4,255 research outputs found

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    Changing the focus: worker-centric optimization in human-in-the-loop computations

    Get PDF
    A myriad of emerging applications from simple to complex ones involve human cognizance in the computation loop. Using the wisdom of human workers, researchers have solved a variety of problems, termed as โ€œmicro-tasksโ€ such as, captcha recognition, sentiment analysis, image categorization, query processing, as well as โ€œcomplex tasksโ€ that are often collaborative, such as, classifying craters on planetary surfaces, discovering new galaxies (Galaxyzoo), performing text translation. The current view of โ€œhumans-in-the-loopโ€ tends to see humans as machines, robots, or low-level agents used or exploited in the service of broader computation goals. This dissertation is developed to shift the focus back to humans, and study different data analytics problems, by recognizing characteristics of the human workers, and how to incorporate those in a principled fashion inside the computation loop. The first contribution of this dissertation is to propose an optimization framework and a real world system to personalize workerโ€™s behavior by developing a worker model and using that to better understand and estimate task completion time. The framework judiciously frames questions and solicits worker feedback on those to update the worker model. Next, improving workers skills through peer interaction during collaborative task completion is studied. A suite of optimization problems are identified in that context considering collaborativeness between the members as it plays a major role in peer learning. Finally, โ€œdiversifiedโ€ sequence of work sessions for human workers is designed to improve worker satisfaction and engagement while completing tasks

    Understanding the Role of Interactivity and Explanation in Adaptive Experiences

    Get PDF
    Adaptive experiences have been an active area of research in the past few decades, accompanied by advances in technology such as machine learning and artificial intelligence. Whether the currently ongoing research on adaptive experiences has focused on personalization algorithms, explainability, user engagement, or privacy and security, there is growing interest and resources in developing and improving these research focuses. Even though the research on adaptive experiences has been dynamic and rapidly evolving, achieving a high level of user engagement in adaptive experiences remains a challenge. %????? This dissertation aims to uncover ways to engage users in adaptive experiences by incorporating interactivity and explanation through four studies. Study I takes the first step to link the explanation and interactivity in machine learning systems to facilitate users\u27 engagement with the underlying machine learning model with the Tic-Tac-Toe game as a use case. The results show that explainable machine learning (XML) systems (and arguably XAI systems in general) indeed benefit from mechanisms that allow users to interact with the system\u27s internal decision rules. Study II, III, and IV further focus on adaptive experiences in recommender systems in specific, exploring the role of interactivity and explanation to keep the user โ€œin-the-loopโ€ in recommender systems, trying to mitigate the ``filter bubble\u27\u27 problem and help users in self-actualizing by supporting them in exploring and understanding their unique tastes. Study II investigates the effect of recommendation source (a human expert vs. an AI algorithm) and justification method (needs-based vs. interest-based justification) on professional development recommendations in a scenario-based study setting. The results show an interaction effect between these two system aspects: users who are told that the recommendations are based on their interests have a better experience when the recommendations are presented as originating from an AI algorithm, while users who are told that the recommendations are based on their needs have a better experience when the recommendations are presented as originating from a human expert. This work implies that while building the proposed novel movie recommender system covered in study IV, it would provide a better user experience if the movie recommendations are presented as originating from algorithms rather than from a human expert considering that movie preferences (which will be visualized by the movies\u27 emotion feature) are usually based on users\u27 interest. Study III explores the effects of four novel alternative recommendation lists on participantsโ€™ perceptions of recommendations and their satisfaction with the system. The four novel alternative recommendation lists (RSSA features) which have the potential to go beyond the traditional top N recommendations provide transparency from a different level --- how much else does the system learn about users beyond the traditional top N recommendations, which in turn enable users to interact with these alternative lists by rating the initial recommendations so as to correct or confirm the system\u27s estimates of the alternative recommendations. The subjective evaluation and behavioral analysis demonstrate that the proposed RSSA features had a significant effect on the user experience, surprisingly, two of the four RSSA features (the controversial and hate features) perform worse than the traditional top-N recommendations on the measured subjective dependent variables while the other two RSSA features (the hipster and no clue items) perform equally well and even slightly better than the traditional top-N (but this effect is not statistically significant). Moreover, the results indicate that individual differences, such as the need for novelty and domain knowledge, play a significant role in usersโ€™ perception of and interaction with the system. Study IV further combines diversification, visualization, and interactivity, aiming to encourage users to be more engaged with the system. The results show that introducing emotion as an item feature into recommender systems does help in personalization and individual taste exploration; these benefits are greatly optimized through the mechanisms that diversify recommendations by emotional signature, visualize recommendations on the emotional signature, and allow users to directly interact with the system by tweaking their tastes, which further contributes to both user experience and self-actualization. This work has practical implications for designing adaptive experiences. Explanation solutions in adaptive experiences might not always lead to a positive user experience, it highly depends on the application domain and the context (as studied in all four studies); it is essential to carefully investigate a specific explanation solution in combination with other design elements in different fields. Introducing control by allowing for direct interactivity (vs. indirect interactivity) in adaptive systems and providing feedback to users\u27 input by integrating their input into the algorithms would create a more engaging and interactive user experience (as studied in Study I and IV). And cumulatively, appropriate direct interaction with the system along with deliberate and thoughtful designs of explanation (including visualization design with the application environment fully considered), which are able to arouse user reflection or resonance, would potentially promote both user experience and user self-actualization

    Knowledge Graph Enhanced Intelligent Tutoring System Based on Exercise Representativeness and Informativeness

    Full text link
    Presently, knowledge graph-based recommendation algorithms have garnered considerable attention among researchers. However, these algorithms solely consider knowledge graphs with single relationships and do not effectively model exercise-rich features, such as exercise representativeness and informativeness. Consequently, this paper proposes a framework, namely the Knowledge-Graph-Exercise Representativeness and Informativeness Framework, to address these two issues. The framework consists of four intricate components and a novel cognitive diagnosis model called the Neural Attentive cognitive diagnosis model. These components encompass the informativeness component, exercise representation component, knowledge importance component, and exercise representativeness component. The informativeness component evaluates the informational value of each question and identifies the candidate question set that exhibits the highest exercise informativeness. Furthermore, the skill embeddings are employed as input for the knowledge importance component. This component transforms a one-dimensional knowledge graph into a multi-dimensional one through four class relations and calculates skill importance weights based on novelty and popularity. Subsequently, the exercise representativeness component incorporates exercise weight knowledge coverage to select questions from the candidate question set for the tested question set. Lastly, the cognitive diagnosis model leverages exercise representation and skill importance weights to predict student performance on the test set and estimate their knowledge state. To evaluate the effectiveness of our selection strategy, extensive experiments were conducted on two publicly available educational datasets. The experimental results demonstrate that our framework can recommend appropriate exercises to students, leading to improved student performance.Comment: 31 pages, 6 figure

    Equality of Learning Opportunity via Individual Fairness in Personalized Recommendations

    Get PDF
    Online education platforms play an increasingly important role in mediating the success of individualsโ€™ careers. Therefore, while building overlying content recommendation services, it becomes essential to guarantee that learners are provided with equal recommended learning opportunities, according to the platform principles, context, and pedagogy. Though the importance of ensuring equality of learning opportunities has been well investigated in traditional institutions, how this equality can be operationalized in online learning ecosystems through recommender systems is still under-explored. In this paper, we shape a blueprint of the decisions and processes to be considered in the context of equality of recommended learning opportunities, based on principles that need to be empirically-validated (no evaluation with live learners has been performed). To this end, we first provide a formalization of educational principles that model recommendationsโ€™ learning properties, and a novel fairness metric that combines them to monitor the equality of recommended learning opportunities among learners. Then, we envision a scenario wherein an educational platform should be arranged in such a way that the generated recommendations meet each principle to a certain degree for all learners, constrained to their individual preferences. Under this view, we explore the learning opportunities provided by recommender systems in a course platform, uncovering systematic inequalities. To reduce this effect, we propose a novel post-processing approach that balances personalization and equality of recommended opportunities. Experiments show that our approach leads to higher equality, with a negligible loss in personalization. This paper provides a theoretical foundation for future studies of learnersโ€™ preferences and limits concerning the equality of recommended learning opportunities

    ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ์‚ฌ์šฉ์— ๋Œ€ํ•œ ์ค‘๊ตญ ๊ต์‚ฌ์˜ ์ธ์‹

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌ๋ฒ”๋Œ€ํ•™ ๊ต์œกํ•™๊ณผ, 2021. 2. ์กฐ์˜ํ™˜.์ตœ๊ทผ ๊ต์œก ๋ถ„์•ผ์—์„œ ์ธ๊ณต์ง€๋Šฅ(AI)์˜ ๋„์ž…์ด ํฐ ๊ด€์‹ฌ์„ ๋Œ๊ณ  ์žˆ๋‹ค. ํŠนํžˆ AI ๊ธฐ์ˆ ๊ณผ ํ•™์Šต ๋ถ„์„์ด ๊ฒฐํ•ฉํ•œ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์€ ์ง€๊ธˆ๊ป ์‹คํ˜„๋˜๊ธฐ ์–ด๋ ค์› ๋˜ ๋งž์ถคํ˜• ํ•™์Šต(personalized learning)๊ณผ ์ ์‘์  ํ•™์Šต(adaptive learning)์— ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋„๋ก ๋ฐœ์ „ํ•˜๊ณ  ์žˆ๋‹ค. ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ(AI-based education platform)์€ ํ•™์Šต์ž์˜ ํ–‰๋™ ์ถ”์  ๋“ฑ์„ ํ†ตํ•ด ์ด๋“ค์˜ ํŠน์„ฑ์„ ๋ถ„์„ํ•˜๊ณ  ์ง„๋‹จ์„ ์ œ๊ณตํ•œ ๋’ค ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ํ† ๋Œ€๋กœ ํ•™์Šต์ž์—๊ฒŒ ์ธ์ง€ ์ˆ˜์ค€์— ๋งž๋Š” ๋งž์ถคํ˜• ํ•™์Šต์ž์›๊ณผ ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•œ๋‹ค. ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์€ ๊ต์‚ฌ์™€ ํ•™์ƒ์—๊ฒŒ ์‹ค์‹œ๊ฐ„ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ๋ถ„์„ ๊ฒฐ๊ณผ, ๊ทธ๋ฆฌ๊ณ  ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์–ด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๋งž์ถคํ˜• ํ•™์Šต์— ๊ธ์ •์ ์ธ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค๋Š” ์„ ํ–‰ ์—ฐ๊ตฌ๋„ ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ๋ชจ๋ธ ๊ฐœ๋ฐœ์˜ ์ฐจ์›์—์„œ๋‚˜ ์—„๋ฐ€ํ•œ ์‹คํ—˜์‹ค ํ™˜๊ฒฝ์—์„œ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ํšจ๊ณผ๋ฅผ ์—ฐ๊ตฌํ•ด์™”์œผ๋ฉฐ, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์— ๋Œ€ํ•œ ๊ต์‚ฌ์˜ ์ธ์‹๊ณผ ๊ด€๋ จ๋œ ์—ฐ๊ตฌ๋Š” ๋“œ๋ฌผ์—ˆ๋‹ค. ๊ต์‚ฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ๊ธฐ์ˆ ์˜ ์‚ฌ์šฉ์ž์ด๊ธฐ ๋•Œ๋ฌธ์— ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ๊ธฐ์ˆ ์˜ ๊ต์œก ๋„์ž…์— ์žˆ์–ด ๊ต์‚ฌ๋“ค์˜ ์ธ์‹๊ณผ ์˜๊ฒฌ์€ ์ค‘์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์— ๋Œ€ํ•œ ๊ต์‚ฌ๋“ค์˜ ์ธ์‹์„ ํƒ๊ตฌํ•˜์˜€๋‹ค. ์•„๋ž˜ ์—ฐ๊ตฌ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•ด ์งˆ์  ์—ฐ๊ตฌ๋ฅผ ์‹œํ–‰ํ•˜์˜€๋‹ค. ์ฒซ์งธ, ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ์ค‘ํ•™๊ต ๊ต์œก์— ํ™œ์šฉ ์žˆ์–ด ์–ด๋– ํ•œ ์žฅ์ ์ด ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜๋Š”๊ฐ€? ๋‘˜์งธ, ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ๊ณผ ์ค‘ํ•™๊ต ๊ต์ˆ˜ ํ™œ๋™ ์š”์†Œ ๊ฐ„ ์–ด๋– ํ•œ ๋ชจ์ˆœ์ด ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜๋Š”๊ฐ€? ์…‹์งธ, ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ์ค‘ํ•™๊ต ๊ต์œก์— ๋„์ž…ํ•  ๋•Œ ๋ฌด์—‡์ด ํ•„์š”ํ•˜๋‹ค๊ณ  ์ธ์‹ํ•˜๋Š”๊ฐ€? ๋ณธ ์—ฐ๊ตฌ๋Š” ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์„ ์—ฐ๊ตฌ๋Œ€์ƒ์œผ๋กœ ์˜จ๋ผ์ธ ์‹ฌ์ธต ๋ฉด๋‹ด์„ ํ•˜์˜€๋‹ค. ๋ฌธํ—Œ ๋ฆฌ๋ทฐ๋ฅผ ํ†ตํ•ด ๋ฉด๋‹ด ์งˆ๋ฌธ์ง€๋ฅผ ์„ค๊ณ„ํ•˜๋˜ ๋ˆˆ๋ฉ์ดํ‘œ์ง‘๋ฒ• (snowball sampling)์„ ํ†ตํ•ด ์ค‘๊ตญ ์ค‘ํ•™๊ต ๊ต์‚ฌ 14๋ช…์„ ์—ฐ๊ตฌ์ฐธ์—ฌ์ž๋กœ ์„ ์ •ํ•˜์˜€๋‹ค. ์„ ์ •๋œ ๊ต์‚ฌ๋“ค์€ ๋ชจ๋‘ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ์‚ฌ์šฉ ๊ฒฝํ—˜์ด ์žˆ์œผ๋ฉฐ ๊ฐ ๊ต์‚ฌ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์•ฝ 1์‹œ๊ฐ„ ์ •๋„ ๋ฉด๋‹ด์„ ์ง„ํ–‰ํ•˜๊ณ  ๋…น์Œํ•˜์˜€๋‹ค. ๋ฉด๋‹ด์ด ๋๋‚œ ํ›„ ๋…น์Œ ๋‚ด์šฉ์„ ์ „์‚ฌํ•˜์˜€์œผ๋ฉฐ, ์ฃผ์ œ๋ถ„์„์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฉด๋‹ด ๋‚ด์šฉ์„ ์ดˆ๊ธฐ ์ฝ”๋“œ ์ƒ์„ฑํ•˜๊ณ  ๋ฉด๋‹ด ์ž๋ฃŒ ์†์—์„œ ์ฃผ์ œ๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ํŠนํžˆ ์—ฐ๊ตฌ ๋ฌธ์ œ 2๋ฒˆ์˜ ๊ฒฝ์šฐ, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ํ™œ์šฉ๊ณผ ๊ต์ˆ˜ ํ•™์Šตํ™œ๋™ ๋‚ด ์—ฌ๋Ÿฌ ์š”์†Œ ๊ฐ„์˜ ๋ชจ์ˆœ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ํ™œ๋™์ด๋ก ์„ ์—ฐ๊ตฌ์˜ ํ‹€๋กœ ์ด์šฉํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ์—ฐ๊ตฌ๋ฌธ์ œ 1์— ๋Œ€ํ•œ ์ฃผ์ œ 4๊ฐœ, ์—ฐ๊ตฌ๋ฌธ์ œ 2์— ๋Œ€ํ•œ ์ฃผ์ œ 6๊ฐœ, ์—ฐ๊ตฌ๋ฌธ์ œ 3์— ๋Œ€ํ•œ ์ฃผ์ œ 4๊ฐœ๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋กœ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ์žฅ์ ์— ๋Œ€ํ•ด ์ฆ‰๊ฐ์ ์ธ ํ”ผ๋“œ๋ฐฑ ์ œ๊ณต, ๊ต์ˆ˜ํ•™์Šต ์ง€์›, ๊ต์‚ฌ์˜ ์—…๋ฌด๋Ÿ‰ ๊ฐ์†Œ ๋“ฑ์œผ๋กœ ์ธ์‹ํ•˜์˜€๊ณ , ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๋‹ค์–‘ํ•œ ๊ต์ˆ˜ํ•™์Šต ์ž์›์„ ํ†ตํ•ฉํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ์•„์šธ๋Ÿฌ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ์‚ฌ์šฉ์— ์žˆ์–ด ๊ธฐ์กด์˜ ๊ต์ˆ˜ํ•™์Šต ํ™œ๋™๊ณผ ์ƒ์ถฉ๋œ ๋ถ€๋ถ„์ด ์žˆ๋‹ค๋Š” ์ ์„ ์ธ์‹ํ•˜์˜€๋‹ค. ๊ต์‚ฌ๋“ค์€ ๊ธฐ์กด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ์ถ”์ฒœ ๋ชจ๋ธ์ด ์ฐจ๋ณ„ํ™”๋œ ํ•™์ƒ๋“ค์—๊ฒŒ ์ž˜ ์ ์šฉ๋˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์ธ์‹ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ธฐ์กด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๋‹ค์–‘ํ•œ ํ•™์Šต ์ž์›์„ ์ž˜ ๋ถ„๋ฅ˜๋˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ต์‚ฌ๋“ค์ด ์‚ฌ์šฉํ•˜๊ธฐ ๋ถˆํŽธํ•˜๋‹ค. ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ์ด์šฉํ•  ๋•Œ ๊ต์‚ฌ์˜ ์ง€์ ์žฌ์‚ฐ๊ถŒ์„ ๋ณดํ˜ธํ•˜๊ธฐ ์œ„ํ•œ ๋ช…ํ™•ํ•œ ๊ทœ์ œ๊ฐ€ ๋ถ€์กฑํ•˜๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ์ด์™€ ํ•จ๊ป˜ ํ•™๋ถ€๋ชจ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ํ•™์Šต์ž์˜ ์ธํ„ฐ๋„ท ๋‚จ์šฉ๊ณผ ์‹œ๋ ฅ ์ €ํ•˜ ๋ฌธ์ œ๋ฅผ ์šฐ๋ คํ•˜์˜€๋‹ค. ๋˜ ์ค‘๊ตญ์˜ ์‚ฌํšŒ๋ฌธํ™”์  ๋ฐฐ๊ฒฝ๊ณผ ๊ต์œก ํŠน์„ฑ์œผ๋กœ ์ธํ•ด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ํ™œ์šฉํ•˜๋Š” ๋ฐ ํ•™์ƒ๋“ค์˜ ๊ธ€์”จ ์“ฐ๊ธฐ ๋Šฅ๋ ฅ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํ•™๊ต ๋‚ด ์ „์ž๊ธฐ๊ธฐ ์‚ฌ์šฉ ์ œํ•œ๋„ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์˜ ์ง€์†์„ฑ๊ณผ ํšจ์œจ์„ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ๊ต์‚ฌ๋“ค์€ ์œ„์˜ ๋ฌธ์ œ๋“ค์ด ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ํ”Œ๋žซํผ ์‚ฌ์šฉ์— ๋Œ€ํ•œ ๊ทœ์น™ ๋งˆ๋ จ๊ณผ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ ์„ ๊ฐœ์„ ํ•จ์œผ๋กœ์จ ์™„ํ™”๋  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ต์‚ฌ์˜ ์‹ค์ œ ์š”๊ตฌ์— ๋งž๊ฒŒ ๊ฐœ๋ฐœ๋  ์ˆ˜ ์žˆ๋„๋ก ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ๊ฐœ๋ฐœ ๊ณผ์ •์— ๊ต์œก ์ „๋ฌธ๊ฐ€์™€ ๊ต์‚ฌ๊ฐ€ ์ฐธ์—ฌํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์ด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์— ๋Œ€ํ•œ ์ธ์‹์„ ํƒ์ƒ‰ํ•˜์˜€์œผ๋ฉฐ, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๊ต์ˆ˜ํ•™์Šต์—์„œ์˜ ์žฅ์ ๊ณผ ๋ฌธ์ œ์ ์„ ๋ฐํ˜”๋‹ค. ์•„์šธ๋Ÿฌ ๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๊ต์œก ๋ถ„์•ผ์— ๋Œ€๊ทœ๋ชจ๋กœ ๋„์ž…๋  ์ˆ˜ ์žˆ๋„๋ก ๊ทœ์น™, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ , ๊ทธ๋ฆฌ๊ณ  ๊ต์œก ๊ณตํ•™์˜ ์ฐจ์›์—์„œ ์‚ฌ์šฉ ๊ทœ๋ฒ”๊ณผ ๊ธฐ์ˆ  ๊ฐœ์„ ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ํƒ์ƒ‰ํ•œ ๋‚ด์šฉ์ด ํ–ฅํ›„ ๊ต์œก ๋ถ„์•ผ์˜ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ๋„์ž…์— ํ™œ์šฉ๋œ๋‹ค๋ฉด ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ๊ธฐ์ˆ ์— ๊ด€ํ•œ ์—ฐ๊ตฌ์˜ ๋ฐœ์ „์—๋„ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.In recent years, the introduction of artificial intelligence (AI) in education has attracted widespread attention. In particular, the AI-based education platform based on the combination of AI technology and learning analysis brings new light to the long-standing difficulties in personalized learning and adaptive learning. The AI-based education platform analyzes learners' characteristics by collecting their data and tracking their learning behavior. It then generates cognitive diagnosis for learners and provides them with personalized learning resources and adaptive feedback that match their cognitive level based on systematic analysis. With the help of the AI-based education platform, teachers and students can get real-time educational data and analysis result๏ผŒas well as the feedback and treatment corresponding to the results. Previous studies have already demonstrated and proved its positive significance to personalized learning. However, these studies mostly start from a model development perspective or in a rigorous laboratory environment. There has been little research on teachers' perceptions of AI-based education platform. As a direct user of AI educational technologies, teachers' perceptions and suggestions are vital for introducing AIEd in education. In this study, the researcher explored teachers' perceptions of using AI-based education platform in teaching. The study conducted qualitative research to address the following research questions: 1) How do Chinese teachers perceive the advantages of AI-based education platforms for teaching and learning in secondary school? 2) How do Chinese teachers perceive the contradictions between AI-based education platforms and the secondary school system? 3๏ผ‰How do Chinese teachers suggest applying AI-based education platforms in secondary school? And it referred to the in-depth online interview with Chinese teachers who had experience with AI-based education platform. Interview questions were constructed through the literature review, and 14 secondary school teachers were selected by the snowball sampling method. The interviews lasted for an average of one hour per teacher and were transcribed from the audio recordings to text documents when finished. Afterward, the data were analyzed using thematic analysis, including generating initial codes, searching and reviewing the categories, and deriving the themes finally. Notably, for research question two, the researcher used the activity theory framework to analyze the contradictions among the use of the AI-based education platform and the various elements of the teaching and learning activities. Finally, four themes for research question 1, six themes for research question 2, and four themes for research question 3 were derived. As for the advantages, teachers believe that AI-based education platforms can provide instant feedback, targeted and systematic teaching support, and reduce teachers' workload. At the same time, AI-based education platforms can also integrate teaching resources in different areas. Teachers also recognized that the AI-based education platforms might trigger contradictions in existing teaching activities. They are aware of the situation that the recommended model of the AI-based education platform is not suitable for all levels of students; that a large number of learning resources are not classified properly enough to meet the needs of teachers, and that there lack clear rules and regulations to protect teachers' intellectual property rights when using the platform. Besides, parents are also concerned about the potential risk of internet addiction and vision problems using AI-based education platforms. Moreover, the use of the AI-based education platform may also affect students' ability to write Chinese characters due to the socio-historical background and educational characteristics in China. Furthermore, the restricted use of electronic devices on campus may also impact the consistent and effective education data collection. Teachers believe that these problems can be solved by improving rules and AI technology. Moreover, to make the platform more in line with the actual teaching requirements, teachers and education experts can also be involved in the development process of AI-based education platform. This study explored how Chinese teachers perceive the AI-based education platform and found that the AI-based education platform was conducive to personalized teaching and learning. At the same time, this study put forward some suggestions from the perspective of rules, AI technology, and educational technology, hoping to provide a good value for the future large-scale introduction of AI-based education platforms in education.CHAPTER 1. INTRODUCTION 1 1.1. Problem Statement 1 1.2. Purpose of Research 7 1.3. Definition of Terms 8 CHAPTER 2. LITERATURE REVIEW 10 2.1. AI in Education 10 2.1.1 AI for Learning and Teaching 10 2.1.2 AI-based Education Platform 14 2.1.3 Teachers' Perception on AI-based Education Platform 18 2.2. Activity Theory 20 CHAPTER 3. RESEARCH METHOD 23 3.1. Research Design 23 3.2. Participants 25 3.3. Instrumentation 26 3.3.1 Potential Value of AI System in Education 26 3.4. Data Collection 33 3.5. Data Analysis 34 CHAPTER 4. FINDINGS 36 4.1. Advantages of Using AI-based Education Platform 36 4.1.1 Instant Feedback 37 4.1.2 Targeted and Systematic Teaching Support 42 4.1.3 Educational Resources Sharing 46 4.1.4 Reducing Workload 49 4.2. Tensions of Using AI-based Education Platform 51 4.2.1 Inadequately Meet the Needs of Teachers 52 4.2.2 Failure to Satisfy Low and High Achievers 54 4.2.3 Intellectual Property Violation 56 4.2.4 Guardian's Concern 57 4.2.5 School Rules about the Use of Electronic Devices 58 4.2.6 Implication for Chinese Character Education 59 4.3. Suggestion of Using AI-based Education Platform 61 4.3.1 Improving Rules of Using the AI-based Education Platform 61 4.3.2 Improving Rules of Protecting Teachers Right 62 4.3.3 Improving AI Technology 64 4.3.4 Participatory Design 66 CHAPTER 5. DISCUSSION AND CONCLUSION 68 5.1. Discussion 68 5.2. Conclusion 72 REFERENCE 75 APPENDIX 1 98 APPENDIX 2 100 ๊ตญ๋ฌธ์ดˆ๋ก 112Maste

    The Impact of Implementing a Moodle Plug-in as an AI-based Adaptive Learning Solution on Learning Effectiveness: Case of Morocco

    Get PDF
    This article presents feedback on the implementation of an Artificial Intelligence-based adaptive learning Moodle plugin aimed at enhancing the engagement levels and academic performance of 102 Moroccan high school students. The primary objective of this study was to assess and compare the performance of students utilizing the adaptive learning system with those employing conventional learning methods. To guarantee the efficacy of this approach, a participant satisfaction survey and a comprehensive summative evaluation were conducted, revealing the positive impact of AI-based adaptive learning on the participants. The results of this study highlight the potential benefits of integrating AI-driven adaptive learning into high school computer science curricula, emphasizing how it may raise student engagement and academic performance. These results strengthen the determination to use this teaching methodology with students in future educational activities

    Enhancing the Performance of Automated Grade Prediction in MOOC using Graph Representation Learning

    Full text link
    In recent years, Massive Open Online Courses (MOOCs) have gained significant traction as a rapidly growing phenomenon in online learning. Unlike traditional classrooms, MOOCs offer a unique opportunity to cater to a diverse audience from different backgrounds and geographical locations. Renowned universities and MOOC-specific providers, such as Coursera, offer MOOC courses on various subjects. Automated assessment tasks like grade and early dropout predictions are necessary due to the high enrollment and limited direct interaction between teachers and learners. However, current automated assessment approaches overlook the structural links between different entities involved in the downstream tasks, such as the students and courses. Our hypothesis suggests that these structural relationships, manifested through an interaction graph, contain valuable information that can enhance the performance of the task at hand. To validate this, we construct a unique knowledge graph for a large MOOC dataset, which will be publicly available to the research community. Furthermore, we utilize graph embedding techniques to extract latent structural information encoded in the interactions between entities in the dataset. These techniques do not require ground truth labels and can be utilized for various tasks. Finally, by combining entity-specific features, behavioral features, and extracted structural features, we enhance the performance of predictive machine learning models in student assignment grade prediction. Our experiments demonstrate that structural features can significantly improve the predictive performance of downstream assessment tasks. The code and data are available in \url{https://github.com/DSAatUSU/MOOPer_grade_prediction

    Individualized selection of learning objects

    Get PDF
    Rapidly evolving Internet and web technologies and international efforts on standardization of learning object metadata enable learners in a web-based educational system ubiquitous access to multiple learning resources. It is becoming more necessary and possible to provide individualized help with selecting learning materials to make the most suitable choice among many alternatives. A framework for individualized learning object selection, called Eliminating and Optimized Selection (EOS), is presented in this thesis. This framework contains a suggestion for extending learning object metadata specifications and presents an approach to selecting a short list of suitable learning objects appropriate for an individual learner in a particular learning context. The key features of the EOS approach are to evaluate the suitability of a learning object in its situated context and to refine the evaluation by using available historical usage information about the learning object. A Learning Preference Survey was conducted to discover and determine the relationships between the importance of learning object attributes and learner characteristics. Two weight models, a Bayesian Network Weight Model and a Naรฏve Bayes Model, were derived from the data collected in the survey. Given a particular learner, both of these models provide a set of personal weights for learning object features required by the individualized learning object selection. The optimized selection approach was demonstrated and verified using simulated selections. Seventy simulated learning objects were evaluated for three simulated learners within simulated learning contexts. Both the Bayesian Network Weight Model and the Naรฏve Bayes Model were used in the selection of simulated learning objects. The results produced by the two algorithms were compared, and the two algorithms highly correlated each other in the domain where the testing was conducted. A Learning Object Selection Study was performed to validate the learning object selection algorithms against human experts. By comparing machine selection and human expertsโ€™ selection, we found out that the agreement between machine selection and human expertsโ€™ selection is higher than agreement among the human experts alone

    Automatic Assessment in Undergraduate Level Engineering Drawing

    Get PDF
    AutoCAD is the most popular software used in undergraduate level Engineering Drawing education. Currently, there are no available methods to automate the marking process of AutoCAD assignments. This project is attempting to create a software prototype that can conceptually show how the marking process of AutoCAD assignments can be automated. The prototype will first convert the AutoCAD DXF file into SVG format and then evaluate each of the elements and attributes. The prototype is a web-based application and is able to achieve the aforementioned objectives. Given appropriate time and resources, this project can be extended into a full scale working application
    • โ€ฆ
    corecore