3,158 research outputs found

    Mapping the Current Landscape of Research Library Engagement with Emerging Technologies in Research and Learning: Final Report

    Get PDF
    The generation, dissemination, and analysis of digital information is a significant driver, and consequence, of technological change. As data and information stewards in physical and virtual space, research libraries are thoroughly entangled in the challenges presented by the Fourth Industrial Revolution:1 a societal shift powered not by steam or electricity, but by data, and characterized by a fusion of the physical and digital worlds.2 Organizing, structuring, preserving, and providing access to growing volumes of the digital data generated and required by research and industry will become a critically important function. As partners with the community of researchers and scholars, research libraries are also recognizing and adapting to the consequences of technological change in the practices of scholarship and scholarly communication. Technologies that have emerged or become ubiquitous within the last decade have accelerated information production and have catalyzed profound changes in the ways scholars, students, and the general public create and engage with information. The production of an unprecedented volume and diversity of digital artifacts, the proliferation of machine learning (ML) technologies,3 and the emergence of data as the “world’s most valuable resource,”4 among other trends, present compelling opportunities for research libraries to contribute in new and significant ways to the research and learning enterprise. Librarians are all too familiar with predictions of the research library’s demise in an era when researchers have so much information at their fingertips. A growing body of evidence provides a resounding counterpoint: that the skills, experience, and values of librarians, and the persistence of libraries as an institution, will become more important than ever as researchers contend with the data deluge and the ephemerality and fragility of much digital content. This report identifies strategic opportunities for research libraries to adopt and engage with emerging technologies,5 with a roughly fiveyear time horizon. It considers the ways in which research library values and professional expertise inform and shape this engagement, the ways library and library worker roles will be reconceptualized, and the implication of a range of technologies on how the library fulfills its mission. The report builds on a literature review covering the last five years of published scholarship, primarily North American information science literature, and interviews with a dozen library field experts, completed in fall 2019. It begins with a discussion of four cross-cutting opportunities that permeate many or all aspects of research library services. Next, specific opportunities are identified in each of five core research library service areas: facilitating information discovery, stewarding the scholarly and cultural record, advancing digital scholarship, furthering student learning and success, and creating learning and collaboration spaces. Each section identifies key technologies shaping user behaviors and library services, and highlights exemplary initiatives. Underlying much of the discussion in this report is the idea that “digital transformation is increasingly about change management”6 —that adoption of or engagement with emerging technologies must be part of a broader strategy for organizational change, for “moving emerging work from the periphery to the core,”7 and a broader shift in conceptualizing the research library and its services. Above all, libraries are benefitting from the ways in which emerging technologies offer opportunities to center users and move from a centralized and often siloed service model to embedded, collaborative engagement with the research and learning enterprise

    Playful User Interfaces:Interfaces that Invite Social and Physical Interaction

    Get PDF

    Collaborative trails in e-learning environments

    Get PDF
    This deliverable focuses on collaboration within groups of learners, and hence collaborative trails. We begin by reviewing the theoretical background to collaborative learning and looking at the kinds of support that computers can give to groups of learners working collaboratively, and then look more deeply at some of the issues in designing environments to support collaborative learning trails and at tools and techniques, including collaborative filtering, that can be used for analysing collaborative trails. We then review the state-of-the-art in supporting collaborative learning in three different areas – experimental academic systems, systems using mobile technology (which are also generally academic), and commercially available systems. The final part of the deliverable presents three scenarios that show where technology that supports groups working collaboratively and producing collaborative trails may be heading in the near future

    Materials, machines, meanings: Possible design strategies to compensate three key shortages of distributed manufacturing

    Get PDF
    This contribution starts by observing the low presence of “indie made”, distributed and digital fabrication based products in the everyday life of most people. We assume that this low presence is a result of limitations regarding the available physical behaviors, achievable functionalities, and accessible market, all of which can be optimized to the extreme with mass manufacturing. The paper explores possible design strategies to compensate these three key shortages of indie manufacturing for everyday life, aiming at better materials, more advanced functional “machines”, as well as alternative ways of creating meaning. To broaden the available material qualities, the discussed strategy is developing (and designing with) microstructures to simulate various materials. To enter more functional product domains, or machines, the paper suggests facilitating the integration of mass-produced functional elements (e.g. electronics) into product “shells”, realizable with distributed manufacturing. Finally, to compensate for limited distribution and marketing resources, we discuss the strategy of leaving the design project open for user interventions, focusing on the conceptual development of meaningful personalizable design. Regarding this latter, the paper also describes a design method and canvas tool, while the suggestions on materials/machines raise awareness around issues and upcoming solutions, contributing to some parts of the canvas.

    Materials, machines, meanings: Possible design strategies to compensate three key shortages of distributed manufacturing

    Get PDF
    This contribution starts by observing the low presence of “indie made”, distributed and digital fabrication based products in the everyday life of most people. We assume that this low presence is a result of limitations regarding the available physical behaviors, achievable functionalities, and accessible market, all of which can be optimized to the extreme with mass manufacturing. The paper explores possible design strategies to compensate these three key shortages of indie manufacturing for everyday life, aiming at better materials, more advanced functional “machines”, as well as alternative ways of creating meaning. To broaden the available material qualities, the discussed strategy is developing (and designing with) microstructures to simulate various materials. To enter more functional product domains, or machines, the paper suggests facilitating the integration of mass-produced functional elements (e.g. electronics) into product “shells”, realizable with distributed manufacturing. Finally, to compensate for limited distribution and marketing resources, we discuss the strategy of leaving the design project open for user interventions, focusing on the conceptual development of meaningful personalizable design. Regarding this latter, the paper also describes a design method and canvas tool, while the suggestions on materials/machines raise awareness around issues and upcoming solutions, contributing to some parts of the canvas.

    Understanding Personalization for Health Behavior Change Applications: A Review and Future Directions

    Get PDF
    Health behavior change (HBC) applications hold much promise for promoting healthy lifestyles, such as enhancing physical activity (PA), diet, and sleep. Incorporating personalization strategies is seen as key to designing effective HBC applications. However, researchers and application designers lack knowledge about the different kinds of personalization strategies, how to implement them, and what strategies work. Thus, we reviewed prior empirical studies on personalization for HBC applications and developed a framework to synthesize the prior studies we identified and to provide an integrative view of the personalization strategies, their inputs, and outcomes. Our findings suggest that researchers have much potential to conduct design research that employs demographic and contextual characteristics for personalization and that examines personalization strategies that target HBC applications’ interface and channels. In terms of implementation and adoption, we call for researchers to examine unaddressed issues such as low adherence and contextual barriers for these applications. We also suggest that researchers need to systematically examine the effects of specific personalization strategies on their efficacy. Other than providing an integrative view of extant studies, our study contributes by outlining key directions for future research in this area

    Wearables at work:preferences from an employee’s perspective

    Get PDF
    This exploratory study aims to obtain a first impression of the wishes and needs of employees on the use of wearables at work for health promotion. 76 employ-ees with a mean age of 40 years old (SD ±11.7) filled in a survey after trying out a wearable. Most employees see the potential of using wearable devices for workplace health promotion. However, according to employees, some negative aspects should be overcome before wearables can effectively contribute to health promotion. The most mentioned negative aspects were poor visualization and un-pleasantness of wearing. Specifically for the workplace, employees were con-cerned about the privacy of data collection
    • …
    corecore