5,436 research outputs found

    Model-driven Personalisation of Human-Computer Interaction across Ubiquitous Computing Applications

    Get PDF
    Personalisation is essential to Ubiquitous Computing (Ubicomp), which focuses on a human-centred paradigm aiming to provide interaction with adaptive content, services, and interfaces towards each one of its users, according to the context of the applications’ scenarios. However, the provision of that appropriated personalised interaction is a true challenge due to different reasons, such as the user interests, heterogeneous environments and devices, dynamic user behaviour and data capture. This dissertation focuses on a model-driven personalisation solution that has the main goal of facili-tating the implementation of a personalised human-computer interaction across different Ubicomp scenarios and applications. The research reported here investigates how a generic and interoperable model for personalisation can be used, shared and processed by different applications, among diverse devices, and across different scenarios, studying how it can enrich human-computer interaction. The research started by the definition of a consistent user model with the integration of context to end in a pervasive model for the definition of personalisations across different applications. Besides the model proposal, the other key contributions within the solution are the modelling frame-work, which encapsulates the model and integrates the user profiling module, and a cloud-based platform to pervasively support developers in the implementation of personalisation across different applications and scenarios. This platform provides tools to put end users in control of their data and to support developers through web services based operations implemented on top of a personalisa-tion API, which can also be used independently of the platform for testing purposes, for instance. Several Ubicomp applications prototypes were designed and used to evaluate, at different phases, both the solution as a whole and each one of its components. Some were specially created with the goal of evaluating specific research questions of this work. Others were being developed with a pur-pose other than for personalisation evaluation, but they ended up as personalised prototypes to better address their initial goals. The process of applying the personalisation model to the design of the latter should also work as a proof of concept on the developer side. On the one hand, developers have been probed with the implementation of personalised applications using the proposed solution, or a part of it, to assess how it works and can help them. The usage of our solution by developers was also important to assess how the model and the platform respond to the developers’ needs. On the other hand, some prototypes that implement our model-driven per-sonalisation solution have been selected for end user evaluation. Usually, user testing was conducted at two different stages of the development, using: (1) a non-personalised version; (2) the final per-sonalised version. This procedure allowed us to assess if personalisation improved the human-com-puter interaction. The first stage was also important to know who were the end users and gather interaction data to come up with personalisation proposals for each prototype. Globally, the results of both developers and end users tests were very positive. Finally, this dissertation proposes further work, which is already ongoing, related to the study of a methodology to the implementation and evaluation of personalised applications, supported by the development of three mobile health applications for rehabilitation

    Context-aware personalization environment for mobile computing

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaCurrently, we live in a world where the amount of on-line information vastly outstrips any individual’s capability to survey it. Filtering that information in order to obtain only useful and interesting information is a solution to this problem. The mobile computing area proposes to integrate computation in users’ daily activities in an unobtrusive way, in order to guarantee an improvement in their experience and quality of life. Furthermore, it is crucial to develop smaller and more intelligent devices to achieve this area’s goals, such as mobility and energy savings. This computing area reinforces the necessity to filter information towards personalization due to its humancentred paradigm. In order to attend to this personalization necessity, it is desired to have a solution that is able to learn the users preferences and needs, resulting in the generation of profiles that represent each style of interaction between a user and an application’s resources(e.g. buttons and menus). Those profiles can be obtained by using machine learning algorithms that use data derived from the user interaction with the application, combined with context data and explicit user preferences. This work proposes an environment with a generic context-aware personalization model and a machine learning module. It is provided the possibility to personalize an application, based on user profiles obtained from data, collected from implicit and explicit user interaction. Using a provided personalization API (Application Programming Interface) and other configuration modules, the environment was tested on LEY (Less energy Empowers You), a persuasive mobile-based serious game to help people understand domestic energy usage

    Evaluating the impact of physical activity apps and wearables: interdisciplinary review

    Get PDF
    Background: Although many smartphone apps and wearables have been designed to improve physical activity, their rapidly evolving nature and complexity present challenges for evaluating their impact. Traditional methodologies, such as randomized controlled trials (RCTs), can be slow. To keep pace with rapid technological development, evaluations of mobile health technologies must be efficient. Rapid alternative research designs have been proposed, and efficient in-app data collection methods, including in-device sensors and device-generated logs, are available. Along with effectiveness, it is important to measure engagement (ie, users’ interaction and usage behavior) and acceptability (ie, users’ subjective perceptions and experiences) to help explain how and why apps and wearables work. Objectives: This study aimed to (1) explore the extent to which evaluations of physical activity apps and wearables: employ rapid research designs; assess engagement, acceptability, as well as effectiveness; use efficient data collection methods; and (2) describe which dimensions of engagement and acceptability are assessed. Method: An interdisciplinary scoping review using 8 databases from health and computing sciences. Included studies measured physical activity, and evaluated physical activity apps or wearables that provided sensor-based feedback. Results were analyzed using descriptive numerical summaries, chi-square testing, and qualitative thematic analysis. Results: A total of 1829 abstracts were screened, and 858 articles read in full. Of 111 included studies, 61 (55.0%) were published between 2015 and 2017. Most (55.0%, 61/111) were RCTs, and only 2 studies (1.8%) used rapid research designs: 1 single-case design and 1 multiphase optimization strategy. Other research designs included 23 (22.5%) repeated measures designs, 11 (9.9%) nonrandomized group designs, 10 (9.0%) case studies, and 4 (3.6%) observational studies. Less than one-third of the studies (32.0%, 35/111) investigated effectiveness, engagement, and acceptability together. To measure physical activity, most studies (90.1%, 101/111) employed sensors (either in-device [67.6%, 75/111] or external [23.4%, 26/111]). RCTs were more likely to employ external sensors (accelerometers: P=.005). Studies that assessed engagement (52.3%, 58/111) mostly used device-generated logs (91%, 53/58) to measure the frequency, depth, and length of engagement. Studies that assessed acceptability (57.7%, 64/111) most often used questionnaires (64%, 42/64) and/or qualitative methods (53%, 34/64) to explore appreciation, perceived effectiveness and usefulness, satisfaction, intention to continue use, and social acceptability. Some studies (14.4%, 16/111) assessed dimensions more closely related to usability (ie, burden of sensor wear and use, interface complexity, and perceived technical performance). Conclusions: The rapid increase of research into the impact of physical activity apps and wearables means that evaluation guidelines are urgently needed to promote efficiency through the use of rapid research designs, in-device sensors and user-logs to assess effectiveness, engagement, and acceptability. Screening articles was time-consuming because reporting across health and computing sciences lacked standardization. Reporting guidelines are therefore needed to facilitate the synthesis of evidence across disciplines

    Native Mobile Applications For Personal Well-Being: A Persuasive Systems Design Evaluation

    Get PDF
    Smartphone applications have shown promise in supporting people to adopt healthy lifestyles. Hence, it is critical to understand persuasive design strategies incorporated in native mobile applications that facilitate behavior change. The aim of our study was to identify distinct persuasive software features assimilated in twelve selected applications using Persuasive Systems Design (PSD) model and provide a methodical framework for systems developers and IS researchers to extract and evaluate such features. Further, this study aimed to provide deeper comprehension of persuasive design and strategies by learning from practice. Exhaustive evaluations were performed by four researchers specializing in persuasive information systems simulating users walking through the applications step-by-step performing regular tasks. The results disclose the need for improvement in designing and incorporating persuasive techniques in personal well-being applications. While self-monitoring and personalization were moderately exploited, tailoring, a key persuasive feature, was not identified among the evaluated applications. In addition, evaluated applications lacked features that could augment human-computer dialogue as well as social support. The contribution of this paper is two-fold: while it exposes weakness in persuasive design of native mobile applications for personal well-being, it provides a methodical approach for enhancing general persuasiveness of such applications for instance, through enhanced dialogue support. We propose that designers and IS researchers perform rigorous evaluations of persuasive features incorporated in personal well-being applications

    Challenges in context-aware mobile language learning: the MASELTOV approach

    Get PDF
    Smartphones, as highly portable networked computing devices with embedded sensors including GPS receivers, are ideal platforms to support context-aware language learning. They can enable learning when the user is en-gaged in everyday activities while out and about, complementing formal language classes. A significant challenge, however, has been the practical implementation of services that can accurately identify and make use of context, particularly location, to offer meaningful language learning recommendations to users. In this paper we review a range of approaches to identifying context to support mobile language learning. We consider how dynamically changing aspects of context may influence the quality of recommendations presented to a user. We introduce the MASELTOV project’s use of context awareness combined with a rules-based recommendation engine to present suitable learning content to recent immigrants in urban areas; a group that may benefit from contextual support and can use the city as a learning environment

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Playful User Interfaces:Interfaces that Invite Social and Physical Interaction

    Get PDF
    • 

    corecore