548 research outputs found

    Personalization in object-based audio for accessibility : a review of advancements for hearing impaired listeners

    Get PDF
    Hearing loss is widespread and significantly impacts an individual’s ability to engage with broadcast media. Access can be improved through new object-based audio personalization methods. Utilizing the literature on hearing loss and intelligibility this paper develops three dimensions which are evidenced to improve intelligibility: spatial separation, speech to noise ratio and redundancy. These can be personalized, individually or concurrently, using object based audio. A systematic review of all work in object-based audio personalization is then undertaken. These dimensions are utilized to evaluate each project’s approach to personalisation, identifying successful approaches, commercial challenges and the next steps required to ensure continuing improvements to broadcast audio for hard of hearing individuals

    Towards perceptually optimized sound zones:A proof-of-concept study

    Get PDF

    Robust Personal Audio Geometry Optimization in the SVD-Based Modal Domain

    Get PDF
    © 2014 IEEE. Personal audio generates sound zones in a shared space to provide private and personalized listening experiences with minimized interference between consumers. Regularization has been commonly used to increase the robustness of such systems against potential perturbations in the sound reproduction. However, the performance is limited by the system geometry such as the number and location of the loudspeakers and controlled zones. This paper proposes a geometry optimization method to find the most geometrically robust approach for personal audio amongst all available candidate system placements. The proposed method aims to approach the most 'natural' sound reproduction so that the solo control of the listening zone coincidently accompanies the preferred quiet zone. Being formulated in the SVD-based modal domain, the method is demonstrated by applications in three typical personal audio optimizations, i.e., the acoustic contrast control, the pressure matching, and the planarity control. Simulation results show that the proposed method can obtain the system geometry with better avoidance of 'occlusion,' improved robustness to regularization, and improved broadband equalization

    Sound for Fantasy and Freedom

    Get PDF
    Sound is an integral part of our everyday lives. Sound tells us about physical events in the environ- ment, and we use our voices to share ideas and emotions through sound. When navigating the world on a day-to-day basis, most of us use a balanced mix of stimuli from our eyes, ears and other senses to get along. We do this totally naturally and without effort. In the design of computer game experiences, traditionally, most attention has been given to vision rather than the balanced mix of stimuli from our eyes, ears and other senses most of us use to navigate the world on a day to day basis. The risk is that this emphasis neglects types of interaction with the game needed to create an immersive experience. This chapter summarizes the relationship between sound properties, GameFlow and immersive experience and discusses two projects in which Interactive Institute, Sonic Studio has balanced perceptual stimuli and game mechanics to inspire and create new game concepts that liberate users and their imagination

    Signal-Adaptive and Perceptually Optimized Sound Zones with Variable Span Trade-Off Filters

    Get PDF
    Creating sound zones has been an active research field since the idea was first proposed. So far, most sound zone control methods rely on either an optimization of physical metrics such as acoustic contrast and signal distortion or a mode decomposition of the desired sound field. By using these types of methods, approximately 15 dB of acoustic contrast between the reproduced sound field in the target zone and its leakage to other zone(s) has been reported in practical set-ups, but this is typically not high enough to satisfy the people inside the zones. In this paper, we propose a sound zone control method shaping the leakage errors so that they are as inaudible as possible for a given acoustic contrast. The shaping of the leakage errors is performed by taking the time-varying input signal characteristics and the human auditory system into account when the loudspeaker control filters are calculated. We show how this shaping can be performed using variable span trade-off filters, and we show theoretically how these filters can be used for trading signal distortion in the target zone for acoustic contrast. The proposed method is evaluated based on physical metrics such as acoustic contrast and perceptual metrics such as STOI. The computational complexity and processing time of the proposed method for different system set-ups are also investigated. Lastly, the results of a MUSHRA listening test are reported. The test results show that the proposed method provides more than 20% perceptual improvement compared to existing sound zone control methods.Comment: Accepted for publication in IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSIN

    Effects of errorless learning on the acquisition of velopharyngeal movement control

    Get PDF
    Session 1pSC - Speech Communication: Cross-Linguistic Studies of Speech Sound Learning of the Languages of Hong Kong (Poster Session)The implicit motor learning literature suggests a benefit for learning if errors are minimized during practice. This study investigated whether the same principle holds for learning velopharyngeal movement control. Normal speaking participants learned to produce hypernasal speech in either an errorless learning condition (in which the possibility for errors was limited) or an errorful learning condition (in which the possibility for errors was not limited). Nasality level of the participants’ speech was measured by nasometer and reflected by nasalance scores (in %). Errorless learners practiced producing hypernasal speech with a threshold nasalance score of 10% at the beginning, which gradually increased to a threshold of 50% at the end. The same set of threshold targets were presented to errorful learners but in a reversed order. Errors were defined by the proportion of speech with a nasalance score below the threshold. The results showed that, relative to errorful learners, errorless learners displayed fewer errors (50.7% vs. 17.7%) and a higher mean nasalance score (31.3% vs. 46.7%) during the acquisition phase. Furthermore, errorless learners outperformed errorful learners in both retention and novel transfer tests. Acknowledgment: Supported by The University of Hong Kong Strategic Research Theme for Sciences of Learning © 2012 Acoustical Society of Americapublished_or_final_versio

    The quality of experience of next generation audio :exploring system, context and human influence factors

    Get PDF
    PhD ThesisThe next generation of audio reproduction technology has the potential to deliver immersive and personalised experiences to the user; multichannel with-height loudspeaker arrays and binaural techniques offer 3D audio experiences, whereas objectbased techniques offer possibilities of adapting content to suit the system, context and user. A fundamental process in the advancement of such technology is perceptual evaluation. It is crucial to understand how listeners perceive new technology in order to drive future developments. This thesis explores the experience provided by next generation audio technology by taking a quality of experience (QoE) approach to evaluation. System, context and human factors all influence QoE and in this thesis three case studies are presented to explore the role of these categories of influence factors (IFs) in the context of next generation audio evaluation. Furthermore, these case studies explore suitable methods and approaches for the evaluation of the QoE of next generation audio with respect to its various IFs. Specific contributions delivered from these individual studies include a subjective comparison between soundbar and discrete surround sound technology, the application of the Open Profiling of Quality method to the field of audio evaluation, an understanding of both how and why environmental noise influences preferred audio object balance, an understanding of how the influence of technical audio quality on overall listening experience is related to a range of psychographic variables and an assessment of the impact of binaural processing on overall listening experience. When considering these studies as a whole, the research presented here contributes the thesis that to effectively evaluate the perceived quality of next generation audio, a QoE mindset should be taken that considers system, context and human IFs.Engineering and Physical Sciences Research Council (EPSRC) and the British Broadcasting Corporation Research & Development department (BBC R&D

    Improving television sound for people with hearing impairments

    Get PDF
    This thesis investigates how developments in audio for digital television can be utilised to improve the experience of hearing impaired people when watching television. The work has had significant impact on international digital TV broadcast standards; it led to the formation of the UK Clean Audio Forum whose recommendations based on the research have been included in ETSI international standards for digital television, adopted into ITU standards for IPTV and also into EBU and NorDig digital television receiver specifications. In this thesis listening tests are implemented to assess the impact of various processes with a phantom centre channel and with a centre loudspeaker. The impact of non-speech channel attenuation and dynamic range control on speech clarity, sound quality and enjoyment of audio-visual media are investigated for both hearing impaired and non-hearing impaired people. For the first time the impact of acoustical crosstalk in two channel stereo reproduction on intelligibility of speech is quantified using both subjective intelligibility assessments and acoustic measurement techniques with intelligibility benefits of 5.9% found by utilising a centre loudspeaker instead of a phantom centre. A novel implementation of principal component analysis as a pre- broadcast production tool for labelling AV media compatible with a clean audio mix is identified, and two research implementations of accessible audio are documented including an object based implementation of clean audio for live broadcast that has been developed and publicly demonstrated
    • …
    corecore