocol which emphasises key manifestations of the context.

Activities

We target light physical activities that could realistically be performed at the office:

sitting, standing, sitting knee raises, walking, squats, calf raises, torso side to side,

torso twists and torso back to forward.

This is a diverse set of activities that is arguably suitable for an office environment.

All activities require relatively little energy expenditure and, in retrospect, none of the

participants mentioned any difficulty in performing them. Also, no special equipment

or areas are needed.

Movement data was collected using accelerometers strapped in four locations on the

participants’ bodies: the right foot, the right lower leg, the right upper leg and the

chest. These locations were chosen because they capture key movements for the pro-

posed activities – these predominantly consist of movement from the lower limbs and

from the torso. The accelerometer data was transmitted wirelessly to an Android

smartphone where our app coordinated data processing with user interactions.

Experiment Protocol

In terms of participants, we recruited 10 colleagues (2 females, 8 males, aged 23-30)

from our department who were not affiliated with our research. We demonstrated

the target activities and asked the participants to include 8-10 repetitions of each

activity in their daily routine at the office, each time for a duration of at least 30-60

seconds. Participants were informed that they could execute the activities in any order,

at any time and could take breaks. The participants were not supervised while the
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experiment was under way in order to ensure that there was no interference in how the

activities were performed or what or how annotations were provided. There is arguably

a risk of noise being introduced in the data, but, with the benefit of hindsight, the

results show that noise levels are low enough not to deny the accumulation of relevant

annotations. The participants were also informed that the app would not prompt

or guide them to perform activities in any way, but rather would simply react to

registered activities. This ensures that the annotation framework is decoupled from

the experimental protocol and, so, it could be applied in similar contexts, without the

user having to observe a certain protocol.

We divided the duration of the experiments in two parts, each with its own annota-

tion request mechanism. In the first part of the experiment only informed annotation

requests were generated. In the second part, after the switch-over time, some ran-

dom annotation requests were added in order to obtain additional annotations for

performance evaluation.

Overall, we aimed for a naturalistic and minimally obtrusive environment where the

participants would perform the experiment by executing a diverse set of activities and

occasionally providing their own annotations as directed by a mobile app. We did

not follow the participants and we did not collect video footage so that participants

did not feel compelled to perform the activities in an unnatural way and so that the

environment was not restricted to where video footage was collected. Therefore, the

participants’ own annotations are the main factors in performance results. In total,

the participants were monitored by our mobile app for 55 hours1 and, during this time,

they annotated 3 hours and 20 minutes’ worth of sensor data.

Besides the physical exertion component of the experiment, participants were also

asked to fill in questionnaires as a direct means of obtaining subjective judgements

regarding the usability of the app. We asked the participants to fill in three question-

naires at different key stages of the experiment:

Pre-experiment questionnaire The participants were asked to fill in this question-

naire after an explanation of what the experiment involved, but before commenc-

1Including downtime due to occasional app crashing.
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ing the physical activity data acquisition. The purpose of this questionnaire was

to make the participant create a personal expectation regarding the amount of

interruptions and, after the end of the physical experiment, to realise whether

this expectation was met or not.

Post-experiment questionnaire 1 As soon as the participants finished the physi-

cal exertion part of the experiment and they surrendered the smartphone with

the onboard database of movement data, we asked them to complete the first

of two post-experiment questionnaires. At this point we did not present any

results or discuss recognition performance metrics with the participants. With-

out additional information from us, but having experienced a day at the office

interacting with the app, participants were asked to reflect on usability aspects

and also whether they thought the app learned from their input.

Post-experiment questionnaire 2 Using the participant’s movement data and an-

notations from the smartphone, we generated model performance charts which

were essentially the same as Figures 5.8, but illustrating only the current partic-

ipant’s data. We showed the participant the performance curve and explained

to her what the curve represents. However, we refrained from expressing our

opinion on whether the performance curve designates learning or stagnation. In

this final questionnaire, since the participant was now in possession of objective

performance indicators, we repeated the question of whether she thought the

system learned from her feedback. In addition, we asked the participant to re-

flect on the potential of using the app for longer periods of time or in different

contexts.

The consent form completed and signed by every participant is found in Appendix A.

The questionnaire structure can be found in Appendix B and the questionnaire an-

swers completed by the participants are in Appendix C. Given the nature of the data

collected from the participants, their tasks and the loose supervision of the partici-

pants by the research team, the user study did not require explicit ethical approval

from the university. It is extremely improbable that the questionnaire and movement

data collected can be used by another party to identify the participants or with other
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unethical intentions.

Learning Machinery

As the activities are periodic, we use a frame-based approach to preprocessing, machine

learning and segmentation similar to that used in Section 4.4 for the simulations using

the period USC-HAD and PAMAP datasets. Namely, for each of the four tri-axial

accelerometers we set up the automated data processing pipeline as follows:

• We use a 5s sliding window with a 50% overlap. We included the overlap because

this would improve the segmentation of movement data. Since the start and end

of an activity is no longer under the control of a computer simulation, it can

happen at any time, including in the middle of a sliding window. Therefore, the

50% overlap better segregates the adjacent frames corresponding to neighbouring

activities.

• As features, for each of the three acceleration signal axes we compute the mean

(three features), variance (three features) and for each unordered pair of axes

(XY, YZ, ZX) we compute the inter-axis correlation coefficients (three features).

This results in a 9-dimensional feature vector.

• For classification, we use a Bootstrap Aggregator of 30 Naive Bayes classifiers.

As discussed in Section 4.4, this type of ensemble was the best performing model

builder. We obtain classification metrics (predicted label, classification proba-

bilities) at the level of individual frames and we average these in order to obtain

corresponding segment-level metrics.

• We apply the segmentation procedure from Section 4.4 to partition the stream

of feature vectors into individual activities comprising contiguous sequences of

frames.

There are two differences between the current machine learning pipeline and the one

used in Section 4.4. Firstly, the current pipeline includes an additional module (the

NAD) and this is discussed in detail in Section 5.3.1. Secondly, the sliding window
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Figure 5.1: The Ignorant Classifier Problem.

procedure now has an overlap between adjacent frames. This was done to increase the

number of annotated frames and provide more data for model evaluation. As opposed

to Section 4.4, where we specifically avoided overlaps in order to reduce duplication

between training and testing sets when evaluating models, the motivation for doing

so is no longer valid. Here we are no longer interested in extremely precise perfor-

mance estimations, but rather we simply seek to identify whether a model registers

improvement. Having an overlap in the sliding window does not fundamentally affect

the presence of improvement.

NAD: Novel Activity Detector

We prompt the user of the system to provide labels according to Eq. 4.1. The mecha-

nism uses the confidence in prediction of a bootstrapped model to issue the probability

pask of asking the user for annotation.

While Online Active Learning yields gains in recognition performance, the speed with

which initial annotations are requested is very low. The problem arises with the initial

annotated segment which results in a training set with a single label. At this stage,

this training set leads the classifier to systematically predict that label for all new

frames and with 100% confidence. The issue, which we call the Ignorant Classifier

Problem, is illustrated in Fig. 5.1. Little diversity in the training set triggers classifier

overconfidence which, in turn, causes very slow improvement. This behaviour can

persists for many iterations afterwards as long as more diverse labels are still not

discovered. Therefore, initially, the classifier is misguided to confidently but incorrectly
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classify new segments. Overconfidence is what makes Eq. 4.1 ineffective.

If there is a limit of time within which to conduct Online Active Learning, then it

is clear that very little input would be generated at the beginning of the monitoring,

thereby wasting time. However, the Ignorant Classifier was not a problem in the

simulations in Chapter 4 because there was no imposed limit of time within which

to finish the bootstrapping process. Technically, the simulation environment would

simulate physical activity by generating numerous data points without necessarily

generating annotation requests as well (due to Eq. 4.1). Nonetheless, some anno-

tations would eventually be requested because the asking probability is nonetheless

non-zero,. Therefore, the training set would eventually diversify and more informed

decisions would follow. However, initial overconfidence becomes problematic in the

context of a realistic deployment because of the time constraints in our field experi-

ments. Specifically, for each participant, the monitoring would last only several hours.

Therefore, obtaining annotations even at the beginning of the bootstrapping process

is instrumental to collecting a large enough dataset for model performance evaluation.

In order to address the Ignorant Classifier problem, we introduce another annotation

heuristic called the Novel Activity Detector (NAD) which complements Online Active

Learning. The NAD works in parallel to Online Active Learning and generates anno-

tation requests of its own based on a different mechanism. The NAD therefore aims to

break the vicious circle illustrated in Fig. 5.1 and to increase label diversity in the early

stages of learning. In our user study we experimented with two NAD versions. The

first version, the Speculative NAD, favours a high throughput of annotation requests,

but it can be intrusive to users. The second version, the Restrained NAD, limits the

number of annotation requests to one per activity class, but this version carries the

risk of not discovering some labels.

Novel Activity Detector – Speculative Version

In the initial version, we use a Bag of 30 Naive Bayes classifiers. Normally, each

Naive Bayes classifier would output a vector of probability scores for each label. These

scores would be transformed into actual probabilities by scaling them such that they

sum to 1. The unscaled probability scores are proportional to the scaled probabilities,
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so that they too are representative of the model’s prediction confidence. However,

for the 1-label Ignorant Classifier case, the confidence is always 100% and hides the

potential variation of the corresponding unscaled probability score. We want to detect

changes in confidence even if the training set contains only one label or very little label

diversity. Therefore, we propose Eq. 5.1 as a NAD formula that uses the unscaled

prediction confidence punscaled
conf to generate its own probability pask of asking the user

for an annotation. Because of the lack of scaling, the NAD works equally well for any

number of classes known to the model, including for the one class case.

pask = exp(−γ · ln punscaled
conf ) (5.1)

The unscaled probability scores are extremely sensitive to the high dimensionality

of the input space – small variability in the input may lead to disproportionately

large variations in unscaled probability scores. We have taken two steps to limit this

variability. Firstly, we reduced the dimensionality of the input space by using only a

subset of the original features and, secondly, we applied a logarithmic factor to further

reduce variability down to a more manageable range.

The resulting asking probability is given by Eq. 5.1 which is linearly scaled to [0, 1]2.

This annotation mechanism is similar to the main one used in Eq. 4.1. However, as

Fig. 5.2 shows, the NAD focuses high asking probabilities only in the region of very

small unscaled probability scores. High γ parameter values result in, practically, a

hard threshold, whereas lower γ parameter values provide a more attenuated decline

in the probability of raising annotation requests.

We used a small dataset collected offline and concluded that γ = 0.02 would be a

good value to highlight novel activities while ignoring known labels. However, the first

participants whose app used this NAD implementation had noted the large number

of sitting activities they were asked to annotate. We traced the cause of annotation

requests to the NAD which was too sensitive. The NAD would trigger annotation

requests for known activities that were executed slightly differently even if this was

natural variability and this is the cause of high throughput we noted earlier.

2The Weka implementation of the Naive Bayes classifier protects against numeric underflow by
enforcing a minimum unscaled probability of 10−75. We use this minimum value to scale pask.
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Figure 5.2: NAD Probabilities of Generating Annotation Requests (Logarithmic Scale)

Novel Activity Detector – Restrained Version

We also experimented with a lower throughput NAD that did not engage users as often

as the Speculative NAD. Consequently, for the other participants, we used a more

restrained NAD mechanism of generating annotation requests. In this version, we not

only learned the importance of reducing user participation, but we also utilised the

data collected from the previous participants (their sets of annotations) who used the

Speculative NAD. The Restrained NAD (a single model for all subsequent participants)

was a population model constructed using a Nearest Neighbour classifier from the

median feature vectors of each class – a training set of just 9 points3. Furthermore,

a Nearest Neighbour classifier using such a small training set would still be able to

deliver very fast online classifications. The second version of the NAD used this activity

model to classify newly computed feature vectors. The NAD maintained a list of

user-provided labels, but as classified by the population model. Namely, when the

population model classifies a new activity apopi which has not been estimated before,

then an annotation is requested for the current segment. Regardless of what label the

3Median values were used here because they are generally insensitive to outliers.
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Figure 5.3: NAD Usage Throughout the Experiment.

user provides, say aprovidedi , the label apopi is marked as annotated even if aprovidedi 6= apopi .

This ensures that the NAD never requests more than one annotation per activity

class. Consequently, most annotation requests come from Online Active Learning.

The Restrained version of the NAD, despite using a population model, still supports

the bootstrapping of a fully personalised activity model, just as the Speculative NAD

does.

Updateable Bootstrap Aggregation

In the mobile app we adapted the learning machinery from Section 4.4 and used a

modified ensemble of classifiers. A key difference is that we implemented and used

an updateable bootstrap aggregator - one that is able to adapt incrementally to new

training data instances as they become available.

An ordinary bootstrap aggregator, as was used in Section 4.4, operates on a given

training set by sampling with replacement a set of instances which are then used to

train one of the base classifiers, as illustrated in Figure 5.4. The sampling step is

repeated for every base classifier [120].

The resulting ensemble structure is not updateable – without complete re-training, it

cannot adapt incrementally to novel annotations, and this is at odds with how data

accumulates in our stream-based scenario. Partial training data must be incorporated

incrementally in the model because repeatedly re-training activity models on a mobile

platform is computationally expensive.
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Figure 5.5: Updating with modified boostrap aggregation.

Instead, we use a modified bootstrap aggregation which uses updateable base classifiers

(the Naive Bayes classifiers are updateable [120]) and which can itself be updated with

new annotations. The resulting classifier can therefore be bootstrapped incrementally

and so it can be improved with new annotations, as they become available. The key

difference here is that models are no longer trained from scratch whenever new anno-

tations appear, but instead they can be updated with new data. Updating updateable

classifiers is more computationally efficient than training them from scratch.

Given a labelled frame from a new annotation, instead of training each base classifier

with a training set sampled from the entire set of annotations, as is typical of bootstrap

aggregation, we sample the set of base classifiers from the existing classifiers to be

updated with the new data (instead of training them from scratch). This iteration

is repeated for every feature vector in a newly annotated segment. An example is

illustrated in Figure 5.5, where, as a result of sampling with replacement, for a selected

annotated feature vector base Classifiers 3 and 4 are updated once, Classifier 2 is

updated twice and Classifier 1 is not updated with this labelled frame.
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Effect of the Segmentation Procedure

In Chapters 3 and 4 we simulated sudden transitions between activities: the frames

on either side of a true segment boundary belong to a single activity. In a realistic

deployment, as is the case in this chapter, and with continuous monitoring, transitions

are not so clear cut. Frames capture fixed temporal boundaries which are generally

not aligned with activity changes for two reasons. Firstly, the overlap between frames

causes at least one frame to contain movement for two activities. Secondly, activity

transitions are not instantaneous, but rather there is an intermediary time interval

which is characterized by transitional movement which cannot be classified as either

activity. These factors create uncertainty over when an activity ends and another one

starts.

Although we rely on automatic segment boundary detection to yield a high true pos-

itive rate (not to fail to detect an activity change when it occurs), we still assume

uncertainty regarding the instantaneity of the boundary. Specifically, we discard a

number of frames (two in this particular case) from either side of the detected segmen-

tation boundary from annotation requests. More frames could be discarded either side

of the segment boundary to increase the quality of annotated frames as this decreases

the prevalence of label noise within a segment. However, this would come at the cost

to the quantity of annotated frames because each segment would have fewer frames

remaining for annotation.

Mobile App Architecture

We now detail the complete implementation system of the mobile app. Its core features

include:

• Supporting human activity recognition from wearable sensors.

• Parsimoniously interacting with the user to obtain activity annotations.

• Propagating annotations back to the machine learning pipeline and updating the

user’s personalised activity model.
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The system, whose architecture is illustrated in Fig. 5.6, uses Online Active Learning at

its core. The architecture is to some extent similar to that used in Chapter 4 (Fig. 4.3),

but the novelty introduced is emphasised with the dashed line rectangle. As explained

earlier, the NAD, which is included to increase the probability of identifying novel

activities, is combined with Online Active Learning using logical disjunction.

Sensor Array We use four accelerometers integrated into the WAX94 wireless wear-

able sensor. Data from the sensors is streamed in real time to a Google Nexus 5

smartphone via Bluetooth.

Data Preprocessing We operate a single sliding window across all four three-dimensional

acceleration timeseries streamed from the wireless sensors. Similarly to Chapter

4, we use a window length of five seconds. In addition, in order to increase the

quantity of data, we add an overlap of 50% between adjacent frames.

Feature Extraction We extract features as described in 5.3. Each window from a

mote is compressed down to nine features. The four simultaneous windows from

all four motes result in a feature vector of dimensionality 36.

Segmentation The feature vectors from the previous step are used to detect changes

in activity using the algorithm from Sections 4.2.2 and 5.3.3.

Classification The classification stage, which consists of an activity model trained

using a Bootstrap Aggregation with 30 Naive Bayes classifiers, is used to derive

class labels with associated classification probabilities for all newly computed

feature vectors.

Annotation Request Decider The classification probabilities from the classifica-

tion stage which correspond to the newly identified segment feature vectors from

the Segmentation stage are used to inform the Online Active Learning stage on

whether the user should be prompted to provide an annotation.

Online Active Learning This stage uses logical disjunction between the annota-

tion decisions taken using Eqs. 4.1, which was the sole OAL mechanism used

4http://axivity.com/v2/ Accessed 19.12.2014
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in Chapter 4 and a NAD, explained in Section 5.3.1. In the deployment, we

experimented with both NAD versions described in Section 5.3.1 – participants

1-5 used the Speculative NAD and participants 6-10 used the Restrained NAD.

User Notification If a segment is deemed as worthy of annotation, then the app

invokes a means of collecting input from the user. We opted for a tactile, visual

and, optionally, audible feedback system to notify the user and we used a one-tap

interface for the user to provide a label for the annotation in question.

Annotation From the previous step, an activity label is collected and associated with

the segment frames which triggered the annotation request in the first place.

Model Update Newly annotated segment feature vectors are passed to update the

existing activity model using the ensemble updating mechanism presented in

Section 5.3.2.

Data Persistence We recorded the acceleration data and the computed features on-

board the secondary storage of the phone in flat files and an SQLite database5.

While all data processing leading up to and including annotation requests and

model updates were performed on the phone using local computation only, at

the end of the physical part of the experiment we downloaded the data from the

phone to provide the performance analysis in Section 5.5.

Of notable difficulty when implementing the app was enforcing the memory complex-

ity by removing memory leaks. We ensured that references to unnecessary objects

were dropped as soon as possible, thus making the associated memory re-allocable.

This step included continually removing obsolete data from all data structures used

for monitoring or data processing. Maintaining a sleek memory footprint was essential

because the app would be expected to run continuously for several hours while pro-

cessing very large amounts of streaming sensor data; otherwise increasing amounts of

memory would never be released and the system runtime would eventually terminate

the app.

5http://www.sqlite.org/ Accessed 19.12.2014
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(a) Main Screen
(b) Interactive Annotation
Screen

Figure 5.7: App Screens

App User Interface

In terms of the user interface design, we opted for an extremely straightforward visual-

tactile interaction pattern. We created an app with two Android activities6 and tap-

only buttons, both illustrated in Figure 5.7.

The main activity pictured in Figure 5.7a allows the user to enable and disable audio

feedback (Bell ON ) and presents simple monitoring notification by displaying the

currently identified activity (Timestamp, Activity, Confidence), current segment size

(Number of accelerometer frames) and number of annotations provided by the user

(Budget Spent). Users can pause and resume acceleration streaming (Resume) or

enable or disable just the notification prompts while the acceleration data is still being

streamed (Make Interactive).

When an annotation is deemed necessary, the Interactive Annotation Screen, shown in

Figure 5.7b, is automatically presented to the user, along with tactile feedback. The

6In Android terminology, an activity is “a single, focused thing that the user can do” [158] and
in the Android library represents a container for a user interface. Not to be confused with physical
activity.
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user can select the label for the newly delineated segment from a predefined menu

of activities with a single tap. The Interactive Annotation Screen is presented for

a maximum of 15 seconds before the annotation request is discarded. The screen

switches back to the main screen and, so, the user is no longer able to provide the

annotation. This maximum delay with which an annotation can be provided ensures

that the user recall is not required to function past a certain duration.

We initially considered a speech-based interface as a means of obtaining annotations

from the user, but we rejected the concept because two problems became apparent.

Firstly, there are audio noise implications. In our proposed office environment, where

there may be multiple occupants within close proximity, providing spoken feedback is

awkward. Secondly, as is shown by Hoque et al. [71], automated speech recognition

introduces errors in the provided labels. This, in turn, would reduce the accuracy of

the bootstrapped classifier.

Online Learning from Annotations

All application feature implementations revolved around making the entire process of

learning from self-reported annotations run in an online fashion, that is in constant

time and space complexity with respect to the size of the movement data stream. Our

data flow design choices support online execution:

Sensor Streaming Data Capture The motes transmit the current accelerometer

values in real time, i.e. as soon as possible, according to the specified BLE

notification rate.

Data Preprocessing The sliding windows capture a accelerometer timeseries fixed

history of five seconds before releasing the data and sliding the window to the

next five seconds interval.

Feature Extraction Our choice of features (means, variances and correlations) are

computationally fast and run in linear time with respect to the number of sensor

readings in the window7.

7It is known that for all these functions, most of the computation can potentially be done in-
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Segmentation The segmentation operation is relatively inexpensive as it requires

only a fixed number of the most recently computed feature vectors, and hence

has constant complexity with respect to the number of generated feature vectors.

While this stage was the most pressing in terms of usability due to the relatively

long delay it introduced between the actual occurrence and subsequent identi-

fication of a change in activity, its computational requirements are nonetheless

constant in time.

Classification When classifying, a Naive Bayes model has a constant computational

cost with respect to the number of training examples and therefore with respect

to the number of computed feature vectors. The Bootstrap Aggregation training

technique generates a panel of classifiers and the final classification result is given

as a majority vote, which has linear complexity in terms of the number of panel

classifiers. The classification step, overall, is constant with respect to the number

of generated feature vectors.

Annotation Request Decider A decision to annotate a segment is the result of

an arithmetic and geometric mean of classification confidence levels over the

set of frames in the current segment. Because of the online classification step,

annotation decisions are taken with linear complexity in terms of segment size,

but because segments are relatively short-lived, this is constant complexity in

terms of the total number of generated feature vectors. The computation effort

does not increase in time as new feature vectors are generated8.

User Notification This step simply augments the decision operation with a single

user input, so it simply adds a constant overhead.

Signal Annotation When an annotation is provided, the label is propagated to all

frames in the segment. Similarly to the annotation decision, the complexity

is linear in terms of segment frames, but constant in terms of the number of

generated feature vectors.

crementally with each newly arrived value. The Apache math3 library, for example, has the option
of online computation for means and variances: http://commons.apache.org/proper/commons-

math/userguide/stat.html#a1.2_Descriptive_statistics Accessed 19.12.2014
8In order to ensure the app does not consume excessive memory to represent the current frame,

we limited the number of frames in any segment to a specified maximum.
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Model Update Due to the nature of the Naive Bayes classifier, this step is relatively

inexpensive computationally because the classifier does not need to be re-trained

from scratch, but rather it can be updated incrementally using only the newly

annotated segment frames. Updating a Naive Bayes classifier is therefore also

linear in the number of segment frames, but constant with respect to the number

of generated feature vectors. Bootstrap Aggregation, as documented in [156]

is not constant, but rather linear in the number of generated feature vectors.

For this reason, we use a modified online version of the Bootstrap Aggregation

which is updated in time which is linear in the number of base classifiers. This

is explained in Section 5.3.2.

Data Persistence Movement data is persisted in constant complexity at the levels

of individual accelerometer readings and feature vectors.

Performance Results

We use the evaluation procedure detailed in Section 4.4.2 for estimating the recogni-

tion accuracy of strictly personalised activity recognisers. Using the annotated data

collected from the field study, we simulate scenarios whereby activities would be per-

formed in different orders. As in Chapter 4, we focus only on purely individually

personalised models. Therefore, we construct training and complementary testing sets

only from the pool of annotated data corresponding to one participant at a time.

We divide the recognition performance results in two parts – one for each version of the

NAD that was used. The first category corresponds to the initial five participants who

provided annotations as directed by the Speculative NAD and by our OAL method. As

we pointed out previously, this version of the NAD was overly sensitive and triggered

numerous annotation requests, many for already known activities that exhibited small

deviations in execution. As a result, the first five per-participant corpora of annotations

were relatively large and allowed us to validate the learning strategy over a wide range

of training set sizes. Because we obtained several segments for each activity class, this

provided us with sufficient testing data for performance evaluation.

The second category of recognition performance results corresponds to the last five
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Figure 5.8: Average Learning Curves

participants who provided annotations as directed by the Restrained NAD and the

OAL method. The second version of the NAD was more lenient in terms of annota-

tion requests because an estimated activity class was considered novel at most once.

No other subsequent annotation request for that activity class would be generated by

the NAD. While this resulted in less disruption to the participants, sometimes too few

annotations were recorded, with some activities being annotated once or even not at

all. This negatively impacted our ability to evaluate the activity models. With so little

data, models cannot be personalised with high fidelity to the user and performance

evaluation was less representative. However, with a longer exposure to the interactive

annotation app, given the general trend of model accuracy improvement, we are confi-

dent we would have obtained more annotations and we would have noticed recognition

performance gains, as for the first five participants.

Fig. 5.8 shows the learning curve of the Bootstrap Aggregator with 30 Naive Bayes base

classifiers (solid red line) averaged across all users, for each NAD variant. The model

was incrementally built using the unaltered annotations provided by the participants.

We compare the performances of this original bootstrapped model with two other

models.

Firstly, we calculate the performance of a strawman – a simplistic model that makes no

informed classification based on the current data instance, but systematically predicts

the most prevalent label in the training set (solid black line). The original model

substantially outperforms the strawman by 38-47%, which implies that performance

- 135 -



Chapter 5: Online Active Learning in the Wild

0
10

20
30

40
50

60
70

walk
ing

sit
tin

g

sta
nd

ing

sit
tin

g 
kn

ee

ra
ise

s

ca
lf r

ais
es

sq
ua

ts

to
rs

o 
sid

e

to
 si

de

to
rs

o 
for

war
d

ba
ck

war
d

to
rs

o 
tw

ist
s

(a) Participants 1-5 (Speculative NAD)

0
5

10
15

20

walk
ing

sit
tin

g

sta
nd

ing

sit
tin

g 
kn

ee

ra
ise

s

ca
lf r

ais
es

sq
ua

ts

to
rs

o 
sid

e

to
 si

de

to
rs

o 
for

war
d

ba
ck

war
d

to
rs

o 
tw

ist
s

(b) Participants 6-10 (Restrained NAD)

Figure 5.9: Distribution of Annotation Requests (Averaged Across Participants)

NAD Speculative Restrained
Participant 1 2 3 4 5 6 7 8 9 10

Annotations
41% 47% 29% 39% 40% 13% 9% 14% 9% 8%

39% 11%

Table 5.1: Volume of annotations as a percentage of total number of detected segments

gains of the original model are not fortuitous, but are the consequence of consolidated

learning.

Secondly, we artificially add annotation noise, by randomly altering 10% of the labels

in the training set (dotted red line). We observe a substantial decrease in performance

when label noise is added. While some label noise may be present in the annotation

corpora, due to imperfect segmentation or simply due to user error when reporting

an activity, the signal to noise ratio is nonetheless low. Since adding noise hurts

performance, we conclude that a significant number of annotations must have been

correct and that our annotation method can yield valuable input to personalise an

activity model.

The average distributions of activities are shown in Fig. 5.9. As can be seen, the

primary activity targeted by annotation requests was sitting regardless of the version

of the NAD. This was also reported by some of our participants because they reported

annoyance as to why the app would insist on this activity. In terms of overall levels

of interruption, the NAD plays an important role, which is discernible from Table 5.1.
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Figure 5.10: Learning Curves Without ‘Sitting’ Activity

Using the Speculative NAD led to almost four times as many annotations than using

the Restrained NAD.

Because a high predominance of a class automatically makes the classification accuracy

high, we also analysed whether, by removing this class, the remaining annotations

would still construct an accurate activity recogniser. Fig. 5.10 show the F-Scores

without the sitting activity. In this case, the strawman is outperformed by 40-60%

in F-Score. The Restrained version of the NAD limited the number of annotation

requests, but was less effective at diversifying the training set because not all activities

were discovered for all participants. Consequently, Online Active Learning did not

generate many meaningful annotation requests, so the sizes of the annotation corpora

were still small by the end of the experiment. While less annotations remain for both

sets of participants, the learning tendency of the model improving as annotations

accumulate is again evident as there is a noticeable improvement over the strawman.

Due to the relative scarcity of labels, adding label noise effects a much smaller change

on performance.

In contrast to Chapter 4, where we simulated annotations on public HAR datasets,

we did not perform Random Selection in our user deployment. The reason was the

very short overall duration of most activities relative to the duration of the sitting

and walking activities as our participants’ daily routine is naturally very sedentary.

Analysis shows that 43% of the non-sitting and non-walking activities annotations

(acquired using the combination of methods described earlier) would have been lost

- 137 -



Chapter 5: Online Active Learning in the Wild

through Random Selection, if it had been enacted.

User Feedback

We collected subjective user feedback in order to assess how our design choices, as-

sumptions and limitations of our framework impacted on perceived usability. Firstly,

in terms of design choices, we focus on the strategies of generating annotation requests

and how these were perceived by the users. Secondly, we implicitly tested how the

participants viewed our assumption that the delay in detecting activity changes is

small enough to allow for reliable label reporting. Finally, the experimental protocol

was limited to a rigid set of activities that could be performed in an office environ-

ment. We asked the participants to express their how they felt about performing these

activities and whether they would prefer other activities and different contexts.

Annotation Requests

We deployed our user-centric annotation method with a panel of office workers who

used the provided smartphone app and also integrated the experimental protocol,

which was detailed in Section 5.2.2 in their regular office routine for a day. The most

unusual aspect for them was probably dealing with a new type of interruptions which

encapsulated annotation requests. Because the replies to interruption were critical to

our user study, we gauged how the participants responded and how they think they

would respond to such disruptions in different settings.

After presenting the field study details to our participants, but before commencing

the physical part of the experiment, we asked them to estimate how they thought

they would cope with the volume of annotation requests. Nine out of 10 users said

that the volume of requests promised to be manageable or that they did not expect

irritability, (i.e. P3: Seems ok, but might be annoying after some time. We will see.;

P4: I think the number and the frequency of input request is fine.; P9: I think it’s ok

for me.). The remaining one out of 10 users said this is acceptable only for a “one-

off” experience, but it would be unmanageable on a regular basis (e.g. P10: Sounds

reasonable for a one off study participation. Might be too invasive and distracting if
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updates occurred continuously throughout a normal working period. If the updates are

quick (sub 5 seconds) then perhaps it would be fine.). The aim of this question was

to contrast it with an upcoming question in a post-experiment questionnaire so as

to gauge the participants’ perception on the effort of annotation given progressively

increasing amounts of information (before and after doing the experiment). At the end

of the physical part of the experiment, this expectation was contrasted with two follow-

up questions on their feelings towards the actual volume and, respectively, frequency

of the input requests experienced. Eight out of 10 participants pointed out there

were some elements of excess in the total number or frequency of requests (e.q. P7:

frequency of requests was managable for the first period but annoying and to many for

the second. Oddly the second period would have a high frequency for 10 minutes then

nothing for ˜30 then a high frequency again.). Out of these, five of the them initially

said they wouldn’t mind the level of participation. By contrasting these results, we

conclude that the level of interactivity would be too disruptive for long-term use. Some

justified their opinion by invoking excessive asking in the second period when there

were 20% additional requests or by the requests excessively targeting only a small

subset of activities (P5: During the afternoon it was a bit too frequent ; P7: Total

number of requests felt like a lot but mainly after the second period, they were more

often.). One notable example of the latter is the sitting activity which, when using

the Speculative NAD, was deemed as novel on an excessive number of occasions (P1:

It was a little annoying as it would often make many requests while I was sitting and

not doing anything., P2: At times it was a bit much, particularly if continuing the

same activity (i.e. standing or sitting, but I didn’t mind the total # too much. As

mentioned in the pre-study questionnaire, if required all day, everyday, it would be too

much., P4: Too many request in the sitting or standing position).

Immediately after the physical part of the experiment, the participants were asked

whether they thought the app learned to improve the HAR model. They answered

based on information given to them when initially describing the user study (namely

that the app would parsimoniously collect annotations in order to learn an activity

model and that requests would be more likely when the model is confused between

different activities, apart from the element of randomness in the second period) and
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on their personal perception of how the system behaved. However, they were shown

no objective HAR model performance data, so their response was to a large extent

guesswork. This was to test whether the users perceived model improvement as a result

of changing patterns in asking for annotations. Seven out of 10 participants said they

thought the system learned (i.e. P2: Yes, overall. However, it didn’t seem like the

torso exercises were picked up as easily by the app.; P8: I provided the most accurate

feedback that I can. I believe that this helped the app to learn.; P5: Yes because it was

“requesting” while I was doing the “specifics”9 exercises. So it knew exactly what I was

doing) while the rest remained neutral or did not assume this happened (e.g. P7: I

think for the first period yes, second no.; P9: I don’t know).

We underline that the answers relating to learning may be biased because of three

reasons: First of all, the participants were PhD students and researchers in our school

and, even though they were not affiliated with our work, it is expected they have a

better understanding than laypeople10 of what ”learning” (as in ”machine learning”)

means. Second of all, although the information in the consent form did not reveal our

expectation that learning took place (a hypothesis we were able to test only after the

user study was over), the technical background of the participants could have allowed

them to intuit that the system learned (even though, at that point, they were not

presented with any quantitative evidence). Finally, I (the author of this thesis) was in

charge of running the user study the participants were acquaintances of mine. Even

though care was taken not to communicate bias (i.e. opinions, guesses as to what the

results will be and what they will be indicative of, etc.), the participants may have

made statements which they thought could be favourable for our research.

Afterwards, we downloaded the participant’s data from the phone and synthesised

graphs essentially similar to those in Fig. 5.8 and 5.10 (without adding noise or

showing the strawman) which portrayed the personalised recognition performance of

each participant. We explained that the graph represented the evolution of accuracy as

annotations were provided, but we did not influence the participant with our opinion of

whether the app managed to learn or not. Rather, given this new piece of information,

9sic
10Non-professional within a field.
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participants were asked again if they thought the system managed to learn. Seven out

of 10 believed that the graphs portrayed improvement(i.e. P1: Yes, according to the

plots I saw, the app was able to predict my activity better.; P3: Definitely yes.; P8:

I think my feedback helped the app learn, since most of my activities were recorded

and adequately analysed and represented in the results produced.), with all five initial

participants who gave the most annotations being in this category. Three out of 10

participants, all of whom used the second version of the NDA and provided a much

smaller number of annotations, were either negative (P10: Not particularly - there

does not appear to be a significant upward trend in the accuracy of the model over

time, which indicates that the app is not learning well from my feedback. ) or neutral

(P9: I am not sure).

Annotation Delay

The app performs stream-based segmentation through the use of the online segmenta-

tion method explained in Section 3.4.1. If L is the width of the segmentation window,

then a change in activity is detected with a delay of L/2 + 1 frames. Given our

parametrisation of L = 6, in theory, the delay is four frames, with the fifth frame

being the last of the finished segment.

If the activity for which an annotation is requested last took place five frames in the

past, then, in the preprocessing stage which operates a sliding window of length 5s

with 2.5s overlap, this results in a delay of 15 seconds between the instant in time

a participant switched activities and the instant in time the change in activity is

detected by the app. This figure is still subject to uncertainty, according to Section

5.3.3, so, prior to starting the physical monitoring, we informed our participants that

they should consider a delay of 10-20s when responding to annotation requests.

After running the experiment we asked each participant two questions relating to the

delay.

Firstly, when asked if they thought they were able to reliably factor in the delay, the

majority pointed out that, even though they claimed it didn’t create confusion, the

pressure on their memory was uncomfortable (e.g. P1: In general, they were timely.
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I think I would have preferred to arrive the moment I changed activities.; P3: Maybe

5-10 sec instead of 10-20. Especially after the special activities (squats, etc.); P5:

Slightly sooner, after the device realised a “change” in the type of activity ; P7: Sooner

within 1-2 seconds maximum (although I may just be impatient), however it is hard to

judge 10-20 seconds).

Finally, when asked whether they would have coped with longer delays, the majority

expressed their disapproval of the prospect (i.e. P1: No, I think that would have made

the study a lot more difficult.; P2: No! I have poor memory.; P8: No, it would be

quite difficult remembering the activities.).

In terms of usability, we conclude that a shorter segmentation delay may lead to

more productive user involvement. In objective terms, the accuracy of the system

improves substantially from user provided annotations, as shown in Section 5.5. This

means that the annotations are of high quality and this necessarily shows that the

users themselves can provide annotation labels for their own activities using nothing

but their short-term memory as a source of ground truth. Together with an altered

design that would encourage user involvement, we argue that our proposed method

of collecting annotations could enable bootstrapping personalised HAR models on a

longer term than the duration of our experiment.

Activities

We gauged the emotional response of participants relating to the activities they per-

formed and relating to the feasibility of performing them in an office environment.

After their experience with an interactive activity monitor in a context defined by our

experimental protocol, we asked the participants to extrapolate and suggest potential

changes to the app and to the context in general.

In terms of activities, we draw four conclusions from the questionnaires:

• In terms of the fixed set of activities specified in the experiment protocol, the

participants had mixed feelings of incorporating these into their daily routine.

Four of the 10 thought the activities were useful (i.e. P9: Yes, I am very

interesting how many activities I did a day ; P10: Yes - as previously mentioned
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- I have noticed feeling more energic and therefore productive, lpus the impact on

my day would be minimal as I already take several short breaks at regular intervals

throughout the day (Pomodoro).), but five of the 10 found some context elements

inappropriate (i.e. P6: I might include this type of learning in the mobile from

my activities as a privacy issue so I might be a bit cautious where and how much

I let it learn.). For example, certain activities were deemed as not suitable to

offices or the duration of exercise was longer than they would normally perform

(e.g. P1: No, not really. The activities are kind of out of place in my work

environment.; P6: Yes, although some activities might look not appropriate in

the office while others are working around especially squats.). Out of the first

five participants, those who used the Speculative version of the NAD, which,

as explained in Section 5.3.1, was unintentionally prone to generating numerous

annotation requests, four gave negative feedback, possibly owing to irritation

accumulated from dealing with the high volume of requests throughout the day.

• Five of the 10 respondents said they would prefer the system to learn more about

the same activities (i.e. P5: Yes it should focus on the same activities in order to

predict and learn better), while the others were opposed to the idea of reinforcing

the same activities (e.g. P8: No, I will prefer that it captures other activities

in addition to the current activities. P10: Not necessarily. I think users should

be able to pick activities from a larger set.). Seemingly paradoxically, these were

the first five participants, who were more negative towards the activities in the

protocol and who previously declared themselves against performing these activ-

ities. While our intention was to gauge whether they would provide more input,

it may be that the users would expect gains in recognition performance with

less input from them. Also, because of the relatively large quantity of annotated

data, they were able to notice the greatest improvement, so this may have biased

their potential interest for the system to learn more about the same activities.

The other five users, who used the Restrained NAD, witnessed a smaller improve-

ment in recognition accuracy. They reported that they would not be interested

to invest further in the same activities. Probably, the small improvement was

not enough to gratify them, so these participants were not made aware of the
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full potential their annotations can have on model performance.

• Participants pointed to a wide range of physical activities (lunges, press-ups,

running, jumping, using the stairs, sit-ups, etc.) in terms of what activities they

would like to see in the app. Additionally most users preferred the flexibility

of specifying what activities they would like monitored. Given the very little

consensus on the activities, such an interactive activity monitor would benefit

from being able to incrementally discover new activity classes, instead of relying

on the users to specify what activities they prefer. However, the ability to reliably

discover new activities can be at odds with an acceptably low involvement on

behalf of the user. This can be seen in the behaviour of the Speculative NAD,

which, in our experiments, carried a high true positive rate, but also a high false

positive rate, as can be deduced from Table 5.1. In order to bypass the problem

of discovering novel activities, one may rely on the user to pro-actively provide

initial annotations for novel activities, as discussed in Section 2.2.2. In this case,

it is possible to use just Eq. 4.1 to improve upon known activities. This is

relevant from a user’s tolerance point of view, because, as we show in Chapter

6, it is possible to fine-tune the behaviour of Eq. 4.1 so that it meets a user’s

propensity towards annotation involvement.

• All participants pointed out that such an application could be used in other

contexts. While diverse, almost all of their suggestions can be grouped under

the fitness (P2: Yes. I think other exercises like lunges (with sensors on two

legs) or pushups (they are called something else here) would be great additions.),

sports (P1: I would also like it to learn about running, cycling, and perhaps

some other types of stretches.; P5: As in answer b) it would be interesting in

sport/gyms activities.) and medical rehabilitation (P10: The flexibility to learn

series of activities constituting either a fitness routine or a physio therapy session

would be a very good addition.) categories suggested in our question, as possible

examples. Three categories were mentioned in the question text (”specific fitness

routines, sports, medical rehabilitation”), so this might be a source of bias in the

users’ answers. However, the majority users did not dismiss these categories, so

these proposed may be targeted by such a monitoring system. While we aimed
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our activity monitor at an office-centred context, the participants considered the

activity monitor to be applicable to other contexts as well (e.g P6: I might

include this type of learning in the mobile from my activities as a privacy issue

so I might be a bit cautious where and how much I let it learn.).

Because the app automated a part of the annotation process by detecting segment

boundaries and identifying the most useful segments to be annotated, we were able to

use a mechanism to collect annotations involving a single tap and, if needed, a screen

scroll. While we did not explicitly ask the participants to express their views towards

this method, Participant 2 pointed out that scrolling was a source of some errors

and that the participant would have preferred a smaller list of “educated guesses”

for activities (P2: I think the scrolling to select the activity could lead to mistakes.

Perhaps a pop-up educated guess list of activities instead? Oh, and better sensors (in

terms of comfort while wearing them).).

Conclusions

In this chapter we discussed the design, implementation and evaluation of a user

study aimed at online bootstrapping of personalised activity models from user-provided

annotations collected using Online Active Learning.

We decided upon a realistic experimental protocol and a deployment in a naturalistic

environment. We primarily aimed to replicate an “in the wild” scenario where par-

ticipants were not supervised during the experiment, but rather they were left to act

naturally. We settled for a set of activities that seemed appropriate for exertion in the

environment of the deployment – at the office. In retrospect, the choice of activities

was fit for the purpose. Despite the wide range of participants’ opinions on what would

constitute an ideal set of light activities for an office environment, there were very few

instances where participants singled out activities which were out of place. Moreover,

some participants found adhering to the experimental protocol physically beneficial

for them.

This chapter builds upon the techniques in Chapter 4 by employing applicable analysis

methods to the type of activities under scrutiny. We moved from the offline simulations
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of online methods in Chapter 4 to an actual deployment using an Android app and

worn wireless accelerometers that provisions the collection and annotation of movement

data from parsimoniously solicited user-provided input. Given the short timescale of

the experiment, we accelerated the Online Active Learning method from Chapter 4

by using it in parallel with a Novel Activity Detection (NAD) method for discovering

novel activities. While we had some success with the NAD, it was mixed and we

argue next why relying solely on the NAD (instead of using it in conjunction with

the OAL) would be detrimental. On the one hand, the Speculative NAD discovered

all activity classes, but it was also too sensitive and generated excessive annotation

requests (as reported by the participants) for known activities as well. The participants

who used this NAD version expressed frustration at the amounts of input solicited.

The Speculative NAD could be turned off during the times when a large number of

user interruptions would become disruptive. During these times, if a small number of

interruptions are permitted, one could rely on OAL to derive only a small number of

critical annotations.

On the other hand, the Restrained NAD, by design, limits the number of annotation

requests, but it proved to be too insensitive to collect initial annotations for all activity

classes. Consequently, the Online Active Learning method had a poor base of anno-

tations from which to improve. Most personalised activity models which benefited

from the Restrained NAD registered smaller gains in performance than when using

the Speculative NAD.

Contrasting the objective performance results with the feedback provided from the

participants, we observe there is a problematic trade-off between activity model per-

formance and user involvement. This conflict has been made even more apparent by

the limited duration of our user study because we tried to concentrate a meaningful

number of annotations within a single day at the office.

The quantitative results in Section 5.5 show that self-provided annotations are a valid

solution to the problem of bootstrapping personalised activity models. The results in

Chapters 3 and 4 obtained from very similar online techniques point in this direction,

but the results were obtained from simulations operating with offline and carefully

curated annotations. In this chapter we applied a very similar data processing pipeline
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on user provided annotations without any external curation or intervention. Our

results show that bootstrapping from scratch is possible under naturalistic conditions

and, if a sufficient number of annotations are provided, clear performance gains of

personal models can be observed. However, as opposed to Chapter 4, we do not have

a large enough set of annotations that would allow us to replicate the same Active-

versus-Random analysis. In fact, as we have shown, performing Random Selection

would have been a mis-allocation of research effort as most activity classes would have

suffered from under-annotation. Moreover, based strictly on the contributions in this

chapter, due to the mechanisms used to trigger annotation requests which were only

partially adaptive (20% random annotation requests in the second half of each physical

experiment; unexpectedly high sensitivity of the first version of the Novel Activity

Detector) we cannot merit solely Online Active Learning for the gains in recognition

performance. Our results show that model personalisation from user annotations is

achievable regardless of the mechanism that led to the acquisition of each annotation.

Nonetheless, the learning curves in this chapter and the previous exhibit clear positive

learning profiles, so we are confident that, given a longer term exposure to annotation

requests, accurate models can be obtained even from pure Online Active Learning.

The qualitative results in Section 5.6 reveal how participants perceived the design of

the experiment (Section 5.6.3) and the implementation details that had a noticeable

impact on usability (Sections 5.6.1 and 5.6.2). Subjective feedback can be used not

only to understand how the design of the system is affecting usability, but also to

highlight existing issues and to act to correct them. We have done just that mid-

way in our experiment by changing the Novel Activity Detection component as was

explained in Section 5.3.1.

Overall, valuable insight can be drawn from our user study. Firstly, we have shown

that it is indeed feasible to deploy a fully online interactive annotation pipeline for

bootstrapping personalised activity models. Secondly, noticeable improvements of

the bootstrapped model can become apparent in several hours – the duration of our

deployment. Thirdly, we have gauged our participants’ subjective perceptions and

we have shown how the interactive activity monitor can be altered to meet these

expectations. These insights can inform future designs such that users themselves can
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tune the behaviour of the app.
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Introduction

In Chapter 3 we compiled a fixed schedule of times when to ask for segment anno-

tations according to a budget specification. In Chapter 4, annotation decisions were

deferred until runtime so that an Online Active Learning heuristic function could in-

spect individual segments and inform the decisions to annotate the segments. Budget-

based annotation is useful for meeting varying user willingness to provide annotations,

whereas OAL-based annotation optimises the performance gains from individual anno-

tations. The methods exhibit complementary advantages, but, without modification,

they cannot be used in tandem.

In this chapter we propose an overarching method that unifies the previous two anno-

tation methods. We modify the Online Active Learning method used previously and

incorporate budget-based restrictions into the annotation decisions. In doing so we

maintain, on the one hand, a budget based method’s flexibility in coping with user

preferences towards the provision of annotation, and, on the other hand, a performance

boost due to Online Active Learning (relative to Random Selection). Effectively, a bud-

get spending strategy is adhered to, but some deviations from the budget are allowed.

With this degree of limited freedom, we can prioritise certain annotations, according

to Online Active Learning, which improve model performance over the annotations

that would be chosen if the budget specifications were adhered to more strictly. We

therefore still perform informed annotation through Online Active Learning, but we

also allow the user to specify a budget configuration to which OAL should adhere to.

We describe and evaluate a budget-oriented annotation method which defers all an-

notation decisions until runtime. The decisions to annotate are made by a modified

Online Active Learning heuristic function, which is similar to the one described in Sec-

tion 4.2.1. The main distinction is that the method now aims to balance performance

gains, like the ones registered in Chapter 4, with close adherence to a user-specified

annotation budget configuration, as in Chapter 3. The balance is achieved by con-

tinually fine-tuning the OAL heuristic function parameters so as to encourage (make

more probable) or dissuade (make less probable) annotation requests based not only

on the importance of individual annotations, but also according to the probability that
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budget spending is going to be on target, according to a previously established budget

specification.

Contributions

The contributions of this chapter are four-fold. Firstly, we improve upon the work from

Chapter 3 by formalising the budget and by no longer making annotation decisions

according to a fixed and pre-defined schedule. Instead, all annotation decisions, which

aim to meet a budget spending specification, are made online, i.e. while the system

is running. To this end, we introduce the notion of a target budget, which informs

the annotation heuristic by altering the degree to which annotations are encouraged

or discouraged. The target budget is used as a “moving target” which is judiciously

varied so that budget spending is effected according to the specified budget size and

strategy. We provide a general closed-form theoretical expression for setting the target

budget which can be used to match any arbitrary distribution of annotation requests.

The mechanism of setting the target budget is generic enough to work with a wide

range of heuristic functions that are flexible enough to be able to attain any such

budgets.

Secondly, we devise a heuristic annotation function that can attain a target budget,

using piece-wise linear approximations, and we couple it with the previous target bud-

get setting procedure. Specifically, we adapt our Online Active Learning method to

work within the constraints of a set target budget while still securing performance

gains over Random Selection. To achieve this, starting from a set target budget (de-

scribed earlier), the parameters of the annotation heuristic are optimised so that the

target budget can be attained. The heuristic’s operating parameters are modified

so that ideal budget spending is the most probable, but if there are deviations from

ideal spending, then the heuristic’s parameters are tuned to compensate. Temporary

under-spending is met with increasing the probability of annotating segments, while

temporary over-spending is addressed by decreasing the probability of annotating. The

general behaviour of the heuristic is that the criticality threshold with which segments

are deemed worthy of annotation is varied in order to attain the set budget. Under

this “set-attain” budget spending control mechanism, the result is an accumulation
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of annotations whose distribution in time approximately matches the desired budget

configuration. In addition, because annotation decisions are informed by an Online

Active Learning heuristic, we still expect performance gains greater than those that

would be obtained with Random Selection.

Thirdly, we apply the budget-constrained OAL method to the two probabilistic bud-

get strategies discussed in Chapter 3 (Uniform Random and Exponential). This serves

not only as a means of evaluating our budget-constrained OAL method, but also as a

demonstration of how it could be applied to any budget strategy. We evaluate Online

Active Learning with budget constraints on the HAR datasets we used in Chapter 4:

Opportunity for non-periodic activities and PAMAP and USC-HAD datasets for peri-

odic activities. Despite the budget constraints, our results still show performance im-

provements of Online Active Learning over Random Selection. In addition, our results

also show that the distribution in time of actual annotation requests closely matches

the ideal distribution corresponding to the budget specification. Consequently, we

conclude that Online Active Learning can be constrained with the user’s inclination

towards annotation provision and that specific performance gains are still possible.

Finally, we experimented with an additional step which introduces control over how

tightly Online Active Learning can be further constrained to match the expected bud-

get spending strategy. Our results show that a wide range of possibilities of constraint

are possible: from near zero additional coercion over the set-attain procedure men-

tioned earlier to gradually increasing coercion up to a virtually deterministic budget

spending strategy that adheres almost exactly to the ideal budget distribution.

Method

As in previous chapters on Online Active Learning, the annotation method in this

chapter also operates on a stream of activity data and yields annotation decisions in

accordance to the data being examined. Unlike Chapter 3, no annotation decisions

are pre-computed before the monitoring starts. It is necessary to defer annotation

decisions until runtime for the following reasons:

• At its core, the method operates a pure Online Active Learning annotation
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heuristic (Eq. 4.1) and, so, all decisions must be made online.

• The method corrects the deviations in spending made by Online Active Learning

(which is budget-agnostic) so that the specified budget is best approximated.

We do not schedule annotation requests with the intent of correcting the budget

spending without observing the stream of data because doing so would deny

Online Active Learning the possibility of improving model performance.

• A part of the mechanics of the system is monitoring the classifier prediction

confidence over a recent horizon of predictions. As explained later, these historic

confidence values are used to make assumptions about the future of the stream

and, consequently, are used to inform the asking probabilities output by the OAL

heuristic. These confidence levels, which depend (1) on the data seen and (2) on

the annotations made by the current point in time, cannot be predicted without

observing the activity data first.

Mathematical Considerations

As in Chapter 3, we consider a budget specification as a triplet (Horizon, BudgetSize,

BudgetStrategy) where, intuitively:

Horizon is the interval of time the user is willing to reply to occasional annotation

requests.

Budget Size is the total number of annotations the system is going to ask the user

until the Horizon expires.

Budget Strategy is a theoretical distribution of annotations over time which models

how the total number of annotations (Budget Size) is distributed in time until

Horizon expires.

More formally, we consider a budget specification as a triplet (thorizon , Btotal , f(t)) where

the budget size is Btotal and the budget spending strategy f is a probability density

function (PDF) of one annotation being asked over the interval of time [0, thorizon ]. f
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is defined as follows:

f : [0, thorizon ]→ [0, 1]

Since f(t) accounts for only one annotation being requested at time t, Btotal · f(t)

accounts for all annotation requests being made at time t (this is done simply by

multiplication because the annotation requests are i.i.d.).

Let F (t) =
∫ t
0
f(x)dx be the cumulative distribution function corresponding to f [159].

Here F (t) is the probability that one particular annotation requests has been made up

to and including time t. Again, given that all Btotal annotation requests are i.i.d., the

following formula

Btotal · F (t) = Btotal ·
∫ t

0

f(x)dx

models the ideal cumulative distribution in time of all annotation requests correspond-

ing to the budget specification (thorizon , Btotal , f(t)). Intuitively, because the co-domain

of f and F is [0, 1], the co-domain of Btotal · f and Btotal · F is [0, Btotal ]. This means

that the budget specifies how all Btotal annotation requests are distributed by either f

(or F , by direct implication) until the time horizon.

Step 1: Setting a Target Budget

We also have the reverse relationship [159]:

f(t) =
dF

dt
(t) (6.1)

If F is infinitely differentiable, then it can be expressed using a Taylor series [160]

expansion around a point in time τ :

F (t) =
∞∑
n=0

1

n!
· d

nF

dtn
(τ) · (t− τ)n

We use the first degree1 (n ≤ 1) approximation of F :

F (t) = F (τ) +
dF

dt
(τ) · (t− τ)

1Even if F is not infinitely differentiable, its first order derivative is always well defined by con-
struction, according to Eq. 6.1.
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which, according to Eq. 6.1, becomes a piece-wise linear approximation:

F (t) = F (τ) + f(τ) · (t− τ)

Suppose that t is the current timestamp and τ is the last timestamp when an annota-

tion has been made with the budget spent so far being Bspent . If the budget strategy

curve had been followed exactly, the budget should have been Btheoretical = F (τ) ·Btotal .

However, if the current budget expenditure does not meet the theoretical expectations

(Bspent 6= Btotal ·F (τ)), we estimate the target budget Btarget at thorizon . In general, we

have the following approximation:

Btarget = Bspent + f(τ) · (thorizon − τ) · (Btotal −Bspent) (6.2)

The right-hand side of Eq. 6.2 can be renamed as follows:

Btarget = Bspent +Bremaining

This means that, in the remaining time, we should aim to spend

Bremaining = f(τ) · (thorizon − τ) · (Btotal −Bspent)

budget units. Btarget is therefore a “moving target” whose value is updated after every

annotation request according to Eq. 6.2.

The target budget Btarget does not have to be the same as the budget size Btotal , the

latter being part of the budget specification. In fact, as shown in Eq. 6.2, in order to

obtain arbitrary distributions of annotation requests, the target budget can generally

be equal to or greater than the total budget.

Step 2: Attaining a Target Budget

Having set a target budget, one must now attain the target budget. We now show

how to fine-tune the parameters of the annotation heuristic so that the remaining

Btarget − Bspent budget units would be spent within the remaining time horizon. The

mechanism for attaining the set target budget generally assumes that the remaining

annotations are going to be distributed uniformly in time, in accordance with our
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previous piece-wise linear approximation. This, however, does not result in loss of

generality – we argue next (and demonstrate with simulations) that this mechanism

can be used to approximate arbitrary distributions, not just linear ones. Because the

target budget is not fixed, but instead refined at every timestamp and with each newly

made annotation, as explained previously, the timing of the annotations results in a

piece-wise linear approximation of the ideal budget distribution.

Random Selection

For Random Selection, we use a simple heuristic that simply yields a positive annota-

tion decision with probability fRS(τ), which depends on when the annotation decision

must be made so that the budget specification is met, but which is independent of the

current segment for which an annotation is requested:

pask = fRS(τ) (6.3)

For Random Selection, in order to make uniform spending the most probable outcome,

then the asking frequency is set to

fRS(τ) =
thorizon − τ

Btarget −Bspent

so that the outstanding number of annotations is distributed approximately uniformly

in the remaining interval of time.

Online Active Learning

For Online Active Learning we use Eq. 4.1 as in Chapters 4 and 5. We take advantage

of the known monotonicity of the heuristic function with respect to the γ parameter

as follows: As shown in Section 4.2.1, for a fixed level of classification confidence,

the heuristic pask = exp(−γppred) is strictly decreasing with γ. Meeting the budget

constraint therefore entails fine-tuning the γ parameter so that Btarget − Bspent would

be ultimately spent from the current time onward. To do this, we maintain a short

history of the most recent classification confidence levels. We set γ so that, under

the assumption that the same average confidence will reappear in the future, the
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most probable number of annotations will be Btarget − Bspent . This is a best-effort

approximation which relies on the most recent confidence levels as good estimates.

Even if the levels of classification confidence vary substantially and the actual budget

spending begins to deviate from the ideal one, the incentive to make or abstain from

annotations will rapidly become increasingly pronounced (as a result of under- or

over-spending). This would lead to a re-alignment of the actual spending toward the

ideal. Another cause of corrective action is the number of segments remaining to

be monitored: after every seen segment (not necessarily annotated), there are fewer

segments from which to annotate (the difference thorizon − t becomes smaller), so γ

will be re-evaluated to account for the reduced number of segments from which to

annotate.

The most likely number of annotation requests is strictly monotonic with the γ pa-

rameter, so we use a binary search method, illustrated in Algorithm 2, to calculate γ

in order to meet the target budget.
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input :

targetBudget /* the target budget as calculated in Section 6.2.2 */

pConfHistory /* history of classifier’s recent confidence levels */

output:

γBest /* γ which closely attains targetBudget */

initialization:

γ = 0.5

γmin = 0

γmax = +∞

diffBest = +∞

for fixed number of iterations do

pAsk ← mean{askHeuristic(pConf , γ) for pConf ∈ pConfHistory}

numAnnotExpected ← pAsk · numSegmentsLeft

diffExpected ← |numAnnotExpected − targetBudget |

if diffExpected < diffBest then
diffBest ← diffExpected

γBest ← γ

end

if numAnnotExpected < targetBudget then
γmax ← γ

γ ← (γ + γmin)/2

end

if numAnnotExpected > targetBudget then
γmin ← γ

if γmax = +∞ then
γ ← γ · 2

else

γ ← (γ + γmax )/2

end

end

end

Algorithm 2: Searching for the optimal value for γ which attains the target budget.
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Preliminary Conclusions

So far, we have proposed a budget-based annotation method which can closely mimic

any cumulative distribution function by (1) setting a convenient target budget and (2)

attaining the target budget by continuously tuning the parameters of the annotation

heuristic. In what follows, we look at two particular distribution functions: the Uni-

form Random and, respectively, Exponential strategies presented in Chapter 3. These

distributions have specific expressions for F and f which we use in Eq. 6.2. These

are the only stochastic budget spending strategies we explored in Chapter 3; therefore

that they are the only ones that could potentially be improved upon by using Online

Active Learning. The other strategies are deterministic and they are not amendable

to Online Active Learning because the annotation decisions cannot be influenced at

run-time.

We incorporate our budget-driven annotation method into a similar pipeline to the one

in Fig. 4.3 from Chapter 4, but this time with an additional mechanism for meeting

budget constraints. The result, as shown in Fig. 6.1, illustrates how the overall frame-

work remains largely unchanged (the novelty – the effect of the budget specification

– is delineated by the dashed rectangle), except for how annotation requests are now

affected by the budget specification.

Uniform Random Budget Spending Strategy

For the Uniform Random strategy, given that, overall, there should be Btotal annota-

tions to be made when thorizon segments are going to be seen, then the frequency of

asking for annotations is

funif (t) =
Btotal

thorizon

In this case, the distribution of annotation requests becomes

Funif (t) =
t

thorizon

By applying Eq. 6.2, we obtain Btarget = Btotal . Fig. 6.2 exemplifies the spending of

budget units according to a uniform distribution. The blue line is the ideal spending

strategy, while the black continuous line represents a hypothetical example of an actual
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Figure 6.2: Online Learning under Budget Constraints - Uniform Distribution

spending of budget units. The red dotted line illustrates how the remaining budget

units should be spent from the current timestamp τ onwards until the time to spend

the budget runs out at thorizon. In the case of a uniform distribution of annotations,

because the target budget is fixed, one should always aim to request Btotal annotations

in the time remaining.

Exponential Budget Spending Strategy

For the Exponential strategy, the PDF of asking for each annotation is

fexp(t) = λ · e−λ·t

and the distribution of annotation requests is

Fexp(t) = (1− e−λ·t)

and is illustrated in Fig. 6.3 with the blue line. As before, the actual distribution of

annotations in this example is represented by the continuous black line. The dotted

red line illustrates the expectation at timestamp τ of how to spend the budget until

the end. Regardless of the budget spending strategy, the mechanism to approximate

the ideal spending is constant: at every timestamp the heuristic function is tuned so

that the target budget is attained. In this case, Btarget ≥ Btotal which means that in
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order to increase the density of annotations at the beginning, one needs to attempt to

constantly overshoot the total budget. However, as more annotations are requested,

the slope of the tangent (given by fexp) decreases as well and the target budget Btarget

will progressively drop towards Btotal .

Simulations

We now explain how we apply the budget restrictions from Section 6.2 to our proposed

interactive annotation framework described in Section 4.2. As in Chapter 4, we use the

Opportunity dataset to show that the method benefits the recognition performance of

non-periodic activities. We also show how performance can be improved for periodic

activities as well, by using the PAMAP dataset. In order to save space, we do not

include the results for the USC-HAD dataset of periodic activities, as we did in Chapter

4. As we discuss later, the results from the simulations for the USC-HAD dataset are

qualitatively identical to those for the PAMAP dataset.

In order to make the history of confidence levels representative, we start with a train-

ing set with one example for every activity class. This ensures that we avoid the

work-arounds from Section 5.3.1 to the Ignorant Classifier problem. These would

complicate estimating the annotation heuristic function parameter and can skew the

desired distribution of annotation requests.
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The machine learning pipelines remain largely unchanged and we still use Eq. 4.1 to

solicit informed annotations or, alternatively, Eq. 6.3 to request annotations at random,

but now according to budget spending constraints. In order to follow a given budget

strategy, a size of a target budget is computed and continually refined, as shown in

Section 6.2.2. These budget targets are approximately met via annotation heuristic

parameter regulation, as explained in Section 6.2.3.

We simulate a stream of activities by replaying a fixed number of segments (2000). We

maintain a recent history of classification confidence levels, we establish target bud-

gets according to Eq. 6.2 and, using the confidence history, we fine-tune the heuristic

function so that the target budget is met. We consider the following simulation cases:

• For the Uniform strategy, we use a budget size of B = 200.

• For the Exponential strategy, we use a budget size of B = 200 and vary the λ

parameter, which intuitively controls the steepness of the decay, to λ ∈ {2, 3}.

Results for Non-periodic Activities

Fig. 6.4a illustrates the learning curves for all participants in the Opportunity dataset

for the Uniform strategy with a budget size of B = 200 annotations. As in Chapter 5,

for the majority of points on the learning curve, the model bootstrapped from informed

annotation requests outperforms the model bootstrapped from random annotation

requests. As in all previous scenarios, we constructed fully personalised models. For

the purposes of model building and model evaluation, we considered every participant’s

data in isolation. We enacted 10 repetitions of the simulation procedure and, for each

participant in turn, we averaged the results from her repetitions.

Figs. 6.4c and 6.4b are illustrative of the user’s disruption and show the degree of

compliance to the budget strategy. In Fig. 6.4c the light grey curve illustrates the

timeseries of frequency of annotations (TFA) – the frequency of asking for an an-

notation at a point in time during the annotation process. For all participants, we

counted all annotation requests that happened at every point in time and then, for

every timestamp, we averaged the result across all participants.
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The TFA curve is very jagged, so we fitted a timeseries approximation model in order

to identify the general trend of the timeseries. For this, we constructed an ARMA

(Auto-Regressive Moving Average) model [161], which is an approximation of the

original timeseries, but with emphasis on the general trend, rather than spontaneous

deviations from the trend. The Auto-Regresive (AR) component seeks to fit a poly-

nomial regression on any p consecutive timeseries values so that the prediction error

on the next value is minimised. The Moving-Average (MA) component, on the other

hand, simply computes the average of every consecutive q values. We used p = 5

and q = 5 because these values were the lowest which offered a clear trend, from an

optical perspective2. Together, the AR and MA components outline the general trend

(illustrated by the red line) of the TFA. The trend line (red) is contrasted to the ideal

asking behaviour that matches the initial budget specification exactly (blue). It tran-

spires that, while the TFA varies substantially, the general trend (red) follows the ideal

distribution (blue) very closely. Therefore, the budget-constrained OAL improves the

model accuracy over the random baseline and also closely matches the user’s model of

tolerance to disruption.

While the frequency of annotation varies considerably around the ideal value (which, in

this scenario is ν = (200 annotations)/(2000 segments) = 0.1), the cumulative distri-

bution of annotations, illustrated in Fig. 6.4b, is, in fact, much more well behaved. The

actual distribution of annotations (black continuous line) matches the ideal/theoretical

distribution of annotations (blue dashed line) extremely closely. This means that the

method responds very well to budget restrictions in terms of cumulated annotations.

The apparent contrast between Figs. 6.4c and 6.4b is explained as follows: If there

is a deviation in spending from the ideal budget configuration, the method does not

respond instantaneously and this is seen Fig. 6.4c where no individual timestamp is

more likely to ask for an annotation than neighbouring ones. The relatively flat trend

of the annotation frequency supports this view. This does not mean that the actual

spending of the budget is erratic and does not conform to the ideal specification. In

fact, Fig. 6.4b shows that when switching the perspective from the frequency of anno-

tations to the cumulation of annotations in time, the actual spending comes very close

2Some of the models suffer from singularity issues, in which case we use p = 5 and q = 6, with
very similar optical properties.
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Figure 6.4: Budget-Based OAL; Opportunity Dataset; Uniform Strategy; 200 Budget
Units; (S1 – Subject 1; AL – Online Active Learning; RS – Random Selection); Fre-
quency: Theoretical (blue), Actual (grey) and ARMA (red); Cumulative Distribution:
Theoretical (blue dotted) and Actual (black solid).

to the ideal cumulative distribution.

The results for the evaluation of the Exponential strategy are illustrated as follows:

for λ = 2 in Fig. 6.5 and for λ = 3 in Fig. 6.6. As the Uniform strategy illustrated

previously, the figures show not only a close approximation of the trend of the actual

asking frequencies to the ideal asking probabilities, but also learning improvement

over Random Selection, despite the budget-based constraints that are enforced by

an Exponential strategy. The actual TFA (grey) in Figs 6.5c and 6.6c is still very

jagged and varies substantially around its general trend, but the general trend (red)

closely matches the ideal behaviour (blue), when averaged across all participants and

repetitions. The high degree to which the ideal budget is approximated also transpires

from Figs. 6.5b and 6.6b which illustrate how well the actual distribution of annotation

matches the ideal.
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Figure 6.5: Budget-Based OAL; Opportunity Dataset; Exponential Strategy (λ = 2);
200 Budget Units; (S1 – Subject 1; AL – Online Active Learning; RS – Random
Selection); Frequency: Theoretical (blue), Actual (grey) and ARMA (red); Cumulative
Distribution: Theoretical (blue dotted) and Actual (black solid).
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Figure 6.6: Budget-Based OAL; Opportunity Dataset; Exponential Strategy (λ = 3);
200 Budget Units; (S1 – Subject 1; AL – Online Active Learning; RS – Random
Selection); Frequency: Theoretical (blue), Actual (grey) and ARMA (red); Cumulative
Distribution: Theoretical (blue dotted) and Actual (black solid).
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Results for Periodic Activities

Given the limited size of the data and, in order to distribute a large enough num-

ber of annotations, we replay only 1-frame segments. We have shown in Chapter 4

that Online Active Learning works very well with longer segments and recognition

performance still improves over Random Selection in these circumstances.

The interpretation of the results for periodic activities is very similar to that for non-

periodic activities, discussed in Section 6.3.1. For the PAMAP dataset, Fig. 6.7 char-

acterise the budget-constrained annotation process for the Uniform strategy, whereas

Figs. 6.8 and 6.9 do so for the Exponential strategy. Overall, learning improvement

is registered for a majority of points on the learning curves and the actual asking

behaviours averaged across all dataset participants closely follow the ideal budget

specifications.

The results for the USC-HAD dataset are not included in order to save space. Quali-

tatively, they are identical: (1) OAL still improves over RS, (2) the TFA is still jagged,

but its trend comes close to the ideal and (3) the actual cumulative distribution of

annotations closely matches the ideal one.

Additional Constraint

The method outlined in Section 6.2 sets up a two step “set-attain” process of asking

for annotations using an Online Active Learning approach while, at the same time,

trying to adhere to an ideal spending budget strategy.

The method was evaluated in Section 6.3 where results show performance gains over

Random Selection. Additionally, results show that the method adheres to the ideal

spending strategy, especially when evaluating how well the cumulation of annotations

approximates the ideal configuration. While previous compilations of results demon-

strate that budget adherence is possible, however, the speed with which spending

deviations are addressed is not controlled. This is seen in the plots illustrating the

frequency of annotations (Figs. 6.4c, 6.5c, 6.6c, 6.7c, 6.8c, 6.9c) – these were discussed

earlier in Section 6.3. We mentioned that the lack of urgency with which the sys-
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Figure 6.7: Budget-Based OAL; PAMAP Dataset; Uniform Strategy; 200 Budget
Units; Frequency: Theoretical (blue), Actual (grey) and ARMA (red); Cumulative
Distribution: Theoretical (blue dotted) and Actual (black solid).
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Figure 6.8: Budget-Based OAL; PAMAP Dataset; Exponential Strategy (λ = 2);
200 Budget Units; Frequency: Theoretical (blue), Actual (grey) and ARMA (red);
Cumulative Distribution: Theoretical (blue dotted) and Actual (black solid).
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Figure 6.9: Budget-Based OAL; PAMAP Dataset; Exponential Strategy (λ = 3);
200 Budget Units; Frequency: Theoretical (blue), Actual (grey) and ARMA (red);
Cumulative Distribution: Theoretical (blue dotted) and Actual (black solid).
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tem reacts to spending deviations is evident in the relatively smooth trend line of the

frequency with which annotations are requested.

In this section we add a third step to the annotation method which comes after the

“set-attain” steps. This third step tunes the balance between, on one hand, requesting

annotations as a result of Online Active Learning identifying critical annotations and,

on the other hand, requesting annotations as a result of adhering closely to the ideal

spending strategy – i.e. effectively accelerating how quickly budget spending devia-

tions are corrected. The step uses a penalty-based approach which alters the asking

probability so that the importance of Online Active Learning decisions are attenuated,

in a commensurate manner, by the degree of deviation of the actual spending relative

to the ideal spending.

Step 3: Coercing the Budget

At any point in time t, Bspent budget units have been spent, while, according to the

budget spending strategy F which outlines the ideal spending behaviour, Bideal =

Btotal · F (t) budget units should have been spent. We define the budget spending

deviation Bdiff = Bideal −Bactual as the signed difference between the ideal budget size

that should have been spent at the current time t and the actual size of the budget

that has been spent by that point.

In this section, we modify the annotation behaviour so that, while informed Online

Active Learning annotation requests are still carried out according to the method out-

lined in Section 6.2, budget spending deviations, when they arise, would be corrected

more quickly. We still calculate pOAL
ask , the asking probability due to Online Active

Learning, using Eq. 4.1 with the γ parameter set according to the method in Section

6.2.2. We introduce a new factor pbudget
ask ∈ [0, 1), which is a function of the current

deviation from the ideal budget. pbudget
ask moderates pOAL

ask according to Eq. 6.4:

pask =

(1− pbudget
ask ) · pOAL

ask + pbudget
ask , if Bdiff ≥ 0

(1− pbudget
ask ) · pOAL

ask , otherwise

(6.4)

Intuitively, the more the actual spending deviates from ideal spending, the less em-
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phasis on pOAL
ask and the greater the emphasis on corrective action, such as requesting

annotations (first branch of Eq. 6.4) or restraining from annotation requests (second

branch of Eq. 6.4, depending on the direction of the spending deviation.

If there is under-spending (Bdiff ≥ 0), then the following three cases describe the

asking behaviour:

• If pbudget
ask → 1,then pask → 1, which implies that relatively large under-spending

deviations are addressed by requesting, with higher probability, uninformed (im-

mediate) annotation requests so that under-spending is alleviated.

• If pbudget
ask = 0, then pask = pOAL

ask , which means that the less severe the under-

spending, the more Online Active Learning becomes unconstrained so that the

emphasis is placed on obtaining high quality annotations.

• In general, when under-spending, we have as follows:

pask − pOAL
ask = (1− pbudget

ask ) · pOAL
ask + pbudget

ask − pOAL
ask =

pbudget
ask · (1− pOAL

ask ) ≥ 0

We conclude that pask ≥ pOAL
ask holds true in the case of under-spending. This means

that Online Active Learning annotation requests are complemented to a commensurate

degree by more urgent but less well informed annotation requests so that the actual

budget spending gets back in line with the ideal budget.

If there is over-spending (Bdiff ≤ 0), then:

• If pbudget
ask → 1, then pask → 0, meaning that in case of severe over-spending,

Online Active Learning is effectively suppressed and no annotation requests will

be probable until over-spending ameliorates with the passage of time.

• If pbudget
ask = 0, then pask = pOAL

ask , which means that Online Active Learning is

unconstrained.
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• In general, when over-spending, we have as follows:

pask − pOAL
ask = (1− pbudget

ask ) · pOAL
ask − ·pOAL

ask =

−pOAL
ask · p

budget
ask ≤ 0

Therefore, in case of over-spending, pask ≤ pOAL
ask . This entails that the asking probabil-

ities due to Online Active Learning are decreased so that annotations are discouraged

until actual spending gets in line with ideal spending.

We have shown that pbudget
ask increases the probability of asking for an annotation if

there is under-spending (Bdiff < 0) and decreases the probability of requesting an

annotation if there is over-spending (Bdiff > 0). Additionally, because we have seen

previously that asking according to pOAL
ask leads to performance gains over Random

Selection, we have also shown that pbudget
ask does not change this behaviour if there is no

deviation from ideal spending.

We define the pbudget
ask as a probability which is a function of the size of the deviation

in budget spending as follows:

pbudget
ask (Bdiff ) = 2 ·

[
1

1 + e−1/β·|Bdiff |
− 0.5

]
(6.5)

Eq. 6.5 represents the upper half of a sigmoid function. pbudget
ask increases with Bdiff , so,

effectively, the greater the deviations in budget spending, the greater the value of the

pbudget
ask factor and, consequently, the greater the restriction on Online Active Learning.

Since pbudget
ask is a moderation factor for pOAL

ask , we modelled it to be strictly increasing

with the budget deviation, as can be seen in Fig. 6.10. The β parameter controls

the degree to which emphasis is shifted from Online Active Learning to immediate

and uninformed annotation requests. Specifically, for a fixed value of the B budget

deviation parameter, the factor pbudget
ask is strictly decreasing with β. This means that

lower values for β will make the transition from a factor value of 0 to 1 more sudden and,

therefore, the asking behaviour would be more prone to correct small budget deviations

immediately than to focus on obtaining highly critical annotations. Higher values for

β lead to a smoother transition, so the factor would not substantially change focus
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Figure 6.10: The effect of the β parameter on pbudget
ask .

from requesting critical annotations to fixing budget deviations unless the deviations

become substantially large.

Results

We now present the evaluation results of the annotation method described in Section

6.4 which uses all three budget-based constraint steps described in Sections 6.2 and 6.4.

As in Section 6.3, we again evaluate the effects the annotations had on the performance

of the models and the level of compliance of the schedule of annotation requests to the

ideal schedule of the budget spending strategy.

As before, we there are two evaluation outcomes. Firstly, we contrast the learning per-

formances of Online Active Learning and Random Selection. Secondly, we present the

evaluation results for the degree of compliance to the ideal budget spending strategy.

Since the β parameter controls the overall behaviour of the present annotation method,

in what follows we focus on the link between β and the resulting annotations. We

investigate the effects of three values of the β parameter: strict coercion (β = 0.1)
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in the OAL-driven annotation process, moderate coercion (β = 0.5) and, finally, mild

coercion (β = 1). We do not consider larger values for the β parameter because these

only result in insubstantial influence (OAL is practically unconstrained and behaves

as in Section 6.3).

Results for Non-Periodic Activities

For the strict coercion scenario (β = 0.1) in Fig. 6.11, the most noticeable result

is that the trend curve of the ARMA model (red line), which, previously, clearly

illustrated a smooth trend line, is now very jagged. This suggests that the variance

in the timeseries is no longer caused by random noise, but it is symptomatic of an

underlying pattern. Figs. 6.12a and 6.12b, where we have “zoomed in” and focused

on the first 50 timestamps, reveals the pattern: the very strict budget enforcement

configuration coerces many annotations to be requested around a fixed schedule, in an

almost deterministic manner. In this scenario, given that 200 annotations are to be

uniformly requested out of 2000 timestamps, on average 1 out of every 10 timestamps

should yield an annotation. The annotations are not spread out evenly, but, instead,

with high frequency, annotations are clustered around every 10 timestamps. This is

due to the value of the β parameter which transforms even slight under-spending into

immediate annotation request decisions.

The phenomenon, which we call fractional under-spending is illustrated in Fig. 6.13.

The ideal spending curve is that of a continuous-valued function, in order to bring it in

line with the mathematical construction at the beginning in Section 6.2. However, the

actual spending curve is necessarily discrete-valued (because it is a count) and so is the

best actual spending – the discrete curve that most closely matches the ideal spending

curve. Specifically, an annotation is ideally requested when Bdiff = 0.5, which, in our

case, would happen at timestamps 5, 15, 25, ... However, at t = 1 we have Bdiff = 0.1,

but, because of the low value β = 0.1, this results in pbudget
ask = 0.46 which strongly

biases pask towards issuing an annotation request. If an annotation is not requested at

this point, then this phenomenon is further compounded at t = 2, when Bdiff = 0.2,

which gives pbudget
ask = 0.76, or at t = 3, when Bdiff = 0.3, so pbudget

ask = 0.90, etc. This

explains how even small fractional spending deviations can trigger almost immediate
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Figure 6.11: Budget-Based OAL with Additional Constraint (β = 0.1); Opportunity
Dataset; Uniform Strategy; 200 Budget Units; (S1 – Subject 1; AL – Online Active
Learning; RS – Random Selection); Cumulative Distribution: Theoretical (blue dot-
ted) and Actual (black solid).

annotation requests if the β parameter value is highly coercive. Consequently, with

high coercion, one obtains greater control over the frequency of annotation requests

by dictating how fast budget spending deviations should be corrected.

From a model performance point of view, however, for the strict scenario, as it tran-

spires from Fig. 6.11, Online Active Learning has a severely reduced autonomy. The

performance gains of OAL over RS are very low when compared with the results in

Section 6.3.1 where OAL was less constrained.

The moderate interference scenario (β = 0.5) is illustrated in Fig. 6.14. The behaviour

is again symptomatic of budget-related interference in the annotation process. The

ARMA model again yields a periodic trend, but it is less pronounced in amplitude.

This time the annotation requests are more evenly spread out (relative to the previous

strict scenario), as can be seen in Fig. 6.12c. Also, compared to the strict scenario,
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Figure 6.12: Uniform Strategy; Opportunity Dataset; Distribution of Annotations
(Zoom-In).
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Figure 6.14: Budget-Based OAL with Additional Constraint (β = 0.5); Opportunity
Dataset; Uniform Strategy; 200 Budget Units; (S1 – Subject 1; AL – Online Active
Learning; RS – Random Selection); Cumulative Distribution: Theoretical (blue dot-
ted) and Actual (black solid).
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Figure 6.15: Budget-Based OAL with Additional Constraint (β = 1); Opportunity
Dataset; Uniform Strategy; 200 Budget Units; (S1 – Subject 1; AL – Online Active
Learning; RS – Random Selection); Cumulative Distribution: Theoretical (blue dot-
ted) and Actual (black solid).

and because of the smaller constraints due to budget spending, Online Active Learning

registers a greater improvement over Random Selection.

The mild interference scenario (β = 1) is illustrated in Fig. 6.15. Because of the

relatively weak effect of the pbudget
ask factor on pask , the annotation process is largely

unaltered by budget constraints. The ARMA model does not fluctuate as much, as can

be seen in Fig. 6.12e, indicating that the annotation requests are relatively uniformly

distributed in time. Because Online Active Learning is largely unaffected by the pbudget
ask ,

it continues to yield performance gains over Random Selection comparable to those in

Section 6.3.1 when Online Active Learning was largely unconstrained.

Interfering with the Exponential budget spending strategy (λ = 3) reveals similar

effects as with the Uniform strategy examined previously. The strict interference

scenario (β = 0.1) is illustrated in Fig. 6.16. The effect of extremely strict adherence
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Figure 6.16: Budget-Based OAL with Additional Constraint (β = 0.1); Opportunity
Dataset; Exponential Strategy; 200 Budget Units; (S1 – Subject 1; AL – Online Ac-
tive Learning; RS – Random Selection); Cumulative Distribution: Theoretical (blue
dotted) and Actual (black solid).
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Figure 6.17: Exponential Strategy; Opportunity Dataset; Distribution of Annotations
(Zoom-In).
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Figure 6.18: Budget-Based OAL with Additional Constraint (β = 0.5); Opportunity
Dataset; Exponential Strategy; 200 Budget Units; (S1 - Subject 1; AL - Online Active
Learning; RS - Random Selection); Cumulative Distribution: Theoretical (blue dotted)
and Actual (black solid).

to the annotation schedule is again made evident by a very jagged ARMA trend

line (red). “Zooming in” as before, Figs. 6.17a and 6.17b illustrate more how most

annotation requests are concentrated around the ideal annotation timestamps. In

terms of performance gains, as in the Uniform strict scenario, Online Active Learning is

heavily constrained and, so, the performance gains over Random Selection are reduced.
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Figure 6.19: Budget-Based OAL with Additional Constraint (β = 1); Opportunity
Dataset; Exponential Strategy; 200 Budget Units; (S1 - Subject 1; AL - Online Active
Learning; RS - Random Selection); Cumulative Distribution: Theoretical (blue dotted)
and Actual (black solid).
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Figure 6.20: Budget-Based OAL with Additional Constraint (β = 0.1); PAMAP
Dataset; Uniform Strategy; 200 Budget Units; Frequency: Theoretical (blue), Ac-
tual (grey) and ARMA (red); Cumulative Distribution: Theoretical (blue dotted) and
Actual (black solid).

The moderate (β = 0.5; Fig. 6.18) and mild (β = 1; Fig. 6.19) scenarios show that

reduced interference smooths the trend line, but does not improve the dispersion of

the average number of annotations (grey line), as was desired. With reduced interfer-

ence from the budget enforcement mechanism, Online Active Learning registers clear

improvement over Random Selection.

Results for Periodic Activities

For periodic activities, we have evaluated our method, as before, on the PAMAP

dataset. The results are essentially similar to the ones for non-periodic activities.

The evaluations for the Uniform strategy are illustrated in Fig. 6.20 for the strict

scenario, in Fig. 6.21 for the moderate scenario and in Fig. 6.22 for the mild scenario.

Recognition performance again suffers if the value of the β parameter is excessively

- 186 -



Chapter 6: Online Active Learning with Budget Constraints

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Num. Annotations

F
−

S
co

re

Active Learning                
Random Selection               

(a) Learning Curves

0 500 1000 1500 2000

0
50

10
0

15
0

20
0

Timestamp
N

um
. A

nn
ot

at
io

ns

(b) Cumulative Distribution of Annotations

0 500 1000 1500 2000

0.
00

0.
10

0.
20

Timestamp

N
um

. A
nn

ot
at

io
ns

(c) Frequency of Annotations

Figure 6.21: Budget-Based OAL with Additional Constraint (β = 0.5); PAMAP
Dataset; Uniform Strategy; 200 Budget Units; Frequency: Theoretical (blue), Ac-
tual (grey) and ARMA (red); Cumulative Distribution: Theoretical (blue dotted) and
Actual (black solid).
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Figure 6.22: Budget-Based OAL with Additional Constraint (β = 1); PAMAP
Dataset; Uniform Strategy; 200 Budget Units; Frequency: Theoretical (blue), Ac-
tual (grey) and ARMA (red); Cumulative Distribution: Theoretical (blue dotted) and
Actual (black solid).
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Figure 6.23: Uniform Strategy; PAMAP Dataset; Distribution of Annotations (Zoom-
In).
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Figure 6.24: Budget-Based OAL with Additional Constraint (β = 0.1); PAMAP
Dataset; Exponential Strategy; 200 Budget Units; Frequency: Theoretical (blue), Ac-
tual (grey) and ARMA (red); Cumulative Distribution: Theoretical (blue dotted) and
Actual (black solid).

coercive. The strict scenario restricts OAL excessively, so the performance gains are

minimised. The other two scenarios free up OAL to operate, and the performance

gains over RS increase.

The zoom-in on the first 50 timestamps in Fig. 6.23 illustrates the degree of adherence

to the ideal budget spending strategy as a function of the β parameter.

For the Exponential strategy, Fig. 6.24 illustrates the strict scenario, Fig. 6.25 illus-

trates the results for the moderate scenario and, finally, Fig. 6.26 illustrates the mild.

The zoom-in on the first 50 timestamps in Fig. 6.27 illustrates the degree of adherence

to the ideal budget spending strategy as a function of the β parameter.
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Figure 6.25: Budget-Based OAL with Additional Constraint (β = 0.5); PAMAP
Dataset; Exponential Strategy; 200 Budget Units; Frequency: Theoretical (blue), Ac-
tual (grey) and ARMA (red); Cumulative Distribution: Theoretical (blue dotted) and
Actual (black solid).
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Figure 6.26: Budget-Based OAL with Additional Constraint (β = 1); PAMAP
Dataset; Exponential Strategy; 200 Budget Units; Frequency: Theoretical (blue), Ac-
tual (grey) and ARMA (red); Cumulative Distribution: Theoretical (blue dotted) and
Actual (black solid).
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Figure 6.27: Exponential Strategy; PAMAP Dataset; Distribution of Annotations
(Zoom-In).
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Discussion

We extended the budget-constrained Online Active Learning method by adding a third

step which compensates budget spending deviations with either immediate annotation

requests or dissuading from raising annotation requests. Our penalty-based approach

ensures that budget spending deviations are minimised while Online Active Learning

is in place so that high quality annotations would be revealed. The method was aimed

as a further refinement of Steps 1 and 2 from Sections 6.2.2 and 6.2.3, respectively.

However, we underline that this final third step is optional: it may or may not be

added after the first two steps. The integrity of our proposed annotation method is

not affected by this step, but the end result is altered by adding it.

Our theoretical grounding from Section 6.4.1 promised that using just the first two

steps from Section 6.2, budget deviations could be partially controlled. In practice,

results showed that the cumulative distribution of annotation matches the theoretical

desired distribution very closely. However, the speed with which budget spending

deviations are corrected is not under control and this is observable by the relatively

constant annotation frequencies.

With the addition of the third step, discussed in Section 6.4, the frequency of an-

notation requests can be controlled so that annotations are clustered around certain

timestamps. With this added layer of control over the annotation process, however, the

performance gains from Online Active Learning over Random Selection were greatly

diminished. Overall, there is a trade-off between, on the one hand, the degree to which

the budget is enforced and, on the other hand, the performance gains of OAL over RS.

Strong budget enforcement leads to very small OAL improvement over RS, whereas,

weaker budget enforcement frees OAL and encourages gains over RS. Within the ap-

plication of our proposed budget coercion method, very strict budget spending can

be enforced for low values of the β parameter (even asymptotically deterministic for

β → 0) while very relaxed configurations, where Online Active Learning is dominant,

are possible for high values of the β parameter (β →∞).
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Conclusions

In this chapter we have furthered the theoretical concepts presented in Chapters 3

and 4 by proposing an aggregate method that combined the two annotation heuristics,

one that operated strictly on budget considerations and another one that focused

entirely on optimising the performance gains, into a single method that balanced both

approaches.

We have shown how Online Active Learning can be used in conjunction with a bud-

get spending strategy and we provided a simulation-based evaluation. Our results

generally reveal three-fold implications. Firstly, the time distributions of annotations

closely mimic the theoretical distribution functions of ideal budget specifications. This

demonstrates that budget spending strategies can be enforced with online annotation

decisions without violating given annotation schedules. Secondly, we have also show

that, by making annotation decisions using Online Active Learning, even though the

decisions are also influenced by budget strategy conditions, we still register perfor-

mance gains over Random Selection. Finally, our results show that the degree of

adherence to an ideal budget can be controlled by intuitive parameter tuning. How-

ever, the strictness of adherence and the extent of performance gains of OAL over RS

are at odds: greater strictness results in diminished gains and vice-versa.

In Chapter 5, we applied our Online Active Learning method, but without budget

constraints, because this would have further complicated the evaluation. The question,

therefore, is whether the budget-constrained version of Online Active Learning could be

applied in a real deployment where user sentiment towards interruptions for annotation

purposes mattered.

[[First of all, in this chapter, we made an additional assumption that there is an

initial corpus of annotations.]] This ensures that the confidence levels of the activity

model do not fluctuate wildly and are representative of a degree to the underlying

domain of personalised annotations. These more stable confidence levels lead to more

robust estimations for the purpose of heuristic fine-tuning, which, in turn, is used to

meet target budgets. The alternative to a pre-existing corpus of annotation implies

starting from no annotations and employing a NAD (discussed previously in Section
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5.3.1). However, using a NAD or an alternative mechanism adds to the complexity of

reliably estimating the parameters required to meet a certain target budget.

Second of all, in a real deployment, the notion of budget strategy needs a definition

which is applicable to that practical context. In this chapter and in Chapter 3 we

assumed that time is the index of a segment in a stream of activities. In reality,

users are more likely to specify budget strategies in terms of the actual time of day

because, arguably, the time of day may be more meaningful to them than segment

indices. Given that activities can be of arbitrary duration, meeting these physical time

constraints is likely to be practical only with a modified version of Eq. 6.2 that accounts

for physical time instead of indices for a stream of segments. Best-effort guesses for

activity duration would probably have to be employed to estimate the target budget,

but these would introduce additional uncertainty when trying to approximate an ideal

budget strategy.

Finally, coercing annotations according to a budget specification does not affect the

ability of the system to run in online mode. Calculating the target budget and op-

timising the heuristic function for best meeting the target budget require constant

time and memory complexity, so both are suitable for online calculation (relative to

the heuristic in Chapter 4, the additional computations amount only to an additive

constant). In Chapter 5, we demonstrated that a budget-free system can run in an

online regime. Therefore, so can a budget-constrained Online Active Learning-based

system function in online mode.
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In this chapter we summarise the contributions from the thesis and we reflect upon

their implications on the current research landscape and potential for future work.

Motivation and Context

In this thesis we acknowledged the prevalence of wearables and their importance for

encouraging healthy routines for individuals. As we argued in Chapters 1 and 2, HAR

model personalisation typically improves monitoring accuracy, which, in turn, leads to

making better informed decisions, such as inhibiting certain damaging behaviours or

integrating beneficial behaviours. Model personalisation, as defined in Section 1.3, is

the core problem we addressed in this thesis.

Researchers have recognised the improvements brought by HAR model personalisation

and have proposed diverse ways of achieving personalisation. This thesis addressed

the personalisation problem by proposing a user-centered solution. Specifically, we

involved the user in the personalisation process and we assumed the user was cog-

niscient enough of her own activities that she would be able to provide on-demand

personalising feedback.

The feedback was structured in the form of annotations, which are descriptions of

sensor data that could be used to improve the user’s HAR model. The system identified

contiguous portions in the sensor timeseries, called segments, each of which would

ideally correspond to a single activity. The segmentation procedure operated in online

mode, meaning that it was designed to recognise segment boundaries shortly after an

activity ended. The system would then inspect the segment data and would decide

whether or not to ask the user to provide an annotation for the segment. If such

an annotation was provided by the user, then it would be used to update the user’s

personal HAR model.

When the user provided her annotations, we assumed no external help, such as other

human annotators or a complex infrastructure with video footage collection that would

assist the user in providing annotations. These external aids would arguably be per-

ceived as obtrusive and would reduce the degree of realism of our study. Instead, we

opted for a highly naturalistic environment where the user would be assisted just by a
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lightweight mobile app. In our opinion, this setup introduced virtually no constraints

when compared to an analogous naturalistic context.

Because of the lightweight infrastructure which did not support video footage collec-

tion, we relied on the user’s short-term memory as a source of ground truth annotation.

As discussed earlier, we employed an online segmentation that operated over the user’s

stream of activities. Since the discovered segments correspond to the most recently

finished activity, we assumed the users would be able to provide online annotations

from their short-term memory.

Finally, we recognised that our mechanism of obtaining annotations can be intrusive

as it relies on interrupting the user to provide input on-demand. To alleviate this,

we accounted for models of user tolerance levels. We factored in mechanisms that

restricted the volume and distribution of annotation requests so that user tolerance

boundaries are not crossed.

Results and Significance

In this section we discuss how our contributions relate to each other. As was shown

in Fig. 1.5, the contributions are presented in an evolutionary fashion where new

contributions address limitations of previous contributions.

Chapter 3 – Online Learning with a Budget

We investigated the effects of user tolerance on model performance in Chapter 3.

Specifically, we modelled user tolerance with a budget – a three-tuple specifying (1)

the budget size, meaning the number of annotation requests the user would be willing

to respond to, (2) the budget horizon, defining the maximum duration of time over

which annotations would be requested and (3) the budget strategy, which specifies

how the annotation requests are distributed during the budget horizon. Using an

evaluation-based approach, we showed the effects of a budget specification on the final

model classification accuracy and, respectively, how quickly this accuracy is attained.

The budget size, defined as the number of interactions with the user, is arguably

intuitive enough for the user to specify it directly. However, budget spending strategies
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are arguably not as intuitive. Using the budget strategy the timings of the annotation

requests are generated which, as explained in Chapter 3, are sampled over the interval

[0, 1]. These timings on [0, 1], which are not specific to any physical measure (including

physical time as perceived by the user or segment sequence numbers as counted by

the activity monitor), are then linearly scaled over [0, thorinzon ]. It is therefore thorinzon

that defines the physical nature of the timings of the annotation requests. In our

simulations, thorinzon is defined in terms of number of segments, meaning that the

system expects to have distributed all annotation requests by the time thorinzon have

been registered. This definition of the horizon is a natural fit to the data available

in our simulations: because the dataset (Opportunity [38]) contains only a limited

number of annotated activities/segments, so defining the horizon as the total number

of segments ensures that each segment can potentially be annotated at most once.

However, in a real-life deployment, we argue that defining the horizon in terms of

the number of monitored segments is not intuitive to the user. Instead, we propose

that physical time be used as a reference and not the number of monitored segments.

Furthermore, the definition can be enlarged to account the instant of physical time

when the interaction with the user begins (tstart), besides the duration of the interaction

(which, under these circumstances, could be more conveniently renamed ∆thorizon). As

an illustration, if tstart = 09:00 and ∆thorizon = 3h, then this can be easily understood

by the user (i.e. ”I am willing to respond to annotation requests for 3 hours starting at

9:00.”). Other ways of defining the time boundaries for the interaction with the user

are certainly possible.

Regardless of whether the annotation schedule targets references sequence numbers or

physical time, a shortcoming of the budget-based annotation method in Chapter 3 is

that it is not informed in any way by the monitored data. The annotation schedule is

computed before the annotation starts and it remains fixed until the budget horizon

is reached. A detrimental consequence to this approach is that the method does not

target rare activities or activities that are inaccurately classified. There are possibly

numerous work-arounds to this problem. For example, one might use the budget

not to adhere to user tolerance, but to concentrate annotation requests in the time

intervals rich in activities which are poorly estimated by the activity classifier. As
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a practical application, suppose the budget horizon is one day. In previous days

the classifier has been trained according to daily annotation schedules, but suppose

there is are persistent intervals where the classifier does not perform well. Under the

assumption that the distribution of activities during each day is stationary, a larger

number of annotation requests may be scheduled during those times (similarly to

Micallef et al. [162]) with the expectation that the resulting annotations would yield

considerable gains to classification accuracy.

Nonetheless, a disadvantage to the previous approach is that there is considerable delay

(i.e. at least a day in the previous example) between the time that it is recognised that

some activities are possibly misclassified and the time that corrective action can be

taken in the form of annotations targeted at those activities. Therefore, in subsequent

chapters, we proposed alternative annotation methods, including budget-based ones,

which probabilistically request annotations from the user immediately when potential

misclassifications occur.

Overall, while it can be argued that physical time is, from the user’s perspective, a

more intuitive measure of the evolution of her activities than the sequence numbers in

the activity stream, our work still adds value to how an annotation schedule can be

generated according to a pre-specified distribution.

Chapter 4 – Online Active Learning in the Lab

In Chapter 4, we temporarily departed from the considerations for user tolerance and

budget-based annotation in Chapter 3 and instead focused on improving classification

accuracy by identifying the most promising potential annotations from a stream of

activities. We used an online version of Active Learning – a semi-supervised learning

method that attempts to increase classification accuracy by identifying highly critical

annotations from activities as the activities occur. Our implementation of Online

Active Learning operated on a stream of activities, a necessary assumption due to

the users’ limited short-term memory, as we reasoned earlier. Our results, based on

a simulation-based approach on public HAR datasets, show that the model accuracy

improvements are greater than the improvements due to Random Selection, a widely

used baseline for active learning. This signifies not only that users can provide feedback
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about very recent activities, so they could do so using just their short-term memory, but

also that HAR model personalisation can be accelerated using Online Active Learning.

The Online Active Learning heuristic converts the classification confidence of a moni-

tored activity segment into probabilities to interrupt the user to annotate the activity.

In particular, low classification confidences (which are typically symptomatic of poor

classification accuracy) result into high interruption probabilities. The heuristic is

tunable via the γ parameter as follows: for a fixed classification confidence, higher

values of γ result in the probability for interruption decreasing, but to a greater extent

for classification confidences. Effectively, progressively higher values for γ concentrate

annotation requests only towards lower classification confidences. Conversely, progres-

sively lower values for γ make annotation requests more probable for high confidences.

In Chapter 4 the value of the parameter γ = 6 was chosen empirically, on the one

hand, as high enough to illustrate the contrast of classification accuracy between On-

line Active Learning and Random Selection and, on the other hand, as low enough to

not delay the run-time of the simulations (since very high values of γ result in a very

high rejection rate of potential annotation requests when the model is increasingly

personalised and systematically yields high classification confidences).

Even though this approach of using a fixed value for γ makes sense from the strictly

objective perspective of classification accuracy since results show that Online Active

Learning improves with respect to Random Selection, two issues arise. First of all, this

style of annotation is budget-agnostic, so, by itself, it is unable to account for user-

preferred times and volume of annotations. Second of all, from the user’s perspective,

it is not immediately intuitive how to choose γ. The problem is that the parameter is

not only highly non-linear in relation to the resulting number of annotation requests,

but γ is not the only factor influencing the total number of requests. For example,

for the same value of γ, a user engaging in only a few activities will probably be

confronted with fewer annotation requests than a user performing a wider range of

activities. Both limitations are addressed in Chapter 6 where the annotation heuristic

is extended to account for a budget. This shields the user from non-intuitive γ values

who can instead choose a budget within which to operate Online Active Learning.
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Chapter 5 – Online Active Learning in the Wild

In Chapter 5 we discussed the outcomes of deploying within a user study a complete

Online Active Learning system implementation. The user study allowed us, primarily,

to collect both sensor together with the genuine annotations the users provided and,

secondarily, to obtain subjective user feedback on their experience interacting with the

system. The model evaluation results from the deployment data show that our Online

Active Learning method can collect high quality annotations that lead to HAR model

personalisation and accuracy improvement when contrasted with a simplistic strawman

model. This implies that, even under realistic conditions and when users operate in

their natural environment, it is expected that HAR models can be personalised from

user-provided annotations.

Additionally, after compiling the user’s feedback on interacting with the system, we

discovered two aspects. Firstly, if a sufficiently large number of annotations are pro-

vided, the users perceived that the system learned and became better at recognising

their activities. This leads us to believe that users would start to see the benefits of

their input after some time, therefore justifying their effort. Secondly, our annotation

mechanism was perceived as invasive and, overall, the participants in our experiment

would have preferred fewer annotation requests. However, the level of interruptions

could be turned lower so that, even though model personalisation would take longer,

the user would not be discouraged from engaging with the system.

However, as noted in Chapter 5, given the limitations due to sample size and familiar-

ity of some of the participants with the members of the research team, it is possible

that the subjective feedback will not generalise in the same way to a larger pool of

anonymous users. A high degree of bias may therefore emerge from our compiled feed-

back. Rather, in order to obtain more representative feedback, one can apply in situ

methods of obtaining questionnaire feedback from users, similarly to Wang et al. [163].

We did not resort to remote and anonymous users because of the more complicated

initial setup stage of the sensors (including exact placement, sensor orientation).

Nonetheless, our qualitative results are still valuable. While there exists a possibility

the feedback is not representative for a larger base of users, the concerns raised by
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our panel of participants could be taken into account when designing a similar but

larger deployment. First of all, the volume and frequency of annotations should be

controlled by the users. In Chapters 3 and 6 we suggest annotation mechanisms

which control annotation requests according to a specified total number and strategy

of distribution. Second of all, even a relatively small panel of participants pointed

out that they would like the monitoring application to account for specific activities.

Therefore, future deployments should consider whether the choice of activities should

rest with the designers of the monitoring application or with the users themselves.

Chapter 6 – Online Active Learning with Budget Constraints

Finally, in Chapter 6, we combined the budget-based annotation method from Chapter

3 with the apparently incompatible Online Active Learning method from Chapters 4

and 5. The budget-based Online Active Learning annotation method builds upon

concepts from Chapters 3 and 4 and extends the technical implementation from Chap-

ter refch:daptive.learning.in.the.lab with novel algorithms. The end result is that this

new hybrid annotation method makes it possible to balance meeting a budget specifi-

cation with requesting highly critical annotations. Our results show that it is possible

to run a budget-constrained Online Active Learning method that still improves over

Random Selection while, on average, adhering closely to the budget specification. The

work in this chapter addresses the weaknesses from previous chapters:

• The improvement over Chapter 3 is that annotations are now informed by Online

Active Learning and highly critical segments are given preference, even when

closely adhering to a budget specification.

• Conversely, the improvement over Chapter 4 is not only that a budget is intro-

duced, but the user can now specify her preferences when it comes with being

confronted with annotation requests. Instead of having to choose an arguably

unintuitive value of the γ parameter (as in Chapter 4), the user can instead de-

clare a budget specification (the total number of annotation, a horizon over which

she is accepting to be interrupted and a distribution of number of annotations

over this horizon).
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The implications for HAR are promising. Firstly, accelerated model personalisation is

still possible under budget-constrained Online Active Learning, so highly critical an-

notations can be identified and provided for users. Secondly, our method ensures that

budget specifications are closely followed with little risk of under- or over- spending,

so the system does its best to obtain all the annotations the user has committed to

provide, with preference given to highly critical ones, without crossing user tolerance

boundaries.

Our Contributions in the Wider Research Context

Having analysed how the different contributions in our thesis relate to each other, we

now re-survey key research literature from Chapter 2 and analyse how our contributions

fit in the wider research context. The structure of this section mirrors the major

structure of Chapter 2.

Obtaining Annotations

In this thesis, we examined multiple related methods of obtaining annotations from

users of HAR systems. We investigated the effects on physical activity classification

accuracy and on user tolerance only of reactive annotations. We defined this class

of annotations as those provided by the user of the HAR system herself after an

activity has already occurred. This is in contrast to proactive annotations, which by

definition are supplied in advance of executing the activity (i.e. Berchtold et al. [69]

and van Kasteren et al. [72]) or prospective, which require considerable infrastructure

to collect useful ground truth, such as video footage (for instance, Lester et al. [56] or

Chavarriaga et al. [38]).

Our approach is similar to Abdallah et al. [74, 75] where the potential usefulness (for

example, in terms of expected classification accuracy gains) can be assessed immedi-

ately after an activity has been detected. Cleland et al.[73] also propose reactive anno-

tations, but do not use a heuristic and instead annotate all activities indiscriminately.

In this current work, we show using empirical evidence that, for the same number of

annotations, a heuristic-based annotation approach can outperform random annota-

- 205 -



Chapter 7: Conclusions

tion (Online Active Learning versus Random Selection). This has direct consequences

on the diversity of the labels collected (e.g. Section refsubsec:periodic.results) and on

the speed (which, intuitively is the inverse of the user’s annotation effort) with which

HAR monitors can be personalised.

On the one hand, given our context sensing limitations, we are forced to dismiss ret-

rospective annotations on the basis of insufficient infrastructure to collect annotations

and on the basis of a limited user’s short term memory. On the other hand, proac-

tive annotations are a feasible extension to our system. Berchtold et al. [69] and

van Kasteren et al. [72] have shown that HAR classifiers can be constructed from

these. With reference to our results, contributing with proactive annotations would be

equivalent to Random Selection because the decision to generate the annotation is not

based on sensor data, which, at the point of annotation, is not yet recorded. However,

proactive annotations are an alternative and complementary solution to the Ignorant

Classifier problem discussed in Chapter 5. Users can recognise or can be convinced

that a completely new activity could be annotated proactively to ensure that the user’s

personalised classifier will have scope to improve this new activity (rather than risk

not discovering it). This could be done in conjunction with a Novel Activity Detector

(Chapter 5) so that the recall on annotating new or rare activities is increased further.

Additionally, in case a NAD is not used, an initial proactive annotation could be em-

ployed to fulfil the assumption of an existing corpus of diverse annotations, as we did

in Chapter 6 with the purpose of budget-based Online Active Learning.

A key issue with reactive annotations in a mobile context is the user’s limited short-

term memory Eisen et al. [50]. To avoid problems with unreliable distant memory

recall, we propose that annotations are targeted only at the last identified activity

segment. For reasons having to do with our segmentation procedure, as explained in

Section 3.4.1, the delay between an activity ending and an annotation decision being

made was in the region of 10− 20s. Previously, Linnap and Rice [77] discovered that

this figure is typical of interaction with annotation devices and Cleland et al.[73] had

very similar delays in their physical activity annotation user study.

The advantage of reactive annotations over the other types of annotations is that they

provide stronger guarantees about the degree of naturalism of the user’s context. The
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goal of obtaining user-provided annotations throughout this thesis is to bootstrap fully

personalised HAR classifiers. However, the same techniques that collect annotations

from the user’s naturalistic environment can potentially be used to adapt existing

models, i.e. Abdallah et al.[74, 75] and Nguyen et al. [65], or to expand the vocabulary

of physical activities Hossmann et al. [67], Lu et al. [66].

The User’s Perspective

One of our main working assumptions is that, given that interrupting the user in order

to provide annotations for her own physical activities is both useful and intrusive, a

trade-off must be struck between the two. It is known that user interruptions tend

to be intrusive (i.e. Pejovic et al. [85]) and the subjective feedback we collected dur-

ing our user-based case study in Chapter 5 reinforces this knowledge. Therefore, our

main contribution is aimed at attempting to maximise the utility of the annotation

process, given a fixed level of acceptable intrusiveness into the user’s lifestyle. We

measured utility as classification accuracy and ultimately quantified the merits of all

the annotation methods in this thesis against this benchmark. Since the accuracy is

a key characteristic of a monitoring system, then we argue that the immediate bene-

fits of accurate classification (accurate day-to-day activity monitoring, more informed

lifestyle change decisions, etc.) can be conveyed back to the user. This would be in line

with notion of intelligibility introduced by Lim and Dey [80] to measure and improve

interactive systems because the user could be made aware of the benefits and therefore

would possibly be willing to collaborate and supply annotations.

As underlined in Chapter 2, it has already been recognised that the process of annotat-

ing data is not effort-free and, consequently, there exists a finite amount of annotations

that can be provided by any one user. In response to that, we modelled the user tol-

erance as not only a number of available annotations, but also as a distribution of

annotation requests across a time horizon. A possible avenue of further research is the

exploration of what are the users’ tolerance levels of interacting with an annotation

device over longer periods of time than those in our user study (which were the order

of hours per participant). With relation to our work, what are the budget specifica-

tions users would opt for in real life? As it surfaces from our participants’ subjective
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feedback, the frequency and/or volume of annotation requests during the user study

were collectively perceived to be intrusive to some extent. This finding mirrors a sim-

ilar user-based case study by Cleland et al. [73] whose participants similarly indicated

they were prompted with annotation requests ”too often”. Therefore, valid questions

include ”What constitute acceptable levels of interruption?” or ”What would the users

decide to be these levels of disruption?”. We believe that answering such questions

would contribute towards understanding the previously mentioned trade-off between

usefulness and intrusion.

Despite these unanswered questions, our work is not invalidated. The annotation

methods proposed throughout this thesis can work with a large class of user tolerance

levels which would not lose significant detail if modelled as a budget (see Chapter 3).

Therefore regardless of the user’s preferred level of disruption, which can be modelled

as a budget specification, our annotation methods can meet it. The trade-off between

usefuless and intrusion could be studied under different budget criteria, such as:

• Firstly, if the user has strong temporal demands about potential annotations,

then a budget-only method (Chapter 3) or a highly constrained budget-based

online active learning method (Section 6.4) would be compatible.

• Secondly, if the user has weaker temporal demands, then a more flexible budget-

based online active learning (Section 6.2) is preferred since it has greater possi-

bilities to improve the classification accuracy with respect to Random Selection.

• Finally, if the user has no temporal constraints (i.e. she is willing to provide

annotations at any time), but she would prefer to reduce her involvement as

much as possible while, at the same time, obtaining the greatest improvement

in classification accuracy, then a budget-agnostic online active learning method

(Chapter 4) is the best option because the decision to annotate depends only on

the potential classification accuracy improvements due to the current segment

under consideration.
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Machine Learning

A constant characteristic throughout all the analyses is the use of classification al-

gorithms. To this end, we used techniques commonly used in activity recognition as

surveyed by Bulling et al. [98]. We set up a data processing pipeline that transformed

raw sensor data into classification estimates of monitored physical activities.

Our work uses accelerometer sensor data, but, as existing research shows (Shoaib et

al. [95], Lara and Labrador [96]), other modalities can be similarly used. Raw sen-

sor readings are transformed into features – a condensed representation suitable for

subsequent machine learning. There is a plethora of features from which to choose

from [96], including statistical measures and frequency-domain-derived quantities. We

use a combination of such features, which shows that our proposed annotation sys-

tem is potentially applicable to existing configurations without major modifications

of the machine learning pipeline. Nonetheless, features from Deep Belief Networks

(Erhan et al. [101]) can be more flexible in picking up underlying patterns in data and

are a strong alternative for physical activity recognition, as shown by Plötz et al. [103].

As defined in Section 2.1.1, an integral part of an annotation is the segmented sensor

data which is characterised by a label. As shown in Chapter 2, segmentation of physical

activities remains a difficult research problem, especially for the non-periodic case

where we are not aware of any evidence that automatic segmentation does not require

some form of prior knowledge about the user’s activities. We nonetheless assume

that there exists an accurate segmentation for non-periodic activities so that we can

evaluate our annotation method to activity segments for this case and to show that

this annotation method is robust enough to cope with this difficult learning scenario

(relative to the periodic case). For periodic activities, which do not exhibit strong

temporal dependencies as non-periodic ones, we proposed an automatic segmentation

procedure adapted from Cooper [119]. Our method has built-in assumptions about

the nature of the activities, which have to be periodic so that short sequences of

individual frames are highly representative of their activity segment. Nonetheless,

unlike Cleland et al. [73] who make very strong assumptions about the order the

activities, our segmentation procedure can work with arbitrary sequences of activities,

- 209 -



Chapter 7: Conclusions

as shown in Chapter 4.

Learning Methodologies

We explored a range of learning methodologies throughout the thesis from fully su-

pervised to semi-supervised. In Chapter 3 we employed fully supervised machine

learning. In contrast, in Chapters 4, 5 and 6 we additionally use semi-supervised

machine learning (Online Active Learning) to improve classification accuracy of HAR

activities. However, as we underlined in Chapter 2, Online Active Learning is not

the only semi-supervised mechanism to improve classification accuracy. For example,

performance improvement for HAR models is also possible with Transfer Learning

[52, 54, 90, 122, 125, 126], Self-Training [78, 123], Co-Training [78, 123] or other Semi-

Supervised Learning methods [55, 124], even though these are not substitutes for

Online Active Learning when it comes to identifying valuable annotations. Nonethe-

less, we argue these methods can potentially complement Online Active Learning by

furthering the performance gains. We exemplify with this high level procedure:

1. Obtain highly critical annotation using Online Active Learning.

2. Update model.

3. Apply complementary SSL technique to further improve model.

4. Use model from Step 2. to scan for potential annotations and eventually repeat

Step 1.

The procedure is illustrated in Fig. 7.1 where we plotted a schematic of the expected

evolution of the model’s performance. Perhaps the model that is used to scan for

annotations is not necessarily the same model that is used to provide the most accu-

rate monitoring. The monitoring model is probably better constructed from different

sources of data, depending on the SSL technique used, whereas the annotation model

is focused exclusively on the user’s ground truth so it may better detect gaps in the

user’s training set.
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Figure 7.1: Complementing Online Active Learning (OAL) with Other Semi-
Supervised Learning (SSL) Methods (Schematic).
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In any case, this is a difficult problem, not least given the large amounts of required

data for successfully applying a complementary SSL technique and for performance

evaluation, and it also presents a complex solution space to navigate. For example,

in our solution in Chapter 5, we opted for updateable classifiers that can be boot-

strapped progressively in constant time and constant memory complexity on a mobile

phone. However, many SSL methods require constructing large sets of throw-away

classifiers or processing whole datasets [123, 164] and we argue this is computationally

too demanding for a mobile processor to cope with. Substantially more computa-

tional power can be harnessed if the data is uploaded to cloud servers which can then

construct the required models. This allows intensive computation for learning HAR

models [52, 69], but it also presents another problem in the form of cost. Should these

servers be centralised and community-shared, they effectively become finite resources

because they may serve numerous remote clients only on a limited basis, otherwise

they would become over-subscribed. This presents at least two-fold complications.

Firstly, should the computational cost of building a user classifier be modelled in some

way? Secondly, could the system request more than one annotation before the model

was re-constructed on the server? In order to introduce diversity in the set of annota-

tions between model updates, one might investigate batch-mode Active Learning [51]

or variants thereof.

Machine Learning in HAR Applications

Our contributions are focused more on the theoretical analysis of variants of online

learning, budget-based learning and on analysis of empirical evidence of learning hu-

man physical activities from user-provided annotations. As such, we our work does

not contribute towards the systems-side analysis of HAR monitoring. Nonetheless, the

central piece in our contributions involves the deployment of an actual mobile HAR

monitor (in Chapter 5) which had to function within the constraints of the experimen-

tal boundaries (user-only input without external interventions; continuous sensing,

preprocessing, monitoring and learning updates for the duration of an entire day at

the office). Without performing a quantitative analysis on system parameters such

as computational power and energy consumption, we can nonetheless report on the
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following qualitative system characteristics that ensured that the experiment protocol

could be met:

• [Mobile Computing Power] The Nexus 5 smartphone used as a base station

to collect the sensor data from the wireless sensors had sufficient computational

power to perform all the required data reception and processing without back-

logging and causing delays to user prompts for annotations.

• [Battery Life] Both the smartphone and the WAX9 wireless sensors had enough

battery life to last for the entire duration of the experiment. All participants

finished in their own time.

However, we mention that in order to not waste battery power on the smart-

phone, the screen had to be kept turned off at all times, except when an annota-

tion was requested for the user. After this, the screen had to be turned off again.

Still, the phone was prevented from going to sleep and, instead, a CPU lock was

used to ensure that the device would not go to sleep when the screen was turned

down and that background continuous HAR monitoring could still take place.
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Consent Form

Participant Identification Number: .......................

Gender: Male / Female

Age: .......................

Study description: Human Activity Recognition (HAR) research seeks to construct

systems that automatically detect and classify individual movements or overarching

behaviours of the user. In order to do build accurate models, sensor data relating to

motion is easily collected , but human judgement is still needed to correctly annotate

the sensor data.

In this user study, we will ask you to wear four bluetooth accelerometer sensors strapped

to your body and interact with a smartphone app (which we provide) whenever you are

prompted to provide input. You will be asked to perform several light intensity physical

activities which will be explained to you. Each activity can be done as many times

as you like, preferably 4-5 times each before midday and 4-5 times after midday, for

as long as you prefer, and different activities can be interleaved in any order and

with breaks in between. As you perform these activities, the smartphone app collects

acceleration data from the four sensors and the smartphone’s onboard accelerometer

and will occasionally ask you to name the activity you were performing 10-20 seconds

before the input prompt. The input request is accompanied by audio and vibratory

feedback.

You will be asked to complete three short paper questionnaires – one immediately before

the start of the experiment and two immediately after the end the experiment.
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1. I confirm that I have read and understand the study description for this study.

I have had the opportunity to consider the information, ask questions and have

had these answered satisfactorily.

2. I understand that my participation is voluntary and that I am free to withdraw

at any time, without giving any reason.

3. I understand that any information given by me will be anonymized and may be

used in future reports, articles or presentations by the research team.

4. I confirm that I am fit to perform the physical exertion required during the

study, that the level of physical activity is below vigurous for me and that I will

perform the physical activities in a safe manner so that I do not endanger myself

or anyone else.

5. I agree to take part in the above study.

Researcher .......................

Date .......................

Signature .......................

Name of participant .......................

Date .......................

Signature .......................
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Pre-experiment questionnaire

1. The app is designed so that it will likely ask you to annotate a newly performed

activity which you hadn’t performed before and you will also occasionally be

asked for input which reinforces already known activities. Subsequently you will

be asked, at random, to provide input for about 20% of all detected activities.

What do you think of this number and frequency of input requests that will be

directed at you?

2. Do you have any other comments?
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Post-experiment questionnaire 1

1. What do you think of the total number of requests?

2. What do you think of the frequency of requests?

3. Do you think the feedback you provided helped the app learn?

4. When you were asked to name activities, did you have trouble remembering or

deciding?

5. Do you think the questions were delivered in a timely manner? Would you have

preferred them sooner? If so, when?

6. Do you think you would have coped with questions aimed at activities in the

more distant past?

7. Do you have any other comments?
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Post-experiment questionnaire 3

1. Do you think the feedback you provided helped the app learn?

2. Taking into account the activities and the environment in which you performed

the activities, would be more tempted you incorporate this sort of physical ex-

ertion in your daily routine?

3. If you were to use this app regularly:

(a) would you like it to learn more about the same activities?

(b) would you like learn about a modified or another set of activities altogether?

Which activities?

(c) would you like to be able to choose and modify the activities as you use the

application?

(d) would you like to apply it to another situation, e.g. specific fitness routines,

sports, medical rehabilitation or something else?

4. Would you like to control the frequency or total number of requests from the

app?

5. Some of the annotation requests were made on the basis of them being expected

to lead to increased accuracy gains. Would you sacrifice such gains so that you

attain a lower level of interruption?

6. Which features of the existing system do you think are the most valuable to you?

7. What other features would you like to see?

8. What features you would like to see removed from the system?

9. Do you have any other comments?
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Participant 1

Pre-experiment questionnaire

1. The app is designed so that it will likely ask you to annotate a newly performed

activity which you hadn’t performed before and you will also occasionally be

asked for input which reinforces already known activities. Subsequently you will

be asked, at random, to provide input for about 20% of all detected activities.

What do you think of this number and frequency of input requests that will be

directed at you?

I feel that giving input of 20% of the time will probably not interfere very much

with my day-to-day activities. At this time, I feel that 20% may not be enough

to get useful data for the app, but I am not an expert on how the app figures out

what activity I am doing.

2. Do you have any other comments?

Not at this time.
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Post-experiment questionnaire 1

1. What do you think of the total number of requests?

It was a little annoying as it would often make many requests while I was sitting

and not doing anything.

2. What do you think of the frequency of requests?

The frequency seemed to change. As I said before, it seemed like most requests

would come while I was sitting. While I was doing the activities, it seemed like

it wouldn’t ask as much.

3. Do you think the feedback you provided helped the app learn?

I hope so. It was sometimes difficult to tell if the app was asking for what I

was just doing a minute ago or if it was asking for what I had started doing 30

seconds ago.

4. When you were asked to name activities, did you have trouble remembering or

deciding?

Yes, this was especially the case when I was changing activities. It was no prob-

lem when I was already in the middle of an activity.

5. Do you think the questions were delivered in a timely manner? Would you have

preferred them sooner? If so, when?

In general, they were timely. I think I would have preferred to arrive the moment

I changed activities.

6. Do you think you would have coped with questions aimed at activities in the

more distant past?

No, I think that would have made the study a lot more difficult.

7. Do you have any other comments?

Nothing about the study itself, but besides the annoyance of being requested for

input throughout the day, I continually was asked why I had a phone strapped to

- 221 -



Chapter C: Questionnaire Answers

my arm. This led to the added annoyance of explaining that I was participating

in a study
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Post-experiment questionnaire 2

1. Do you think the feedback you provided helped the app learn?

Yes, according to the plots I saw, the app was able to predict my activity better.

2. Taking into account the activities and the environment in which you performed

the activities, would be more tempted you incorporate this sort of physical ex-

ertion in your daily routine?

No, not really. The activities are kind of out of place in my work environment.

3. If you were to use this app regularly:

(a) would you like it to learn more about the same activities?

Yes, I would like it to learn more information about how the activities are

affecting my health.

(b) would you like learn about a modified or another set of activities altogether?

Which activities?

I would also like it to learn about running, cycling, and perhaps some other

types of stretches.

(c) would you like to be able to choose and modify the activities as you use the

application?

Yes, this would help me tune the routine to my lifestyle.

(d) would you like to apply it to another situation, e.g. specific fitness routines,

sports, medical rehabilitation or something else?

I think it would be very useful in other exercise and sport related routines.

4. Would you like to control the frequency or total number of requests from the

app?

Yes. Sometimes more are ok, but often times I would prefer fewer requests.

5. Some of the annotation requests were made on the basis of them being expected

to lead to increased accuracy gains. Would you sacrifice such gains so that you

attain a lower level of interruption?
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Yes, and I wouldn’t mind performing some of the activities longer to help boost

the accuracy.

6. Which features of the existing system do you think are the most valuable to you?

Having an app that can learn what activities I am performing to tell me how long

I was doing each task.

7. What other features would you like to see?

I would like to see integration with some system that could measure calories

burned or to remind me to do other things instead of sitting all day.

8. What features you would like to see removed from the system?

The sensors are a bit annoying, but I don’t know how to make the system work

without them.

9. Do you have any other comments?

Thanks for the interesting study. I hope my participation helps.
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Participant 2

Pre-experiment questionnaire

1. The app is designed so that it will likely ask you to annotate a newly performed

activity which you hadn’t performed before and you will also occasionally be

asked for input which reinforces already known activities. Subsequently you will

be asked, at random, to provide input for about 20% of all detected activities.

What do you think of this number and frequency of input requests that will be

directed at you?

Seems reasonable. I suppose it depends on the robustness of your code! If it were

an all day, everyday thing, it might be obnoxious though.

2. Do you have any other comments?
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Post-experiment questionnaire 1

1. What do you think of the total number of requests?

At times it was a bit much, particularly if continuing the same activity (i.e.

standing or sitting, but I didn’t mind the total # too much. As mentioned in the

pre-study questionnaire, if required all day, everyday, it would be too much.

2. What do you think of the frequency of requests?

The timing seemed mostly good, but there were times when I performed an activity

and no input was requested. I wasn’t sure if this meant it couldn’t differentiate

my current activity from my previous one.

3. Do you think the feedback you provided helped the app learn?

Yes, overall. However, it didn’t seem like the torso exercises were picked up as

easily by the app.

4. When you were asked to name activities, did you have trouble remembering or

deciding?

On occasions, especially if I had been shifting through multiple activities (i.e.

walking then stopping then walking again like at a crosswalk) that I wasn’t sure

which activity was being detected. And once I knew which activity I had been

doing (forward leans), but accidentally logged it as side leans.

5. Do you think the questions were delivered in a timely manner? Would you have

preferred them sooner? If so, when?

I think instead of sooner, a smaller range of time would be more useful (i.e. a

5 second difference instead of 10). Because there were times when the activity

I was doing 10 seconds before and the one 20 seconds before were different, I

had to settle on reporting whatever was being performed an average 15 seconds

to stay consistent.

6. Do you think you would have coped with questions aimed at activities in the

more distant past?

No! I have poor memory.
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7. Do you have any other comments?

No.

- 227 -



Chapter C: Questionnaire Answers

Post-experiment questionnaire 2

1. Do you think the feedback you provided helped the app learn?

Yes. The trend shows that the accuracy improved with more annotations with a

few exceptions. Since the app/sensors crashed twice early in the experiment and

there are two downward spikes early on, this may be correlated.

2. Taking into account the activities and the environment in which you performed

the activities, would be more tempted you incorporate this sort of physical ex-

ertion in your daily routine?

Yes and no. I wouldn’t be against taking an ergonomic 10 minute stretch/exercise

break on occasions but not all the time!

3. If you were to use this app regularly:

(a) would you like it to learn more about the same activities?

Yes.

(b) would you like learn about a modified or another set of activities altogether?

Which activities?

Yes. I think other exercises like lunges (with sensors on two legs) or pushups

(they are called something else here) would be great additions.

(c) would you like to be able to choose and modify the activities as you use the

application?

I could see the usefulness of adding this feature, but I’m unsure how exactly

I’d want to track my activity.

(d) would you like to apply it to another situation, e.g. specific fitness routines,

sports, medical rehabilitation or something else?

Yes, as previously mentioned in 3b. Especially when performing an exercise

routine, it would be useful for performance tracking.

4. Would you like to control the frequency or total number of requests from the

app?

Yes, especially when not doing much of anything (like sitting!).
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5. Some of the annotation requests were made on the basis of them being expected

to lead to increased accuracy gains. Would you sacrifice such gains so that you

attain a lower level of interruption?

Maybe a little, but couldn’t the app reach a threshold accurach and then start

decreasing requests?

6. Which features of the existing system do you think are the most valuable to you?

Mostly the types of exercises performed (active vs. total incidences of non-active

exercises (i.e. sitting or standing). If someone wanted to improve their fitness

regimen, this could be a basic metric that they should exercise more.

7. What other features would you like to see?

I think the scrolling to select the activity could lead to mistakes. Perhaps a pop-

up educated guess list of activities instead? Oh, and better sensors (in terms of

comfort while wearing them).

8. What features you would like to see removed from the system?

I can’t think of anything per se.

9. Do you have any other comments?

Nope!
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Participant 3

Pre-experiment questionnaire

1. The app is designed so that it will likely ask you to annotate a newly performed

activity which you hadn’t performed before and you will also occasionally be

asked for input which reinforces already known activities. Subsequently you will

be asked, at random, to provide input for about 20% of all detected activities.

What do you think of this number and frequency of input requests that will be

directed at you?

Seems ok, but might be annoying after some time. We will see.

2. Do you have any other comments?

I like strapping stuff to my body.
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Post-experiment questionnaire 1

1. What do you think of the total number of requests?

I think it was appropriate. Some of the requests were missing I think (after

exercises) but not many of them.

2. What do you think of the frequency of requests?

OK! During one period of 15-20 min though the frequency got really high for

some reason (while seating) and every 30-60 sec request would appear.

3. Do you think the feedback you provided helped the app learn?

I think so.

4. When you were asked to name activities, did you have trouble remembering or

deciding?

Not at all. It was very intuitive (almost subconscious) after I got to know the

interface.

5. Do you think the questions were delivered in a timely manner? Would you have

preferred them sooner? If so, when?

Maybe 5-10 sec instead of 10-20. Especially after the special activities (squats,

etc.)

6. Do you think you would have coped with questions aimed at activities in the

more distant past?

No, I don’t think so.

7. Do you have any other comments?

Nope
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Post-experiment questionnaire 2

1. Do you think the feedback you provided helped the app learn?

Definitely yes.

2. Taking into account the activities and the environment in which you performed

the activities, would be more tempted you incorporate this sort of physical ex-

ertion in your daily routine?

Yes, I would be more tempted. What would really help though is a change in the

environment that would facilitate those kind of activities.

3. If you were to use this app regularly:

(a) would you like it to learn more about the same activities?

Sure.

(b) would you like learn about a modified or another set of activities altogether?

Which activities?

Walking up the stairs.

(c) would you like to be able to choose and modify the activities as you use the

application?

Yes. And maybe input your own activities too.

(d) would you like to apply it to another situation, e.g. specific fitness routines,

sports, medical rehabilitation or something else?

Running or football.

4. Would you like to control the frequency or total number of requests from the

app?

Yes, especially while sitting.

5. Some of the annotation requests were made on the basis of them being expected

to lead to increased accuracy gains. Would you sacrifice such gains so that you

attain a lower level of interruption?

Not necessarily.
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6. Which features of the existing system do you think are the most valuable to you?

N/A

7. What other features would you like to see?

No idea

8. What features you would like to see removed from the system?

So far, none of them were particularly removable. I liked them all.

9. Do you have any other comments?

Nope. Thank you :)
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Participant 4

Pre-experiment questionnaire

1. The app is designed so that it will likely ask you to annotate a newly performed

activity which you hadn’t performed before and you will also occasionally be

asked for input which reinforces already known activities. Subsequently you will

be asked, at random, to provide input for about 20% of all detected activities.

What do you think of this number and frequency of input requests that will be

directed at you?

I think the number and the frequency of input request is fine.

2. Do you have any other comments?

No
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Post-experiment questionnaire 1

1. What do you think of the total number of requests?

Too many request in the sitting or standing position

2. What do you think of the frequency of requests?

Quite high frequency of requests in sitting position.

3. Do you think the feedback you provided helped the app learn?

Yes. I interacted with the application quite a lot.

4. When you were asked to name activities, did you have trouble remembering or

deciding?

No

5. Do you think the questions were delivered in a timely manner? Would you have

preferred them sooner? If so, when?

Sometimes they were delivered quire late. I would prefer having them sooner

(approx. 5 sec.)

6. Do you think you would have coped with questions aimed at activities in the

more distant past?

No. I think the question should be asked within 5-10 sec after the activity.

7. Do you have any other comments?

Good recognition of walking.
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Post-experiment questionnaire 2

1. Do you think the feedback you provided helped the app learn?

Yes. I think my feedback helped because the learning curved reached the value of

about 0.9

2. Taking into account the activities and the environment in which you performed

the activities, would be more tempted you incorporate this sort of physical ex-

ertion in your daily routine?

Yes.

3. If you were to use this app regularly:

(a) would you like it to learn more about the same activities?

Yes

(b) would you like learn about a modified or another set of activities altogether?

Which activities?

Yes. Learning recognising running or jumping would make it more applica-

ble to sport activities

(c) would you like to be able to choose and modify the activities as you use the

application?

Yes. I would like be able to define my own activities and let the app learn

them.

(d) would you like to apply it to another situation, e.g. specific fitness routines,

sports, medical rehabilitation or something else?

Yes.

4. Would you like to control the frequency or total number of requests from the

app?

Yes. Because sometimes it is very irritating

5. Some of the annotation requests were made on the basis of them being expected

to lead to increased accuracy gains. Would you sacrifice such gains so that you

attain a lower level of interruption?
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No.

6. Which features of the existing system do you think are the most valuable to you?

The ability to label the activity

7. What other features would you like to see?

Refining your own activity

8. What features you would like to see removed from the system?

None.

9. Do you have any other comments?

Need to work on recognising sitting and standing as these activities are the main

sources of the requests
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Participant 5

Pre-experiment questionnaire

1. The app is designed so that it will likely ask you to annotate a newly performed

activity which you hadn’t performed before and you will also occasionally be

asked for input which reinforces already known activities. Subsequently you will

be asked, at random, to provide input for about 20% of all detected activities.

What do you think of this number and frequency of input requests that will be

directed at you?

It sounds fine to me

2. Do you have any other comments?

No
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Post-experiment questionnaire 1

1. What do you think of the total number of requests?

It’s okay on overall but it might be differently (equally) distributed across the day

2. What do you think of the frequency of requests?

During the afternoon it was a bit too frequent

3. Do you think the feedback you provided helped the app learn?

Yes because it was “requesting” while I was doing the “specifics” exercises. So it

knew exactly what I was doing

4. When you were asked to name activities, did you have trouble remembering or

deciding?

No, just a bit at the beginning

5. Do you think the questions were delivered in a timely manner? Would you have

preferred them sooner? If so, when?

Slightly sooner, after the device realised a “change” in the type of activity

6. Do you think you would have coped with questions aimed at activities in the

more distant past?

Probably not

7. Do you have any other comments?

No.
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Post-experiment questionnaire 2

1. Do you think the feedback you provided helped the app learn?

Yes as across the time the accuracy trend increased

2. Taking into account the activities and the environment in which you performed

the activities, would be more tempted you incorporate this sort of physical ex-

ertion in your daily routine?

Only if the activities could be short, as 5 mins in total every 4 hours

3. If you were to use this app regularly:

(a) would you like it to learn more about the same activities?

Yes it should focus on the same activities in order to predict and learn better

(b) would you like learn about a modified or another set of activities altogether?

Which activities?

Another set should use instead of the control one, not together. Sport activ-

ities would be interested, maybe applied to football (predict different actions

of players)

(c) would you like to be able to choose and modify the activities as you use the

application?

Yes

(d) would you like to apply it to another situation, e.g. specific fitness routines,

sports, medical rehabilitation or something else?

As in answer b) it would be interesting in sport/gyms activities.

4. Would you like to control the frequency or total number of requests from the

app?

Yes, in order to set according to how busy I am.

5. Some of the annotation requests were made on the basis of them being expected

to lead to increased accuracy gains. Would you sacrifice such gains so that you

attain a lower level of interruption?
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No, I prefer a better accuracy.

6. Which features of the existing system do you think are the most valuable to you?

The real-time prediction (type of movement)

7. What other features would you like to see?

A live accuracy trend in order to check how the system is learning. A suggestion

on the “worse” predicted activity in order to record it better.

8. What features you would like to see removed from the system?

None

9. Do you have any other comments?

No.
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Participant 6

Pre-experiment questionnaire

1. The app is designed so that it will likely ask you to annotate a newly performed

activity which you hadn’t performed before and you will also occasionally be

asked for input which reinforces already known activities. Subsequently you will

be asked, at random, to provide input for about 20% of all detected activities.

What do you think of this number and frequency of input requests that will be

directed at you?

I think it would be 100 times.

2. Do you have any other comments?

1) I suggest to include more activities and expand the target audience from of-

fice workers to more diverse ones. 2) You can consider new capabilities of iOS

(Health module) to expand your research.
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Post-experiment questionnaire 1

1. What do you think of the total number of requests?

around 40 requests, it was much less than I expected.

2. What do you think of the frequency of requests?

It was not frequent on the first half of the day, but on the second half I was asked

nearly every 10 minutes.

3. Do you think the feedback you provided helped the app learn?

Yes

4. When you were asked to name activities, did you have trouble remembering or

deciding?

Yes, especially when it was repetitive walking and standing combination.

5. Do you think the questions were delivered in a timely manner? Would you have

preferred them sooner? If so, when?

No, I think they were more activity sensitive. In same cases I wish it was earlier,

especially on walking and standing case.

6. Do you think you would have coped with questions aimed at activities in the

more distant past?

Definitely yes.

7. Do you have any other comments?

I wish we could have included more types of activities.
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Post-experiment questionnaire 2

1. Do you think the feedback you provided helped the app learn?

Yes, considering the number of requests, I guess the feedback helped the app a

little. I am sure with more requests, the results would increase.

2. Taking into account the activities and the environment in which you performed

the activities, would be more tempted you incorporate this sort of physical ex-

ertion in your daily routine?

Yes, although some activities might look not appropriate in the office while others

are working around especially squats.

3. If you were to use this app regularly:

(a) would you like it to learn more about the same activities?

I might include this type of learning in the mobile from my activities as a

privacy issue so I might be a bit cautious where and how much I let it learn.

(b) would you like learn about a modified or another set of activities altogether?

Which activities?

Not at the moment.

(c) would you like to be able to choose and modify the activities as you use the

application?

Yes

(d) would you like to apply it to another situation, e.g. specific fitness routines,

sports, medical rehabilitation or something else?

Yes

4. Would you like to control the frequency or total number of requests from the

app?

I like to have control on where the requests happens. E.g.: I want to give feedback

when I am only at work or gym and in that areas, I can respond to as many

number of requests as asked.
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5. Some of the annotation requests were made on the basis of them being expected

to lead to increased accuracy gains. Would you sacrifice such gains so that you

attain a lower level of interruption?

In early stages which the learning is not mature enough, I am happy to give

annotations but after a while, I might get annoyed if I were asked frequently.

6. Which features of the existing system do you think are the most valuable to you?

The fact that it makes me do some exercise since at work, I am sitting most of

the time.

7. What other features would you like to see?

It might be good if you could provide a recommender which can suggest me do

some customized specific exercises based on my previous actions.

8. What features you would like to see removed from the system?

Number of sensors can be less.

9. Do you have any other comments?

Do hope to see it coming as a real-world application.
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Participant 7

Pre-experiment questionnaire

1. The app is designed so that it will likely ask you to annotate a newly performed

activity which you hadn’t performed before and you will also occasionally be

asked for input which reinforces already known activities. Subsequently you will

be asked, at random, to provide input for about 20% of all detected activities.

What do you think of this number and frequency of input requests that will be

directed at you?

The random 20% seems like a low number which won’t be annoying, the occas-

sionally asking for input to reinforce activities seems as though it may be a little

much but it depends how often ocassionally is.

2. Do you have any other comments?

I am interested to see if the random 20% will be more or less frequent than the

first period.
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Post-experiment questionnaire 1

1. What do you think of the total number of requests?

Total number of requests felt like a lot but mainly after the second period, they

were more often.

2. What do you think of the frequency of requests?

frequency of requests was managable for the first period but annoying and to

many for the second. Oddly the second period would have a high frequency for

10 minutes then nothing for ˜30 then a high frequency again.

3. Do you think the feedback you provided helped the app learn?

I think for the first period yes, second no.

4. When you were asked to name activities, did you have trouble remembering or

deciding?

I had trouble with the 10/20 second delay as I am not very good at timing. So

often from walking -> standing I would be unsure what it was asking me about.

10/20 seconds is too long.

5. Do you think the questions were delivered in a timely manner? Would you have

preferred them sooner? If so, when?

Sooner within 1-2 seconds maximum (although I may just be impatient), however

it is hard to judge 10-20 seconds

6. Do you think you would have coped with questions aimed at activities in the

more distant past?

No I wouldn’t have remebered unless prompted before hand to remember exactly

what I was doing.

7. Do you have any other comments?

I found the sensors a little uncomfortable after a few hours and they got in the

way a bit.
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Post-experiment questionnaire 2

1. Do you think the feedback you provided helped the app learn?

I would say some did however for activities such as torso movement & squats I

did not seem to.

2. Taking into account the activities and the environment in which you performed

the activities, would be more tempted you incorporate this sort of physical ex-

ertion in your daily routine?

I would definitely add the torso movements in and more frequent walking as it

helped to loosen my back up.

3. If you were to use this app regularly:

(a) would you like it to learn more about the same activities?

I would maybe incorporate more activities.

(b) would you like learn about a modified or another set of activities altogether?

Which activities?

So running, maybe more core activities like situps, but that would be in the

thought process of the application being a sports performance app.

(c) would you like to be able to choose and modify the activities as you use the

application?

This would be good as you progressed.

(d) would you like to apply it to another situation, e.g. specific fitness routines,

sports, medical rehabilitation or something else?

Yes so training and keeping a record of what you were doing. But it would

be really good for sports physio.

4. Would you like to control the frequency or total number of requests from the

app?

Maybe but I liked the first period where it asked you as it was learning.
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5. Some of the annotation requests were made on the basis of them being expected

to lead to increased accuracy gains. Would you sacrifice such gains so that you

attain a lower level of interruption?

No so this is the same as the above answer I liked it learning and I felt it asked

a lot less quite quickly in the first period.

6. Which features of the existing system do you think are the most valuable to you?

The graph of annotations was interesting as it made you think more about what

you were doing through the day.

7. What other features would you like to see?

Shorter interval between asking what you were doing i.e not 10-20 seconds.

8. What features you would like to see removed from the system?

Random interval were a little annoying.

9. Do you have any other comments?

If it was an application for rehabilitation maybe a prettier UI with encouragement

for users - just a thought.
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Participant 8

Pre-experiment questionnaire

1. The app is designed so that it will likely ask you to annotate a newly performed

activity which you hadn’t performed before and you will also occasionally be

asked for input which reinforces already known activities. Subsequently you will

be asked, at random, to provide input for about 20% of all detected activities.

What do you think of this number and frequency of input requests that will be

directed at you?

I am ready to provide any necessary inputs.

2. Do you have any other comments?

None
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Post-experiment questionnaire 1

1. What do you think of the total number of requests?

The total number of request were not too many. They fit well into my schedule.

2. What do you think of the frequency of requests?

The requests were well spaced and not too frequent.

3. Do you think the feedback you provided helped the app learn?

I provided the most accurate feedback that I can. I believe that this helped the

app to learn.

4. When you were asked to name activities, did you have trouble remembering or

deciding?

Not really. The 10 to 20 seconds period for activity feedback was short-enough to

readily remember the recent-past activity. None-the-less, a real-time notification

be appreciated.

5. Do you think the questions were delivered in a timely manner? Would you have

preferred them sooner? If so, when?

The questions were very timely. I didn’t prefer them any sooner.

6. Do you think you would have coped with questions aimed at activities in the

more distant past?

No, it would be quite difficult remembering the activities.

7. Do you have any other comments?

No.
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Post-experiment questionnaire 2

1. Do you think the feedback you provided helped the app learn?

I think my feedback helped the app learn, since most of my activities were recorded

and adequately analysed and represented in the results produced.

2. Taking into account the activities and the environment in which you performed

the activities, would be more tempted you incorporate this sort of physical ex-

ertion in your daily routine?

Yes, I think these activities provided a source of exercising in my daily routine.

3. If you were to use this app regularly:

(a) would you like it to learn more about the same activities?

No, I will prefer that it captures other activities in addition to the current

activities.

(b) would you like learn about a modified or another set of activities altogether?

Which activities?

- Arm activities(eg. during stretching)

- Leg activities (eg. running)

NB: People can go running during lunchtime or while climbing the staircase.

(c) would you like to be able to choose and modify the activities as you use the

application?

Yes, some days may not register certain activities and it will be good to

exclude such activities.

(d) would you like to apply it to another situation, e.g. specific fitness routines,

sports, medical rehabilitation or something else?

Yes, this can be applied to other routines that I will be involved in.

4. Would you like to control the frequency or total number of requests from the

app?

This option will be a good addition, but the current frequency of requests do not

bother me at all.
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5. Some of the annotation requests were made on the basis of them being expected

to lead to increased accuracy gains. Would you sacrifice such gains so that you

attain a lower level of interruption?

No, I will rather choose accuracy to get a good representation of my activities.

6. Which features of the existing system do you think are the most valuable to you?

The notification feature seems quite valuable to me.

7. What other features would you like to see?

A feature that presents a final analysis of my day’s activities will be a good

addition.

8. What features you would like to see removed from the system?

Not applicable.

9. Do you have any other comments?

No.
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Participant 9

Pre-experiment questionnaire

1. The app is designed so that it will likely ask you to annotate a newly performed

activity which you hadn’t performed before and you will also occasionally be

asked for input which reinforces already known activities. Subsequently you will

be asked, at random, to provide input for about 20% of all detected activities.

What do you think of this number and frequency of input requests that will be

directed at you?

I think it’s ok for me.

2. Do you have any other comments?

- 254 -



Chapter C: Questionnaire Answers

Post-experiment questionnaire 1

1. What do you think of the total number of requests?

Too much

2. What do you think of the frequency of requests?

Sometime too frequency

3. Do you think the feedback you provided helped the app learn?

I don’t know

4. When you were asked to name activities, did you have trouble remembering or

deciding?

No

5. Do you think the questions were delivered in a timely manner? Would you have

preferred them sooner? If so, when?

It’s ok.

6. Do you think you would have coped with questions aimed at activities in the

more distant past?

I don’t know

7. Do you have any other comments?
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Post-experiment questionnaire 2

1. Do you think the feedback you provided helped the app learn?

I am not sure

2. Taking into account the activities and the environment in which you performed

the activities, would be more tempted you incorporate this sort of physical ex-

ertion in your daily routine?

Yes, I am very interesting how many activities I did a day

3. If you were to use this app regularly:

(a) would you like it to learn more about the same activities?

No

(b) would you like learn about a modified or another set of activities altogether?

Which activities?

I have no idea

(c) would you like to be able to choose and modify the activities as you use the

application?

Yes.

(d) would you like to apply it to another situation, e.g. specific fitness routines,

sports, medical rehabilitation or something else?

Sports

4. Would you like to control the frequency or total number of requests from the

app?

Yes, this is very important.

5. Some of the annotation requests were made on the basis of them being expected

to lead to increased accuracy gains. Would you sacrifice such gains so that you

attain a lower level of interruption?

Yes
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6. Which features of the existing system do you think are the most valuable to you?

except sitting

7. What other features would you like to see?

like sport things

8. What features you would like to see removed from the system?

I don’t know

9. Do you have any other comments?
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Participant 10

Pre-experiment questionnaire

1. The app is designed so that it will likely ask you to annotate a newly performed

activity which you hadn’t performed before and you will also occasionally be

asked for input which reinforces already known activities. Subsequently you will

be asked, at random, to provide input for about 20% of all detected activities.

What do you think of this number and frequency of input requests that will be

directed at you?

Sounds reasonable for a one off study participation. Might be too invasive and

distracting if updates occurred continuously throughout a normal working period.

If the updates are quick (sub 5 seconds) then perhaps it would be fine.

2. Do you have any other comments?
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Post-experiment questionnaire 1

1. What do you think of the total number of requests?

The total number of requests was fine for an “interested” audience (people who

already log their activity to gain personal psychological insight).

2. What do you think of the frequency of requests?

Had the requests been more consistently “spaced” throughout the time period I

think that would have been better. As it was there were periods of very frequent

questions which could get intrusive.

3. Do you think the feedback you provided helped the app learn?

It is difficult to judge. Perhaps if the app were to present it’s guess of the activity

you were recently performing (which you could then confirm or correct) then

it would be easier to see whether your feedback was having a +ve impact on

accuracy.

4. When you were asked to name activities, did you have trouble remembering or

deciding?

Occasionally it was difficult to decide whether you were walking or standing.

It would be good to ask the user to observe ˜30 seconds of stillness after each

activity, so that they are more clearly demarked.

5. Do you think the questions were delivered in a timely manner? Would you have

preferred them sooner? If so, when?

The time elapsed between activity end question was generally fine, however it

would be good to see an indicator of how much time has passed since the end of

the Activity which the app is asking about.

6. Do you think you would have coped with questions aimed at activities in the

more distant past?

No - location data and other abstract forms of physical telemetry for the activ-

ity in question could increase the time gap without increasing the difficulty in

remembering.
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7. Do you have any other comments?

I could see the benefit to a regime of regularly performing and tracking physical

activity throughout the work day. I felt like I had more energy and was productive

for longer. Furthermore, the required breaks from work allows users to benefit

from the proven impact of altered work schedules with many short breaks (see

Pomodoro technique).
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Post-experiment questionnaire 2

1. Do you think the feedback you provided helped the app learn?

Not particularly - there does not appear to be a significant upward trend in the

accuracy of the model over time, which indicates that the app is not learning well

from my feedback.

2. Taking into account the activities and the environment in which you performed

the activities, would be more tempted you incorporate this sort of physical ex-

ertion in your daily routine?

Yes - as previously mentioned - I have noticed feeling more energic and therefore

productive, lpus the impact on my day would be minimal as I already take several

short breaks at regular intervals throughout the day (Pomodoro).

3. If you were to use this app regularly:

(a) would you like it to learn more about the same activities?

Not necessarily. I think users should be able to pick activities from a larger

set.

(b) would you like learn about a modified or another set of activities altogether?

Which activities?

Some activities I would like to see be: traversing stairs, sit ups.

(c) would you like to be able to choose and modify the activities as you use the

application?

Yes.

(d) would you like to apply it to another situation, e.g. specific fitness routines,

sports, medical rehabilitation or something else?

The flexibility to learn series of activities constituting either a fitness routine

or a physio therapy session would be a very good addition.

4. Would you like to control the frequency or total number of requests from the

app?
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Not in a fine grained fashion, though a slider which correlated to request frequency

would make the app more useful to a wider audience.

5. Some of the annotation requests were made on the basis of them being expected

to lead to increased accuracy gains. Would you sacrifice such gains so that you

attain a lower level of interruption?

No - if the model is to inaccurate then any interruption was pointless.

6. Which features of the existing system do you think are the most valuable to you?

The ability to discard a question, the answer to which you are unsure of, is

valuable

7. What other features would you like to see?

- Summaries of activities visible by a user throughout the day.

- Reminders to perform activity (of some kind) during long periods of relative

inactivity

8. What features you would like to see removed from the system?

- N/A

9. Do you have any other comments?

- N/A
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The code used to analyse data and to compile the results in this thesis and the dataset

used in Chapter 5 can be found in the following git repository: https://github.com/

miu/phd_thesis_code_and_data

Each analysis consists of a number of a number of R scripts with function definitions,

which include all the simulations and algorithms evaluated in the present thesis, runner

scripts which invoke the simulations to process the data and associated plotting scripts

which were used to compile the presentations of the results.

For each chapter, the scripts are as follows (paths are relative to main folder):

• Chapter 3:

– code/R/do.opportunity.budget.R

– code/R/plot.opportunity.budget.R

• Chapter 4:

Periodic activities:

– code/R/al.usc.had/run.R (and using the SimulateOnlineALForSubject

function) – for annotating single frames

– code/R/al.usc.had/plot.* – to produce the graphs

– code/R/usc.had.seg.al/do.index.sampling.R – incorporates the seg-

mentation function

– code/R/usc.had.seg.al/

do.usc.had.ideal.segments.activity.expansion.R – for analysing a

biased distribution of activities
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– code/R/usc.had.seg.al/plot.* – to produce the graphs

Nonperiodic activities (code/R/opportunity.butterworth.dtw/):

– run.simulation.R

– plot.exploratory.baseline.and.pop.R

• Chapter 5:

– code/R/user.study/do.compute.performance.R

– code/R/user.study/do.plot.R

• Chapter 6:

Periodic activities (code/R/al.usc.had/):

– run.modulated.R – without additional constraint

– run.modulated.beta.R – with additional constraint

– plot.*

Nonperiodic activities (code/R/opportunity.butterworth.dtw/):

– run.simulation.modulated.beta.R

– plot.modulated.budget.R – without additional constraint

– plot.modulated.budget.beta.R – with additional constraint

The code for the Android app used in Chapter 5 is located in the following locations:

• With Speculative NAD: code/speculative-nad

• With Restrained NAD: code/restrained-nad

The dataset collected as part of Chapter 5 is located in the following location: dataset/
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[36] H. Gjoreski, B. Kaluža, M. Gams, R. Milić, and M. Luštrek, “Ensembles of multi-
ple sensors for human energy expenditure estimation,” in Proceedings of the 2013
ACM International Joint Conference on Pervasive and Ubiquitous Computing,
UbiComp ’13, (New York, NY, USA), pp. 359–362, ACM, 2013.

[37] V. T. van Hees, R. C. van Lummel, and K. R. Westerterp, “Estimating activity-
related energy expenditure under sedentary conditions using a tri-axial seismic
accelerometer,” Obesity, vol. 17, no. 6, pp. 1287–1292, 2009.

[38] R. Chavarriaga, H. Sagha, A. Calatroni, S. T. Digumarti, G. Tröster, J. D. R.
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[129] I. Žliobaitė, A. Bifet, B. Pfahringer, and G. Holmes, “Active learning with evolv-
ing streaming data,” in Machine Learning and Knowledge Discovery in Databases
(D. Gunopulos, T. Hofmann, D. Malerba, and M. Vazirgiannis, eds.), vol. 6913
of Lecture Notes in Computer Science, pp. 597–612, Springer Berlin Heidelberg,
2011.

[130] E. Hoque and J. Stankovic, “Aalo: Activity recognition in smart homes using
active learning in the presence of overlapped activities,” in Pervasive Computing
Technologies for Healthcare (PervasiveHealth), 2012 6th International Confer-
ence on, 2012.

[131] Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra, and K. Aberer, “Energy-
efficient continuous activity recognition on mobile phones: An activity-adaptive
approach,” in Proceedings of the 2012 16th Annual International Symposium on
Wearable Computers (ISWC), ISWC ’12, (Washington, DC, USA), pp. 17–24,
IEEE Computer Society, 2012.

[132] J. Smith, N. Dulay, M. Toth, O. Amft, and Y. Zhang, “Exploring concept drift
using interactive simulations,” in Pervasive Computing and Communications
Workshops (PERCOM Workshops), 2013 IEEE International Conference on,
pp. 49–54, March 2013.

[133] J. Zhu, H. Wang, E. Hovy, and M. Ma, “Confidence-based stopping criteria for
active learning for data annotation,” ACM Trans. Speech Lang. Process., vol. 6,
pp. 3:1–3:24, Apr. 2010.

[134] A. Vlachos, “A stopping criterion for active learning,” Comput. Speech Lang.,
vol. 22, pp. 295–312, July 2008.

[135] F. Laws and H. Schätze, “Stopping criteria for active learning of named entity
recognition,” in Proceedings of the 22Nd International Conference on Computa-
tional Linguistics - Volume 1, COLING ’08, (Stroudsburg, PA, USA), pp. 465–
472, Association for Computational Linguistics, 2008.

[136] K. Shin and P. Ramanathan,“Real-time computing: a new discipline of computer
science and engineering,” Proceedings of the IEEE, vol. 82, pp. 6–24, Jan 1994.

[137] E. Tapia, S. Intille, W. Haskell, K. Larson, J. Wright, A. King, and R. Friedman,
“Real-time recognition of physical activities and their intensities using wireless
accelerometers and a heart rate monitor,” in Wearable Computers, 2007 11th
IEEE International Symposium on, pp. 37–40, Oct 2007.

- 276 -



[138] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T. Campbell, “The
jigsaw continuous sensing engine for mobile phone applications,” in Proceedings
of the 8th ACM Conference on Embedded Networked Sensor Systems, SenSys
’10, (New York, NY, USA), pp. 71–84, ACM, 2010.

[139] H. Mart́ın, A. M. Bernardos, J. Iglesias, and J. R. Casar, “Activity logging us-
ing lightweight classification techniques in mobile devices,” Personal Ubiquitous
Comput., vol. 17, pp. 675–695, Apr. 2013.

[140] F. C. Bull, M. W. Kreuter, and D. P. Scharff, “Effects of tailored, personal-
ized and general health messages on physical activity,” Patient Education and
Counseling, vol. 36, no. 2, pp. 181 – 192, 1999.

[141] A. Brand, “Public health genomics and personalized healthcare: a pipeline from
cell to society,” Drug Metabolism and Drug Interactions, vol. 27, no. 3, 2012.

[142] T. Huynh, M. Fritz, and B. Schiele, “Discovery of activity patterns using topic
models,” in Proc. Int. Conf. on Ubiquitous Comp. (UbiComp), 2008.

[143] L. Bao and S. S. Intille, “Activity Recognition from User-Annotated Acceleration
Data,” in Proc. Int. Conf. Pervasive Computing (Pervasive), 2004.

[144] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, “Active Learning with Statistical
Models,” Journal of Artificial Intelligence Research, vol. 4, pp. 129–145, 1996.
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