5 research outputs found

    Robust Group Linkage

    Full text link
    We study the problem of group linkage: linking records that refer to entities in the same group. Applications for group linkage include finding businesses in the same chain, finding conference attendees from the same affiliation, finding players from the same team, etc. Group linkage faces challenges not present for traditional record linkage. First, although different members in the same group can share some similar global values of an attribute, they represent different entities so can also have distinct local values for the same or different attributes, requiring a high tolerance for value diversity. Second, groups can be huge (with tens of thousands of records), requiring high scalability even after using good blocking strategies. We present a two-stage algorithm: the first stage identifies cores containing records that are very likely to belong to the same group, while being robust to possible erroneous values; the second stage collects strong evidence from the cores and leverages it for merging more records into the same group, while being tolerant to differences in local values of an attribute. Experimental results show the high effectiveness and efficiency of our algorithm on various real-world data sets

    Identifying Mis-Configured Author Profiles on Google Scholar Using Deep Learning

    Get PDF
    Google Scholar has been a widely used platform for academic performance evaluation and citation analysis. The issue about the mis-configuration of author profiles may seriously damage the reliability of the data, and thus affect the accuracy of analysis. Therefore, it is important to detect the mis-configured author profiles. Dealing with this issue is challenging because the scale of the dataset is large and manual annotation is time-consuming and relatively subjective. In this paper, we first collect a dataset of Google Scholar's author profiles in the field of computer science and compare the mis-configured author profiles with the reliable ones. Then, we propose an integrated model that utilizes machine learning and node embedding to automatically detect mis-configured author profiles. Additionally, we conduct two application case studies based on the data of Google Scholar, i.e., outstanding scholar searching and university ranking, to demonstrate how the improved dataset after filtering out the mis-configured author profiles will change the results. The two case studies validate the importance and meaningfulness of the detection of mis-configured author profiles.Peer reviewe

    Implementación y evaluación de un método para la desambiguación de documentos relativos a personas

    Get PDF
    El proyecto recoge un método para la desambiguación de documentos web relativos a personas por el cual se realiza un clustering de estos documentos, agrupando aquellos que se refieren a un mismo individuo. Se aplica dicho método a un corpus real y se valoran los resultados obtenidos

    WELLNESS PROFILING ON SOCIAL NETWORKS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore