68,319 research outputs found

    A Middleware for the Internet of Things

    Full text link
    The Internet of Things (IoT) connects everyday objects including a vast array of sensors, actuators, and smart devices, referred to as things to the Internet, in an intelligent and pervasive fashion. This connectivity gives rise to the possibility of using the tracking capabilities of things to impinge on the location privacy of users. Most of the existing management and location privacy protection solutions do not consider the low-cost and low-power requirements of things, or, they do not account for the heterogeneity, scalability, or autonomy of communications supported in the IoT. Moreover, these traditional solutions do not consider the case where a user wishes to control the granularity of the disclosed information based on the context of their use (e.g. based on the time or the current location of the user). To fill this gap, a middleware, referred to as the Internet of Things Management Platform (IoT-MP) is proposed in this paper.Comment: 20 pages, International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 201

    Enabling Personalized Composition and Adaptive Provisioning of Web Services

    Get PDF
    The proliferation of interconnected computing devices is fostering the emergence of environments where Web services made available to mobile users are a commodity. Unfortunately, inherent limitations of mobile devices still hinder the seamless access to Web services, and their use in supporting complex user activities. In this paper, we describe the design and implementation of a distributed, adaptive, and context-aware framework for personalized service composition and provisioning adapted to mobile users. Users specify their preferences by annotating existing process templates, leading to personalized service-based processes. To cater for the possibility of low bandwidth communication channels and frequent disconnections, an execution model is proposed whereby the responsibility of orchestrating personalized processes is spread across the participating services and user agents. In addition, the execution model is adaptive in the sense that the runtime environment is able to detect exceptions and react to them according to a set of rules

    A Calculus of Mobility and Communication for Ubiquitous Computing

    Full text link
    We propose a Calculus of Mobility and Communication (CMC) for the modelling of mobility, communication and context-awareness in the setting of ubiquitous computing. CMC is an ambient calculus with the in and out capabilities of Cardelli and Gordon's Mobile Ambients. The calculus has a new form of global communication similar to that in Milner's CCS. In CMC an ambient is tagged with a set of ports that agents executing inside the ambient are allowed to communicate on. It also has a new context-awareness feature that allows ambients to query their location. We present reduction semantics and labelled transition system semantics of CMC and prove that the semantics coincide. A new notion of behavioural equivalence is given by defining capability barbed bisimulation and congruence which is proved to coincide with barbed bisimulation congruence. The expressiveness of the calculus is illustrated by two case studies.Comment: In Proceedings WWV 2015, arXiv:1508.0338

    The ODO project: a Case Study in Integration of Multimedia Services

    Get PDF
    Recent years have witnessed a steady growth in the availability of wide-area multi-service networks. These support a variety of traffic types including data, control messages, audio and video. Consequently they are often thought of as integrated media carriers. To date, however, use of these networks has been limited to isolated applications which exhibit very little or no integration amongst themselves. This paper describes a project which investigated organisational, user interfacing and programming techniques to exploit this integration of services at the application level

    CAMMD: Context Aware Mobile Medical Devices

    Get PDF
    Telemedicine applications on a medical practitioners mobile device should be context-aware. This can vastly improve the effectiveness of mobile applications and is a step towards realising the vision of a ubiquitous telemedicine environment. The nomadic nature of a medical practitioner emphasises location, activity and time as key context-aware elements. An intelligent middleware is needed to effectively interpret and exploit these contextual elements. This paper proposes an agent-based architectural solution called Context-Aware Mobile Medical Devices (CAMMD). This framework can proactively communicate patient records to a portable device based upon the active context of its medical practitioner. An expert system is utilised to cross-reference the context-aware data of location and time against a practitioners work schedule. This proactive distribution of medical data enhances the usability and portability of mobile medical devices. The proposed methodology alleviates constraints on memory storage and enhances user interaction with the handheld device. The framework also improves utilisation of network bandwidth resources. An experimental prototype is presented highlighting the potential of this approach
    corecore