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Abstract
The increasing popularity of social media has encouraged health consumers to

share, explore, and validate health and wellness information on social networks,

which provide a rich repository of Patient Generated Wellness Data (PGWD).

While data-driven healthcare has attracted a lot of attention from academia and

industry for improving care delivery through personalized healthcare, limited re-

search has been done on harvesting and utilizing PGWD available on social net-

works. This thesis focuses on learning wellness profiles of users, both at micro-level

of individuals and macro-level of communities. Towards this end, we propose a

unified framework and algorithms to perform the following tasks.

(1) To extract the wellness information of users, we propose a learning frame-

work that utilizes the content information of microblogging messages as well as the

relations among event categories to categorize messages into a wellness taxonomy.

(2) To learn the latent profile of users, we propose an approach which directly

learns the embedding from longitudinal data of users, instead of vector-based

representation. In particular, the proposed framework simultaneously learns a

low-dimensional latent space as well as the temporal evolution of users in the

wellness space. To construct an effective framework, we incorporate two types

of wellness prior knowledge: (a) temporal progression of wellness attributes; and

(b) heterogeneity of wellness attributes in the patient population. The proposed

approach scales well to large datasets using parallel stochastic gradient descent.

(3) To learn the profile of user groups, we first integrate different social views

VI
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of the network into a low-dimensional latent space representing users’ profiles. We

then learn the optimal community structure by imposing a similarity constraint

over the affiliation vectors of the users, which seeks dense clusters of users in the

latent space. We seamlessly incorporate prior knowledge about the community

structure into the community discovery process and turn the process into an opti-

mization problem, where community profile is constructed using a linear pooling

operator integrating the profiles of the members.

To evaluate the effectiveness of the proposed framework, two large scale datasets

were constructed by crawling social activities of diabetes patients in Twitter. Ex-

tensive experiments have demonstrated: (1) the importance of modeling both

content information and events relation in wellness event extraction; (2) the sig-

nificance of joint modeling temporality of wellness features and heterogenity of

the user in wellness profiling; (3) the importance of fusing all social behaviors for

community discovery and profiling.
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CHAPTER 1

Introduction

The past decade has recorded a rapid development and change in the Web and

Internet. We are currently witnessing an explosive growth in social networking

services, where users are publishing and consuming online contents. In such a

context, millions of users, every day, publish their posts in different online social

networks (OSNs), such as Twitter, Facebook and Flickr. For example, today, more

than 56 percent of American adults older than 65 years use social media, which

records an increase of more than three times compared to 2010 when only 11

percent had been reported 1. Users in social media enjoy a wide range of freedom.

Thus, they can freely publish their opinion and easily connect to their friends. As

a result, people constantly share and discuss about various topics from personal

events like birthday party, to public event like Ebola outbreak, to daily events like

going to office.

In such a context, health consumers increasingly utilize social platforms to
1http://www.pewinternet.org/2015/01/09/demographics-of-key-social-networking-platforms-2/

1

http://www.pewinternet.org/2015/01/09/demographics-of-key-social-networking-platforms-2/
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fulfil their health demands through seeking and sharing health information and

experiences as well as providing online social support for their peers (Attai et al.,

2015,Davis, Anthony, and Pauls, 2015,De Choudhury, Morris, and White, 2014).

For example, it was reported that 57% of e-patients with chronic conditions con-

stantly and actively refer to social media to acquire health information while 20%

of them have already participated in generation of online health contents 2. The

emerging of self-tracking gadgets and the enthusiasm of users in taking informed

health decisions has also intensified this trend. This motivates users to disclose

their health information in social platforms (De Choudhury et al., 2013). For

example diabetic patients frequently post about their health conditions, medica-

tions, and the outcome of medications on social media platforms like Twitter and

Instagram. Further, the ubiquity of social media encourages health consumers to

not only discuss about their health conditions and share experiences but more

importantly share their health related attributes and measurements, like blood

pressure and blood glucose, which provides an invaluable resource to study and

analysis individual’s and communities’ wellness and behaviors. Figure 1.1 depicts

several examples of disclosing wellness information in Twitter, where people pub-

lish detailed measurements and values about their activities, food consumption,

and their health attributes, e.g. blood glucose values. While Electronic Health

Records (EHRs) are increasingly utilized in medical informatics as an important

and distinct data source, limited research efforts have been devoted into utilizing
2http://www.pewinternet.org/2010/03/24/social-media-and-health/

2

http://www.pewinternet.org/2010/03/24/social-media-and-health/
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Textual content exposing Information about 
medication use

Textual content exposing health 
attributes of a user

Information about a user’s food consumptionText information about activities of a user

Automatic data posted by a
wearable device

Figure 1.1: Sample of wellness information on Twitter; (left) information about activities;
(middle) information about food consumption; (right) information about wellness of users.
The advent of wearable devices has resulted into device-generated contents as shown in the
left column.

Patient-Generated Wellness Data (PGWD) available on social networks (Che et

al., 2015,Sun, Wang, and Hu, 2015,Robinson, 2012).

Concurrently, rates of chronic diseases, often referred to as non-communicable

diseases (NCDs), continue to drastically rise worldwide. In 2001, chronic diseases

contributed to approximately 60% of the 56 million deaths in the world 3 and the

burden of the diseases is expected to increase 11% by 2020, alarming the needs for

controlling its increase. In health sciences, there is an inevitable consensus that

chronic diseases are largely preventable diseases by lifestyle intervention (Kuh and

Shlomo, 2004). In essence, almost two-thirds of non-communicable diseases deaths

are linked to unhealthy habits such as tobacco use, unhealthy diets, physical in-

activity and harmful use of alcohol. Therefore, there is a high desire to provide

computational systems which are able to assist people in managing their lifestyle
3http://www.cdc.gov/chronicdisease/overview/

3

http://www.cdc.gov/chronicdisease/overview/
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and wellness. The emergence of several online services, such as “myfitnesspal”

and “myfooddiary”, and mobile application, such as “diet assistant” and “calorie

counter”, is indeed an effort to answer this demand by assisting people in under-

standing and improving their lifestyle and wellness.

The boom in PGWD opens up a vast range of possibilities to study individual’s

wellness and collective behaviours of social groups on an unprecedented scale. A

major aspect of building an effective information and social service is the construc-

tion of user profiles that accurately represent users’ interests and behaviors. User

profiles are often used in personalization of services, outputs, and content to in-

dividuals needs and preferences towards gaining maximum user sanctification. As

such, in this thesis, we focus on wellness profiling of users and communities, where

we harvest social media to identify, understand, and predict, wellness attributes

and behaviours of users and groups.

The remainder of this chapter is organized as follows. It first introduces the

background of user profiling, in general and wellness domain, in Section 1.1. It then

continues by highlighting motivations and illuminating challenges in Section 1.2,

and Section 1.4, respectively. It continues by briefing the contributions in Section

1.5. It then ends by introducing the notation we use in Section 1.6, followed by

the outline of the thesis in Section 1.7.

4



CHAPTER 1. INTRODUCTION

1.1 Background

In this section, we briefly explain the background context of the current research

work. Indeed, user profiling has been largely utilized to boost the effectiveness of

various information and social services. Briefly speaking, the related techniques

and approaches can be divided into three categories: user profiling, group profiling,

and vertical domain profiling.

1.1.1 User Profiling

User profile learning plays an increasingly important role in many social media

applications. Learning a user profile can assist us in better modeling user’s be-

haviours and interests which are essential in many social media applications such

as recommendation services. Generally, a user profile is utilized to provide person-

alized services and results. Broadly speaking, user profile learning techniques can

be divided into two broad categories: explicit and implicit profiling approaches.

Explicit user profiling focuses in inferring personal and social attributes and

characteristics of users, such as gender, race, occupation, education, location,

political affiliation, and so on. Most of existing studies focus on user-centric infor-

mation, such as published tweets (Burger et al., 2011, Cheng, Caverlee, and Lee,

2010,Paul and Dredze, 2011), blog entries (Burger and Henderson, 2006,Yan and

Yan, 2006,Nowson and Oberlander, 2006), browsing histories (Jones et al., 2007),

and other types of user generated contents to profile users’ certain attributes.

5
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Among users attributes, age and gender (Peersman, Daelemans, and Van Vaeren-

bergh, 2011,Rao et al., 2010,Schwartz et al., 2013), occupation (Preoţiuc-Pietro,

Lampos, and Aletras, 2015), and location prediction (Cheng, Caverlee, and Lee,

2010,Hecht et al., 2011) have attracted many researchers. Recently, network cen-

tric data has also been used for user attribute prediction, aiming to utilize user

social friends, also referred as social dimensions, to profile users more effectively.

Lately, multi-source user profiling has been investigated for effective user profiling,

where users’ data from multiple social networks are harvested for attribute profil-

ing. For example, Farseeve et. al (Farseev et al., 2015) profile users’ gender and

age using a supervised classification approach based on users’ published posts on

multiple social networks, i.e., Twitter, Instagram, and Foursquare. The main chal-

lenge in multi-source user profiling is how to integrate heterogeneous information

from various source into a unified learning framework. Overall, early fusion and

late fusion are two major techniques for integrating multiple data sources (Akbari,

Nie, and Chua, 2015).

Implicit user profiling, however, learns a latent representation, often a kind of

distributed representation, for each user, which is capable of discriminating some

aspects of user behaviours and interests. Matrix factorization (MF) (Koren, Bell,

and Volinsky, 2009,Moghaddam, Jamali, and Ester, 2012), and topic models (Blei,

Ng, and Jordan, 2003, Ding, Li, and Peng, 2008) are two main techniques which

have been widely used for learning a latent representation of users and items in

recommendation system. The hypothesis behind latent representation learning is
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that users and items can be mapped into a low-dimensional space representing

their relations. Recently, implicit feedback of users, such as user activities, is also

utilized for inferring user preferences (Gupta and Singh, 2015).

1.1.2 Group Profiling

Group profiling aims at learning the collective behaviour of a group of people, also

known as community in social media computing. It can be applied for policy-

making, direct marketing, tracking interest shifts of communities, network visual-

ization and navigation (Cruz, Bothorel, and Poulet, 2013,Omidvar-Tehrani, Amer-

Yahia, and Termier, 2015). Group profiling in social media and data mining is

often modeled as a two stage framework including community discovery phase and

the aggregation of attributes of the community members. Due to its importance,

several research efforts have been devoted into community discovery problem. For

example, modularity decomposition has been applied to link information in social

networks (Yang et al., 2009), and communication pattern has been used for ex-

pert team detection (Lappas, Liu, and Terzi, 2009), and generative models were

used to find topical communities (Zhou, Jin, and Liu, 2012). Community profile

is then constructed by aggregation of shared group interests. For example, Wang

et. al (Wang, Guo, and Lan, 2014), have aggregated the meta data of users and

venues to characterize the communities based on their members’ location inter-

est. Similarly, Zhao. et. al, integrated venues, images, and comments to learn

a multi-modal community profile in location-based social networks (Zhao et al.,
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2013b).

While two stage group profiling decomposes the problem into two intuitive sub-

problems, how to infer group profiles from discovered communities pose a great

challenge and still is an open problem.

1.1.3 Vertical Domain Profiling

User profiling has also been leveraged in vertical domains such as apparel domain

and shopping domain (Geng et al., 2014, McAuley et al., 2015,McAuley, Pandey,

and Leskovec, 2015). As we are interested in the vertical domain of wellness and

health of users, we only discuss related concepts of wellness profiling in this sec-

tion. Social media platforms have proven their importance as a convenient tool

for broadcasting information, sharing opinion and thought, and interacting with

friends. The success of social media have attracted the researchers from health

and medical community, in particular public health, to study the health of indi-

viduals and of population, aiming at developing services and policies that improve

the wellness of users (De Choudhury et al., 2013, De Choudhury, Counts, and

Horvitz, 2013b). Social media data has been also utilized for profiling users and

communities from wellness aspect. In the individual aspect, user generated con-

tents and online behaviors have been utilized for profiling user wellness attributes

such as depression (De Choudhury et al., 2013), stress (Lin et al., 2014), post-

partum behavioral changes (De Choudhury, Counts, and Horvitz, 2013b), shifts

to suicidal ideation (De Choudhury et al., 2016), etc. In population-level, so-
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cial media data has been employed as a useful resource for studying population

behaviour related to diabetes, obesity, cardiovascular disease (Eichstaedt et al.,

2015), just to name a few. Most existing research efforts have used social media

data for analyzing wellness of population in country or city scale. For example, in

(Paul and Dredze, 2011), researchers predicted the rates of diabetes and obesity

for 15 US cities. Similarly, Foursquare has been examined for the group obesity

prediction and cultural characterization (Abbar, Mejova, and Weber, 2015). We

will discuss the related literature with more details in chapter 2.

1.2 Motivation

Learning the wellness profile of users can assist individuals and communities to

improve their wellness and lifestyle. At individual level, it can provide better on-

line services which assist users in different ways. First, people increasingly utilize

social media for healthcare; they share their daily activities and health informa-

tion in social platforms. The wellness profile of a user can be used for several

personalized online services assisting them in making informed health decision.

For instance, the wellness profile of a user can be used in a health social network

for recommending contents related to their health conditions. Taking diabetes as

a wellness problem, the system can recommend a Type II diabetes patient with

content related to his specific condition. Further, in case of having a question, the

system can route the question to a proper expert or a patient with similar con-

dition to obtain first hand suggestions and experiences. Second, considering the
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popularity of wearable devices, the wellness profile of a user from social networks

can complement his profile extracted from the wearable device. Indeed, collecting

user information from multiple sources provides a comprehensive understanding

of user’s behaviors and interests, which improves the efficacy of the system.

At group level, it provides insights about population wellness. In particular,

an important attribute of social media data is that posting are performed in a

naturalistic way in the course of daily activities and events. By collecting and

aggregating wellness information of users, discovering potential communities, and

profiling the discovered communities, we can study the wellness of communities

which provides insights about the wellness and health of the population. It can

be utilized for policy-making, trend analysis, and search and tracking wellness

groups. This data complements the information and insight we can obtain through

traditional methods like completing surveys by a group of users as a population

sample.

1.3 Problem Definition

Given social media accounts of users, the problem we aim in this thesis is to make

sense the wellness of users on online social networks. In particular, we investigate

approaches to learn the wellness profile of users, where we leverage social media

data to identify, understand, and predict wellness attributes and states of users and

communities. To achieve this end, we first propose an approach to extract posts

which directly indicate the happening of personal wellness events for the users. We
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then study how social content and behavior of users reflect their wellness attributes

and states. Following this line of research, we propose to learn the wellness profile

of individuals from their social media contents and behaviors, identify the user

communities discussing about wellness on social media platforms and build the

wellness profile of user communities.

1.4 Challenges

Due to the importance and value of wellness profiling for service providers, it has

attracted a lot of research interest in social media computing and health informat-

ics. However, learning wellness profile of users in social media is a nontrivial task

due to the following reasons.

Limited data. A major challenge for a vertical user profiling approach is the

limited data problem. Looking from macro-level, social media data is known

as a big data since millions of users are continually generating content and

interact with each other. However, from a micro-level perspective, many

social media users do not generate sufficient data or they partially active in

content generation. Considering the specific domain of wellness, most of the

time they are not keen enough to participate in content generation or they

hide their wellness data due to privacy concerns.

Noisy and Imbalanced Data. The language used in social media is highly var-

ied, informal and full of slang words, which makes the problem more chal-
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lenging as compared to standard text processing problems like document

clustering. Meanwhile, users frequently post their personal significant events

together with trivialities and other public events, which makes the wellness

related posts relatively sparse and rare in social media contents. Identifying

wellness information from a huge volume of other non-health related events

is a big challenge. Even though we can successfully identify the personal

health events, it is still time and labour consuming to label them.

Heterogeneity. Social media data is heterogeneous meaning that various kinds

of information are available in social networks such as text, image, and video

contents. Integrating different kinds of information in the learning model is

essential and challenging. Further, wellness domain is characterized by the

heterogeneity of patient population which means that wellness attributes and

events related to each user can be highly different from the others accord-

ing to their demographic attributes (e.g., age and gender), type of disease

(e.g., Type I Diabetes, Type II Diabetes, Gestational Diabetes, etc.), and

many other behavioural and genetic factors. Although proper modeling of

heterogeneity in contents and users is essential, it is still an open problem

in machine learning and data mining studies.

Longitudinality. Wellness data are longitudinal per se, which means multiple

measurements or repeated events are available for each subject. For example,

Hemoglobin A1c (HbA1c) test might be done several times per year for each

diabetic patient. The current measurement of wellness attribute along with
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the patient history both are important to construct a precise user model. To

effectively utilize this data, temporal dependency of the features needs to be

appropriately modeled in the learning framework.

1.5 Contributions

The contributions of the thesis can be summarized as follows.

1. We propose a framework which extracts personal wellness events from pub-

lished posts of users in microblogging social services. The proposed frame-

work utilizes content information of published posts as well as the relations

between different wellness categories to categorize messages into a wellness

taxonomy.

2. We focus on diabetes as a specific type of wellness problem and perform

deep analysis of users online behavior and characteristics, which provides

better insights about capability of social media platforms in understanding

and profiling user’s wellness. In particular, we study the the behavioral

distinction between diabetic patients in order to characterize those who can

successfully manage their chronic conditions and those who fail. We have ob-

served several distinctions in terms of linguistic, textual, and visual contents

of published posts online. Based on the findings, we propose two different

intervention method for assisting users better adopt their chronic condition.

3. We propose an approach to automatically learn the embedding of users di-
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rectly from their longitudinal data. The proposed method takes into account

two types of wellness prior knowledge: temporal progression of wellness at-

tributes; and heterogeneity of wellness attributes in the patient population.

Taking diabetes as an example of wellness domain, we conduct extensive ex-

periments to evaluate our framework at tackling three major tasks in wellness

domain: attribute prediction, success prediction and community detection.

4. We proposed a community discovery and profiling approach for social media

users. The proposed model simultaneously learns the profiles of users and

their affiliation to communities in a low-dimensional space, which is con-

structed from the integration of different social views of the network. Ex-

tensive experiments on a real-world dataset of diabetic patients have demon-

strated the effectiveness of the proposed approach on discovery and profiling

communities as well as leveraged several interesting insights about users’

interactions in social media platforms.

1.6 Notation

In this dissertation, we use the following notations to describe the formulation

of the problems and provide mathematical models. We use boldface uppercase

letters (e.g., A) to denote matrices, boldface lowercase letters (e.g., a) to denote

vectors, and lowercase letters (e.g., a) to denote scalars. The entry at the i-th row

and j-th column of a matrix A is denoted as A(ij). A(i∗) and A(∗j) denote the
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i-th row and j-th column of a matrix A, respectively. Meanwhile, subscript, i.e.

Ai, is used to denote the i-th item in a set of items A = {A1,A2, . . . ,Ai, . . .}.

‖A‖1 is the `1-norm and ‖A‖2
F is the Frobenius norm of matrix A. Specifically,

‖A‖1 = ∑m
i=1 ‖Ai∗‖1 and ‖A‖2

F =
√∑m

i=1
∑n
j=1 |Aij|2. Besides, tr(.) denotes the

trace of a matrix.

1.7 Thesis Structure

The remainder of the thesis is organized as follows.

Chapter 2 describes work related to user wellness profiling. It first reviews

recent research efforts on event detection from social media platforms in two major

categories: public event detection and personal event detection. It next introduces

related work in user profiling followed by introducing major advancements in group

profiling.

Chapter 3 demonstrates an approach for mining wellness information of users

from social media platforms. It first formally define the problem of personal well-

ness event extraction from social media and then provides a supervised approach

for extracting personal wellness events which are mentioned in published posts of

users, aiming at constructing a personal timeline of wellness events for each social

media user.

While Chapter 3 demonstrates the capability of social media platforms as

a social sensor for inferring users’ lifestyle and wellness, in general, Chapter 4

focuses on a specific kind of health condition, diabetes, to deeply analyze the
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capability of social media in wellness profiling and gain better insights about this

connection. In particular, Chapter 4 presents a characterization study on the

behavioral distinction of two groups of diabetes patients, aiming at distinguishing

diabetes patients who can control their blood glucose level and those who fail to

manage their blood glucose level, most of the times.

Chapter 5 demonstrates the importance of feature learning from longitudinal

data. It proposes an approach which directly learn the representation of users in

the latent space, where both temporality of wellness attributes and heterogeneity

of patient population are jointly modeled.

Chapter 6 introduces a learning framework which simultaneously learns the

profile of communities in social networks. The framework leverages prior knowl-

edge and behavioral factorization to learn a low-dimensional latent space from

online behavior of users. Community discovery is then performed in the latent

space by considering all social behaviors of users.

Chapter 7 concludes the thesis with highlights of contributions and offers point-

ers for potential future research.
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CHAPTER 2

Background and Literature Review

Learning Profile of users, in micro-level of individual and macro-level of groups,

are related to a range of research directions. This chapter serves to introduce

major retrospective studies related to this dissertation. To do so, we first review

recent works on event detection in Twitter social platform in Section 2.1. We next

introduce related work in user profiling in Section 2.2, followed by Section 2.3

which reviews related efforts in group profiling.

2.1 Event Extraction in Social Media Platforms

Efforts on event extraction and timeline generation can be roughly categorized

into two broad classes: public event extraction and personal event extraction. In

essence, most existing studies on event detection in social media platforms focus on

detecting public events due to the initial belief that social platforms are designed

for sharing opinion and spreading information. However, personal event detec-

17



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

tion has recently attracted attention in personalized information services. In the

following subsections, we briefly describe major advancements in both directions.

2.1.1 Public Event Detection

Retrospective studies in social media computing have made it evident that social

media streams can provide vital information related to events in real-time. Hence,

event detection from online social networks has received considerable interest in the

fields of data mining and knowledge discovery (Petrović, Osborne, and Lavrenko,

2010,Phuvipadawat and Murata, 2010,Diao et al., 2012). Twitter, amongst other

social platforms, has attracted higher attention due to the rich user-generated

text data that can be accessed in real-time (Petrović, Osborne, and Lavrenko,

2010). Depending on the task, several approaches have been proposed to detect

events by exploiting different aspects of the data such as content, temporal and

social features. Broadly speaking, existing public event detection algorithms can

be classified into two major categories: document-pivot methods and feature-

pivot methods. Document-pivot techniques cluster the documents into several

categories based on their semantic distances while term-pivot methods rely on the

distributions of words and discover events by detecting burstiness in word groups.

In this domain, Petrovic et al. (2010) proposed an adaptation of document-

pivot approach to first story detection in fast social streams like Twitter. Their

framework utilizes the locality sensitive hashing (LSH) with the cosine similarity

to compute the similarity of the incoming tweet to existing tweets. Similar tweets
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are then grouped into a cluster demonstrating an event. Similarly, Phuvipadawat

and Murata (2010) proposed an approach for detecting and tracking breaking news

from Twitter. Their proposed approach first samples tweets which contain specific

hashtags and keywords, such as “#breakingnews”, and then clusters similar tweets

together to form a news story. To effectively compute the similarity between short

messages, they utilized a variant of Tf-Idf boosted by a Named Entity Recognizer

(NER).

Yet another way to cluster tweets into events is to employ topic modeling

techniques to extract hidden topics from streams (Blei, Ng, and Jordan, 2003,

Ramage et al., 2009). As standard topic modeling approaches do not consider

temporal information, several studies have been conducted to incorporate time

dimension in topic models. For instance, Diao et al. (2012) proposed a new topic

model that integrates both the temporal information of microblog posts and users’

personal interests. Bursty topic was then identified as a set of tweets that contain

similar words, i.e., discussing on same topic, however they published by different

users. While topic models provide a principled way to detect hidden topics in a

text collection, most exsisiting approaches can be applied in a retrospective and

offline manner. Further, they depends on parameter stetting and large number of

sampling iterations.

TwitterMonitor (Mathioudakis and Koudas, 2010) treats bursty keywords, that

suddenly appear in tweets at an unusually high rate, as indicators of a new trending

topic. It first identifies bursty keywords and groups them based on their co-
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occurrences to get trends, i.e., keyword groups. For each trend, singular value

decomposition (SVD) and entity extraction techniques are then utilized to build

a better contextual description of the trend.

Graph-based approaches have also been used for clustering keywords pertaining

to their pairwise similarities. For example, Sayyadi, Hurst, and Maykov (2009)

proposed to build a graph named KeyGraph based on keywords co-occurrence

in documents. In their method, keyword clusters are then discovered using a

community detection algorithm based on betweenness centrality. Graph-based

approaches have also been applied to the task of tag clustering in the context of

collaborative tagging systems aiming at discovering groups of tags pertaining to

topics of social interest (Papadopoulos, Kompatsiaris, and Vakali, 2010).

Alternatively, Weng et al. (Weng and Lee, 2011) captured the burstiness of

words by considering them as signals and applying wavelet analysis on consecutive

time slots. There were three steps in their approach. First, they applied wavelet

transformation and autocorrelation to measure the bursty energy of each word,

where the words with low energies are filtered. Second, cross correlation was ap-

plied to measure the similarities between event features. Finally, modularity-based

graph partitioning was utilized to detect the events with high cross correlation

amongst words.

Recently, Li, Sun, and Datta (2012) argued that multi-word segments or word

n-grams, as compared to single words, can improve the performance of the event

detection task. They proposed to split each tweet into non-overlapping segments,
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i.e. phrases possibly refereeing to named entities or semantically meaningful units.

The bursty segments were ranked and clustered into candidate events. Finally,

Wikipedia was exploited to identify the realistic events and to derive the most

newsworthy segments to describe the identified events.

2.1.2 Personal Event Detection

As compared to public event extraction, the work on personal event extraction

from social media contents is still relatively sparse. Most existing approaches

focus on extracting personal events in order to construct a personal timeline of

the event.

Prior research efforts mainly focused on clustering and sorting information of a

specific person from web search (Al-Kamha and Embley, 2004,Kimura et al., 2007,

Wan et al., 2005,Yoshida et al., 2010). To detect personal events, Diao et al. (2012)

designed an extension of Latent Dirichlet Allocation (LDA) that separates personal

topics from public burstly topics. It considers both the temporal information of

microblog posts and users’ personal interests. Recently, Li and Cardie (2014)

utilized multi-level dirichlet process model to construct a chronological timeline

for individuals based on their published tweets. Their system does not recognize

the categories of event however identifies tweets that are personal and time-specific.

Besides if the topic does not adequately discussed by their local network, it cannot

be detected since topic models use word frequency to detect topics.

TwiCal is a system which extracts events with their description from Twitter
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posts of users (Ritter et al., 2012). Each event in TwiCal is represented by 4

attributes includes: named entity, event phrase, event type, and calender date.

Given a raw stream of tweets, the system classifies named entities, and event

phrases into event types. After detecting temporal expression in tweets and re-

solving them, events are scored based on association between each entity and the

specific data.

Recently, a supervised classification approach was proposed in (Li et al., 2014),

which detects major life events from tweets. Their framework exploits congratu-

lations and condolences speech acts to extract training examples. Their system

is comprised of three components. First, it identifies the major categories of life

events and filters out mundane and irrelevant tweets. Second, the system dis-

tinguishes personal events from the events that involve other users, i.e., extract

personal events. Finally, the properties and attributes of events such as location is

identified as a description for the event. The major drawback of their framework is

that it combines several components sequentially which results in the propagation

of errors from each component to the next one.

In this line of of research, several supervised approach have been proposed

to examine different features for automatic detection of life events from short

messages (Choudhury and Alani, 2014, Dickinson et al., 2015, Cavalin, Moyano,

and Miranda, 2015). Lately, Liu et al. (2015) proposed a model to extract patient

experience from health forums, where they classified each sentence as containing

patient experience or not containing patient experience. Their system utilizes

22



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

the global context and local context of each post to extract patient experiences.

However, their approach is not applicable to tweets due to the short length of

messages.

Seeing from developed applications, the increasing popularity of social media

leads to high demands on services for tracking individual such as the famous

Facebook timeline. To fulfill this demand, Facebook has recently generated 270

million of 1 minutes look back videos from users’ timelines and over 200 million

users watched their look back movie in the first two days1. Similar projects like

Intel’s Museum of Me2 attempted to follow a similar direction by collecting UGCs

in social platforms.

To summarize, past efforts generally focus on discriminating public events and

personal events based on word search or topic models. Therefore, they only detects

major life events such as graduation and marriage. However all lifestyle event are

not major life event and they are not discussed in local circles of users.

2.2 User Profiling

Modelling users’ behaviour and identifying their interest is an important aspect

of constructing an effective recommender and information system, which is often

referred as “User Profiling”. This is a crucial requirement in improving the per-

formance of system as well as the satisfaction of users by providing personalized
1https://code.facebook.com/posts/236248456565933/looking-back-on-look-back-videos/
2http://www.intel.com/museumofme/en_AU/r/index.htm
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recommendations and services. For example, profiling a user’s location or topic of

interest permits us to provide personalized search results in search engines, local

news in news sites, and targeted ads in advertisement systems. As previously

discussed, user profiling techniques can be divided into two broad categories: ex-

plicit and implicit profiling approaches. The former attempts to detect different

attributes of a user, such as age and gender, based on the user data, while the

latter models the user’s interests and behaviour in order to provide personalized

results.

2.2.1 Explicit User Profiling

Based on the type of information used in profiling, literature can be divided into

following categories: content-based profiling, network-based profiling, hybrid-base

profiling, co-profiling, and multi-source user profiling.

Content-based User Profiling

The traditional approach in user profiling is to utilize user-generated contents,

such as status updates, user profiles and shared multimedia contents, to infer user

attributes and preferences. Usually, the problem is modelled as a supervised learn-

ing task and various classification approaches are used to predict users’ attributes.

Support vector machines (SVMs), probabilistic modelling, and boosted decision

trees are the most common algorithms which are used for solving the problem.

Early in this direction, Hecht et al. (2011) conducted an investigation to verify
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the information embedded in the location field of users’ profiles in Twitter. They

reported that many users provide no information or non-real information in their

profiles and demonstrated that the explicit location sharing behaviors should be

examined in the context of implicit behaviors. They proposed a Multinomial Naive

Bayes model to classify tweets and attempted to predict the home country and

state of Twitter users. Their experiments used a limited dataset of 4 countries,

and the state-level experiments were restricted to the United States. They did

not make use of geotags but instead obtained location data from the users’ profile

location fields. After filtering out users with fewer than 10 tweets, a dataset of

almost 100, 000 users remained. Their approach correctly placed users in their

home states with an accuracy of up to 30%, and in their home country with an

accuracy of up to 80%. The model correctly placed the users at a much better

accuracy than random, indicating that users implicitly reveal location information

in their tweets.

Similarly, Cheng, Caverlee, and Lee (2010) proposed a probabilistic framework

for predicting a Twitter user’s city-level location merely based on tweet content.

The proposed framework applied two basic improvements:

• feature selection was utilized to automatically identify words in tweets with

a strong local geo-scope.

• A lattice-based geographic smoothing method was used to refine a user’s

location estimation.

To evaluate the framework, city models were built from over 4 million tweets
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from approximately 131, 000 users who had a declared location in a city in the

United States. They reported an accuracy of 51% where users correctly placed

within 100 miles of their correct location. Further, Bo, Cook, and Baldwin (2012)

proposed feature selection for finding location indicative words (LIWs). They

demonstrated that finding LIWs boosts the performance of text-based geolocation

task, outperforming state-of-the-art geolocation prediction methods by 10.6% in

accuracy and reducing the mean and median of prediction error distance by 45

km and 209 km on a public dataset, respectively.

Network-based User Profiling

Network-based approaches utilize users’ social graph, i.e., friendship, or interaction

information to estimate their preferences. The hypothesis behind network-based

user profiling springs from the simple but effective social theories of heomophily

and contagious, which attests that interests of people are correlated with that of

their social connections and friends. Relational learning or collective classification

are widely used to refer to the task of classification in the network data when

data are linked. Indeed, the major characteristic of network data is that indepen-

dently identical distribution (i.i.d) assumption is invalid and data instances are

dependent to each other. Hence, it is possible to capture the correlation among

data instances to improve the performance of learning framework. Normally, a

relational classifier is constructed, based on the correlation of the features and

labels of the data, to minimize the discrepancy between labels of connected data
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instances.

Mislove et al. (2010) demonstrated that the missing attributes of users can

be inferred from the attributes of other users in an online social network. They

found that users with common attributes often form dense communities, which

motivated them to propose a method of inferring user attributes by detecting

communities in social networks. Using Facebook data, they demonstrated that

when only 20% of the users in the network provide their attributes, it is possible

to estimate the attributes for the rest of the users with an accuracy of over 80%.

Backstrom, Sun, and Marlow (2010) studied the relationship between proxim-

ity and freindship on social media platforms and observed that, as expected, the

likelihood of friendship drops monotonically as a function of distance. Upon this

observation, they proposed an approach for predicting the physical location of a

user, given the known location of his friends. They examined the probability of

friendship as a function of distance and found that:

• The probability decreases as distance between users increases.

• The probabilities fit an exponential distribution.

They used a dataset of Facebook users including 2.9 million users whose loca-

tions were known. Using a maximum likelihood approach and a simple assumption

of close proximity of friends, they predicted the physical location of 69.1% of the

users with 16 or more located friends to within 25 miles.
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Hybrid-based User Profiling

Recently hybrid-based profiling attracted much interest in user profiling. The

hypothesis behind hybrid-based user profiling is that we can integrate both content

and network information for better user profiling.

Li et al. (2012a) proposed a unified discriminative influence model, named as

UDI, to predict the home location of users in the context of Twitter social network.

Their framework integrates user’s generated contents (tweet posts) and users’ so-

cial networks (friends) in a directed heterogeneous graph to overcome scarce and

noisy data problem. They developed two variants of their framework named local

prediction model and global prediction model. The former integrates locations

based on a user’s friends, followers and tweets in a discriminative way to estimate

the location. The latter extends the local method with additional unlabelled data,

i.e., in this case unlabelled users. Experimental results on a large scale dataset

demonstrated the ability of the approach by 13% improvement on sate-of-the-art

baselines. Similarly a generative model, named multiple location profiling model

(MLP), has been proposed to profile location of users on Twitter (Li, Wang, and

Chang, 2012). In particular, they utilized two probabilistic models to predict lo-

cations with contents and friendships. As a user may related to multiple location,

they introduced two mixture models to capture the noisy information. Exper-

iments on a large-scale dataset demonstrated 10% improvement in accuracy of

estimating user’s home location.
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Co-Profiling

Co-profiling integrates user profiling with other related tasks, such as relation pre-

diction, to achieve mutual enhancements. In this line of research, Dalvi, Kumar,

and Pang (2012) investigated the problem of object matching for tweets, where

the aim is to generate a list of tweets corresponding to an objects. In (Dalvi,

Kumar, and Pang, 2012), a probabilistic model was proposed to infer the matches

between tweets and restaurants from a given list. The authors assumed that :

(1) each user is interested about a set of objects; (2) each user and object are

associated with a geographic location; and (3) the probability that a user tweets

about an objects depends on: (a) user’s interest on the object; (b) the popular-

ity of the objects, and more importantly (c) the inverse of the distance between

the user and the object locations. Based on these assumptions, they proposed a

probabilistic model consisting of two components: a distant model and a language

model. Experimental results demonstrated the gain of their model in compared

to non-geographical model in inferring the location of the users accurately.

In another work, co-profiling of attributes and relations was investigated (Li,

Wang, and Chang, 2014). Briefly, the authors captured the correlation between

attributes and relation types. Their framework was based on two intuitive as-

sumptions as follows:

• Attribute Profiling. Different types of relationships propagate different at-

tributes. For instance, university should propagate from college mates, while
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occupation should be propagated from colleagues.

• Relation Type Profiling. Relationship types between users can be identified

by their shared attributes and network structure. For example, a set of

friends who are strongly connected and share occupation might be colleagues.

Upon these assumptions, they proposed a label propagation approach to infer the

missing attributes and relations based on users’ known labels. To do so, a cost

function was designed to model both types of dependencies and alternative opti-

mization has been leveraged to solve the minimization problem (i.e. minimizing

the cost function). Their results demonstrated that co-profiling algorithm not

only profiles users’ attributes accurately, improving the state-of-the-art methods

greatly, but also correctly identifies latent circles of users’ friends, which are useful

for many advanced applications.

Multi-source User Profiling

In recent years, multi-source profiling has attracted attention for learning profiles

of users from several online social networks. For example in earlier work, Yuan

et al. (2012) studied the approaches to integrate multi-modal data from clinical

measurements to enhance the results of Alzheimer’s Disease prediction. However,

the model was formulated as a binary classification tasks, and, thus, not directly

applicable to real-world scenarios. Later, Song et al. (2015a) proposed a learn-

ing framework for prediction of users’ Volunteer tendency from multiple social

networks. They extracted information cues about the users form social networks
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such as, demographic information, practical behaviors, historical posts, and pro-

files of social connections. As the social network data are often incomplete, they

mitigated the problem arising from missing data through inferring missing data by

learning a latent shared space using constrained Non-Negative Matrix Factoriza-

tion (NMF). Authors finally predicted the volunteerism tendency of users using a

regression model fusing all the data from multiple sources. The learning framwork

models the problem as a binary classification problem which is the main draw-

back of the proposed learning framework. Later, Song et al. (2015b) proposed

a multi-source multi-task framework which infers users’ interests. The proposed

framework exploited the prior knowledge about users’ interests in a tree-structure

which was used as a regularizer in the proposed optimization problem.

At the same time, (Farseev et al., 2015) introduced efficient ensemble learning

solutions, aiming to combine multi-source multi-modal data for demographic and

mobility user profiling, respectively. The above model performed the best among

various state-of-the-art baselines and demonstrated the necessity of learning from

multiple sources to improve the user profiling performance. Lately, deep learning

was also used for fusing multiple social network data to predict users’ volunteerism

tendency.

2.2.2 Implicit User Profiling

Representation learning, or latent feature learning, is a popular approach for dis-

covering low-dimensional structure from high dimensional data. We are interested
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in factorization based models which aim at finding a low rank decomposition of

original space approximately recovering the original space including sparse cod-

ing, Singular Value Decomposition (SVD), Principal Component Analysis (PCA),

Weighted Matrix Factorization (WMF), and so on (Chen et al., 2015, Lin et al.,

2009, Volkovs and Yu, 2015). Recently, latent factor decomposition has been at-

tracting much interest to alleviate data sparsity in recommendation task where

user-item matrix is used to model user interests and intentions (Cai et al., 2011,He

et al., 2014b,Jin et al., 2015,Zhao, McAuley, and King, 2014,Zhao, McAuley, and

King, 2015). For example, Cai et al. (Cai et al., 2011) proposed a graph regular-

ized NMF (GNMF) approach which employs the geometrical information of data

space in factorization process. Similarly, semi-supervised GNMF (SGNMF) incor-

porates label information into the graph construction (Liu et al., 2012). NMF has

also been applied onto multi-view data, where a shared latent factor was inferred

from different views (He et al., 2014b, Pan et al., 2014, Song et al., 2015a). For

instance, joint NMF has been applied to multi-view clustering of Web 2.0 items

by decoupling the learnt latent factors inferred from different views (He et al.,

2014b).

Personalization of latent factor modelling was first explored in (Shen and Jin,

2012), where a joint personal and social latent factor (PSLF) has been utilized for

social recommendation. Similarly, Pan and Chen (2013) aggregated the features

of a group of related users to reduce the uncertainty of the selected training in-

stances. Zhao, McAuley, and King (2014) leveraged social connections to improve

32



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

the performance of one-class recommendation. Lately, they proposed a personal-

ized feature projection method that employs users’ projection matrices and items’

factors to solve one-class recommendation problem (Zhao, McAuley, and King,

2015).

Most of the existing approaches for latent factor learning have been designed

for vector-based representation to embed users (or items) in a low dimensional

space. They will fail to provide effective representation if applied to longitudinal

wellness data. Furthermore, existing feature learning approaches often assume

that data items are i.i.d., which is clearly violated in longitudinal data. More-

over, most of these approaches fail to model heterogeneity in data space or model

temporal dependency as a regularized multi-task learning framework but overlook

heterogeneity in data space. Our aim, in this research, is to learn a latent repre-

sentation directly from longitudinal data where temporality and heterogeneity of

data are jointly modeled.

2.3 Group Profiling

Group profiling aims at learning the collective behavior of a group of users that

are also known as a user communitiy in social media computing. An intuitive

approach for profiling at group level is to discover communities of users and then

apply profile learning approach to capture information and behaviors of the com-

munity members (Zhao et al., 2013b). In other words, community profiling is often

modeled as a two stage framework including community discovery problem and
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aggregation of members’ profiles to build the group profile. Group profiling is im-

portant for various applications including facility planning, recommendation (Zhao

et al., 2013b), marketing (Qu and Zhang, 2013), and advertisement. In this sec-

tion, we first overview the major advancements in community detection and then

describe related works in learning the profile of groups.

2.3.1 User Community Detection

As mentioned above, it is important to find representative user communities in

order to leverage on a group knowledge for various applications. Such task is

commonly approached by modeling users’ relationship as a graph, so that dense

subgraphs of such graph can be treated as user communities. The graph can be

constructed in several ways: (a) based upon social connections between users (i.e.

follower/followie relationship) that are often hidden behind the privacy settings;

(b) based on user generated content, when the edges of the graph are weighted as a

distance between latent representations of users (i.e. cosine or Euclidian distance);

or (c) as a combination of the above two methods.

After the construction of graph G, it is important to define: “what exactly a

user community means”. Traditionally, it has been modeled as a MinCut prob-

lem (Von Luxburg, 2007), where for a given number k of subsets, the MinCut,

essentially chooses a partition C1, ..., Ck such that it minimizes the following ex-
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pression,

cut(C1, ..., Ck) =
k∑
i=1

W (Ci, Ci) (2.1)

where Ci stands for a compliment of Ci, and W (A,B) = ∑
u∈A,v∈B ρ(u, v), and

ρ is a distance function. Such a formulation allows us to find k user communi-

ties C1, ..., Ck, that are grouped according to some criteria (defined by distance

function ρ). The two most commonly used definitions of the MinCut problem

are RatioCut and the so-called NCut (Von Luxburg, 2007) reformulation. The

idea behind RatioCut is based upon an assumption that the resulting communi-

ties could have similar size, while NCut formulation constraints the sum of edges’

weights in each community to be minimized among all communities. Both Ratio-

Cut and NCut are NP -Hard (Von Luxburg, 2007).

Fortunately, many approximate solutions exist for the problem above. One of

the existing MinCut approximations, is the Spectral Clustering approach, which

is defined as a standard trace minimization problem as follows,

min
U∈Rn×k

tr(UTLU), s.t.UTU = I. (2.2)

According to the Rayleigh-Ritz theorem, the spectral clustering optimization prob-

lem can be solved as the first k eigenvectors of the normalized graph Laplacian

L = I−D− 1
2WD−

1
2 , where W is the adjacency matrix, and D is the degree matrix

of the graph G. It should be noted that in cases that data comes from multiple
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sources, the multi-layer generalization of Spectral Clustering and its variations can

be used: min
U∈Rn×k

∑M
i=1 tr(UTLiU), s.t.UTU = I.

In addition to the aforementioned techniques, other solutions of multi-source

clustering problem can be utilized. For example, in (Farseev et al., 2014), the

authors compared different conventional clustering techniques to solve the cross-

source venue category recommendation task. Specifically, they detected user com-

munities based upon data from Twitter, and used the obtained communities to

perform cross-domain recommendation of Foursquare venue categories. The tech-

nique allows to tackle the Cold Start Problem in recommender systems, which

allows to perform recommendation for users who fail to perform Foursquare ac-

tivity. At the same time, Zhao et al. (Zhao et al., 2013b) proposed an approach

to perform multi-modal venue recommendation based on regularized Modularity

Maximization clustering. Following, same authors proposed another solution by

imposing a regularizer on Matrix Factorization (Zhao, McAuley, and King, 2015).

2.3.2 Group Profile Inference

The aim of group profiling is to construct a descriptive profile illustrating the

collective behavior of the members of the group, i.e., how the detected group

looks like. Depending on the focused task, various approaches have been proposed

for buliding a profile for a given group. In (Tang, Wang, and Liu, 2011), group

profiling was formally defined as a set of attributes which can discriminate the

group’s members from the rest of users. The authors discussed on two major
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properties of a good community profile as,

• Descriptive. The group attributes should reflect the foundation of the group

illustrating the collective behaviors, shared interest, and the associated af-

filiation of members.

• Robust. Big data is characterized by velocity as huge stake of data is pro-

duced everyday. The arriving data tends to be noisy and so the profiling

approach should be robust to the noise.

Following the above mentioned criteria, authors proposed three different ap-

proaches for profiling a group of users named: (1) Aggregation Group Profiling

(AGP); (2) Differentiation Group profiling (DGP); and (3) Egocentric Differen-

tiation Group Profiling (EDGP). AGP is the natural strategy which aggregates

individuals’ attributes. In other words, AGP seeks for attributes which are shared

most frequently. They found that AGP fails to find an appropriate profile in

noisy situations. To mitigate noise effect, they proposed DGP which differenti-

ate a group form the rest of network to construct the group profile. EDGP is a

variant of DGP with an egocentric view, which differentiates a group from their

first hop neighbours in the network. Both DGP and EDGP achieved better per-

formance in constructing group profile in noisy environment as compared to AGP.

Although their approach is intuitive and effective, it demands explicit features and

information and its performance was not evaluated in constructing latent profiles.

In another work, Wang et al. (2014) proposed an approach for overlapping

community detection in Location-Based Social Networks (LBSN). Their frame-
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work exploited both user-venue checkins information on the network and the

attributes of users and venues to discover user communities. They adopted an

edge-centric algorithms that utilized both inter-mode and intra-mode feature for

clustering. After discovering communities, community profiling was performed by

aggregating the metadata of users and venues that fall into the community. They

first calculated the importance of each venue and user and then constructed the

community profile by holding important users and venues. Meantime, they re-

ported several interesting findings obtained through community profiling for three

large cities, i.e., London, New York, Los Angeles.

Similarly, Zhao et al. (2013b) investigated to discover profilable communities

from LBSN. They proposed a multimodal hypergraph learning approach to dis-

cover and profile social communities in LBSNs. In their framework, users, venues

and posts, both textual comments and images, were considered as vertices of

the hypergraph, while the related users, venues, text comments, and photos were

connected by edges. Communities were detected by an efficient algorithm which

detected dense subgraphs and profiles were constructed by weighted ranking of

entities in each community. The approach was evaluated, both quantitatively and

qualitatively, on a Foursquare dataset from Singapore and New York cities.
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Mining Personal Wellness Events from Social

Media Platforms

Recent years have witnessed the revolutionary changes brought by the develop-

ment of social media services through which individuals extensively share informa-

tion, express ideas, and construct social communities. These changes can advance

many disciplines and industries, and health is no exception (Nie et al., 2015, Lee

et al., 2014). In such a context, many users are keen to share their wellness in-

formation on social platforms such as Twitter and Facebook (Hawn, 2009, Yang

et al., 2014a,Dos Reis and Culotta, 2015,Paul et al., 2015). Take diabetes as an

example; diabetic patients not only share about events happening around them

but also frequently post about their current health conditions, medication, and

the outcomes of medications. For instance, they frequently post the latest val-

ues of their blood glucose, diet, and exercises using “#diabetes” and “#BGnow”

hashtags on Twitter, as show in Figure 3.1.
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Health EventDiet Event Exercise Event

Figure 3.1: Examples of tweets which mention a personal wellness event.
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Figure 3.2: Most popular shared content on social media.
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On the other hand, a survey conducted by Ipsos research center1 in 2013 re-

ported that updates pertaining to daily activities is ranked third in social media

contents, as shown in Figure 3.2. In fact, social media platforms have become

the most popular ways for users to share what happening around them. Hence,

the abundance and growing usage of social media has made a large repository

about users’ daily happening and activities providing a stethoscope for inferring

individual’s lifestyle and wellness. This provides new opportunities to understand

individuals’ wellness that can be used to assist them in managing their health in

a scope that previously was impossible.

Extraction of wellness information and events from users’ published social con-

tents is the key initial step towards understanding, modeling and predicting the

wellness of users. This helps us filter out irrelevant information and content in

social networks, and harvest relevant information for further analysis. As a first

step towards accomplishing this end, in this chapter, we propose to extract tweets

pertaining to the wellness of a user and categorize them into a wellness taxonomy

which includes different categories such as diet event, activity event and health.

3.1 Motivation and Challenges

Extraction of personal wellness events (PWEs) will provide significant insights

about individual’s wellness and community lifestyle behaviours. At the individ-

ual level, it can summarize the past wellness events of individuals, which signifi-
1http://www.socialmediatoday.com/content/what-most-popular-content-shared-social-media
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cantly facilitates lifestyle management through coarse and fine-grained browsing.

Further, PWE summary can be useful for downstream applications such as user

health profiling, personalized lifestyle assistant, and targeted online advertising.

Take diet as an example; if one diabetic person consumes a lot of carbohydrates,

the system can offer diet suggestion. At the community level, accumulating the

wellness information of a large population of individuals makes it feasible to ana-

lyze and understand the lifestyle patterns and wellness of social groups in a scale

that was impossible with traditional methods in terms of both time and cost.

Despite its value and significance, extracting PWEs from social media services

has not been fully investigated due to the following challenges. First, the language

used in social media is highly varied, informal, and full of slang words. Second,

PWEs are relatively rare in social media posts as users tend to post their personal

significant events together with lots of trivialities and other public events (Li et

al., 2014). As a result, wellness events are buried among other contents produced

by the users and their social connections. Identifying wellness events from a huge

volume of other non-wellness events poses a big challenge. As a result, even a

large annotated dataset might contain just a few examples of PWE categories.

Third, the structure of wellness events exhibits a hierarchical taxonomy as shown

in Table 3.1. Indeed, events under the same category are closely related. For

instance, clinical tests are much more related to treatment, than running. These

events may share some features such as entities, attributes and relations, which

makes the problem arduous. How to mathematically model such relations and
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integrate them into a learning framework remains a challenge.

3.2 Overview

In health sciences, it has been intensively studied and well-established that phys-

ical activities, diet planning and taking prescribed medications are the key thera-

peutic treatments of many diseases (Pastors et al., 2002, Hu, 2011). Further, un-

healthy lifestyle behaviours such as unhealthy dietary habits, sedentary lifestyle,

and the harmful consumption of alcohol are mainly related to the risk factors

of noncommunicable diseases (NCDs) ranked as the leading cause of disability-

adjusted life years (DALYs) (Lim et al., 2013, Association and others, 2014).

Therefore, the primary aim of the General Assembly of the United Nations on

NCDs in 2011 was to reduce the level of exposure of individuals and population

to NCDs’ risk factors and strengthen the capacity of individuals to follow lifestyle

patterns that foster good health2.

Motivated by this discussion, as a first step towards understanding and ana-

lyzing users’ wellness from social media, we propose a supervised model to extract

PWEs from social media posts of a given user and categorize them into a wellness

taxonomy as shown in Table 3.1. In particular, we propose an optimization learn-

ing framework that utilizes the content information of microblogging messages as

well as the relations among event categories. We seamlessly incorporate these two

types of information into a sparse learning framework to tackle problems arising
2http://www.un.org/en/ga/ncdmeeting2011/
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from noisy texts in microblogs.

The advantageous of our proposed method are multifold:

• We introduce an approach for harvesting wellness information available on

social media for studying public health. In particular, we propose an effec-

tive framework for collecting users’ wellness event from social media, which

scales well. Although experiments were performed on diabetic users who use

Twitter microblogging platform, it is easily extendable to other diseases. As

far as we know, this is the first study on personal wellness event extraction

from social media posts of individuals.

• We present a novel supervised model for wellness event extraction that takes

task relatedness into account to learn task-specific and task-shared features.

• We construct a large-scale diabetes dataset by automatically extracting

lifestyle and wellness related short messages and manually constructing the

ground-truth labels.

3.3 Problem Statement

The problem we study in this paper is different from traditional event detection

since the latter normally focuses on detecting and constructing an evolutionary

timeline of public events (Becker, Naaman, and Gravano, 2011, Meladianos et

al., 2015). Moreover, they assume that events are independent and hence only

consider content information to identify event categories. In this section, we first
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Table 3.1: Taxonomy of wellness events with exemplar tweets.

Event Sub Event Example tweet mentioning an event

Diet

Meals Dinner just salad
Alcoholic Beverages Too much drink in party

Non-alcoholic Beverages Talking about hot chocolates, I might just go
and make myself one :D

Snacks found Taylor’s pretzels in my backpack and I’m
so happy wow

Fruit almost eat all the strawberries
Others Eat 20g carbs and go fo running

Exercise

Walking 20 mins walk around office..
Running after 1 hour run #bgnow 130
Biking I just finished 1 hour biking

Swimming BGnow 95, thanks swimming pool
Others Shopping and having a little dinner URL

Health
Examinations #BGnow 100

Symptoms Feel too much Fatigue
Treatment ate great oatmeal, toast, and eggs. Had 1 unit

present the notations and then formally define the problem of PWE detection

from individuals’ social media accounts.

Suppose that there are M wellness events and let C = {c1, c2, ..., cM} be the

set of class labels. Given a corpus P = {p1, p2, ..., pN} composed of N different

training samples. Each training sample pi = (xi,yi) consists of a message content

vector denoted by xi ∈ RJ and the corresponding event label vector denoted by

yi ∈ RM . Let X = [x1,x2, ...,xN ]T ∈ RN×J be the matrix representing training

data and Y = [y1,y2, ...,yN ]T ∈ RN×M be the matrix of labels. Our learning task

is to find a mapping function from feature space X to label Y.

With the notation above, we formally define the personal wellness event detec-

tion problem as: Given a sequence of microblog messages P with their content X,

and the corresponding event labels Y, we aim to learn a model W to automatically

assign events’ labels for unseen messages.
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3.4 Wellness Event Categorization

In essence, two characteristics of personal wellness event detection are: 1) training

data is sparse; and 2) event categories are deeply inter-related. Their associated

challenges are: a) which events are related in problem domain; and b) how to

incorporate event relations into the learning framework to infer a more effective

learning model. In this section, we first explain how to formulate the problem of

PWE detection as a multi-task learning (MTL) framework which utilizes the con-

tent information of microblogging texts as well as captures the relations between

the event categories into an integrated learning framework. We samelessly inte-

grate these two types of information into a state-of-the-art framework and turn

the integrated framework into an optimization problem. We then demonstrate

how to find the solution of the problem with an efficient framework.

3.4.1 Modeling Content Information

Traditionally, supervised learning is widely used to infer topics of text documents.

A straight forward way for event detection is to learn a supervised model based

on labeled data, and apply the model to detect the topics of each microblogging

post. However, compared with textual documents in traditional media, a distinct

feature of texts in microblogging platforms is that they are noisy and short (Chen

et al., 2013, Hu, Tang, and Liu, 2014), which give rise to two issues. First, text

representation models, like “Bag of Words” (BoW) and n-grams, lead to a high-
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dimension feature space due to the variety of words. Second, the posts are too short

and noisy making the representation very sparse. To mitigate these problems, we

propose a sparse model to perform classification of feature space.

Assume that we have M wellness events, and view each event as one task.

Formally, we have M tasks {T1, T2, ..., TM} in the given training set P . The

prediction for each task t is given by ft(x; wt) = xTwt, where wt is the co-

efficient for the task t. The weight matrix of all M tasks can be denoted as

W = [w1,w2, ...,wM ] ∈ RJ×M . Matrix W can be inferred from the training data

by solving the following optimization problem:

arg min
W
L(X,W,Y) + Φ(W), (3.1)

where L(.) is the loss function, and Φ(W) is a regularizer which controls the com-

plexity of the model to prevent overfitting and selects discriminant features. This

formulation is a sparse supervised method, where the data instances are inde-

pendent and identically distributed (i.i.d), and the tasks are independent. There

are several choices for the loss function, i.e., L(X,W,Y), in machine learning

depending on the focused task. Two common choices are square loss and logistic

loss (Rosasco et al., 2004). Logistic loss function can better handle the multi-label

data as frequently reported in machine learning studies (Kumar and Daume III,

2012).

Upon the above discussion, the loss function L(X,W,Y) is defined as logistic

47



CHAPTER 3. MINING PERSONAL WELLNESS EVENTS FROM SOCIAL
MEDIA PLATFORMS

loss in this work,

M∑
t=1

N∑
i=1

log(1 + exp(−ytift(xi,wt))), (3.2)

where yti ∈ {−1, 1} is the true label indicating the relevance of i-th sample to the

t-th task. Note that each sample can fall into multiple categories. For instance,

“banana bread in the oven, mmmmm! lets just enjoy this #bgnow 70!” is related

to meals and health examination categories at the same time. In this example,

the user reported his blood glucose value, i.e., 70 , and his decision to eat some

banana bread.

To select discriminant features and control the complexity of our model, we

define Φ(W) as follows,

Φ(W) = α‖W‖2
F + β‖W‖1, (3.3)

where, α and β are positive regularizer parameters. In the defined regularizer

Φ(W), the first term, i.e. Frobenius-norm, controls the generalization performance

of the model and the second term, i.e. `1-norm, leads to a sparse representation for

the texts, which performs feature selection to reduce the effects of noisy features.

Thus Φ(W) performs a kind of continuous feature selection as well as controls the

complexity of the model (Ruvolo and Eaton, 2014,Song et al., 2015a).
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3.4.2 Modeling Events Relations

Recall that PWE detection has two characteristics: 1) some events are more re-

lated to each other while differ from others, and similar events might share some

features. For example, “walking” shares some features with “running” since the

context of two events are similar. However, it greatly differs from “meals”; 2)

the dimension of feature space is usually very high. In fact, some features are not

discriminative enough for wellness event detection. This motivates us to propose a

graph-guided multi-task learning model, which is capable of capturing the related-

ness among tasks to learn task-shared features as well as the task-specific features.

The hope is that common information relevant to prediction can be shared among

tasks and joint learning of tasks’ models leads to a better generalization perfor-

mance as compared to learning each task independently. A major challenge hence

is how to control the sharing of information among tasks so that it leads to close

models for related tasks while unrelated tasks do not end up influencing each

other. Therefore, the key assumption for our model is that tasks are assumed to

be related to each other with different weights and the parameters of two related

tasks are close to each other in `2 norm sense.

Based on the above discussion, to incorporate task relations into event de-

tection, we assume that the task relationships can be represented using a graph

structure G, where each node represents one task and each edge connects two

related tasks. The weight of each edge r(ti, tj) reflects the relation strength be-
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tween two tasks i and j. Given a graph G, we can formulate the task relations as

minimizing the following objective function Ω(W),

Ω(W) = λ
∑

ti,tj∈E
r(ti, tj)‖W∗i −W∗j‖2

2 (3.4)

= λ tr(W(V−R)WT ) = λ tr(W∆WT ),

where E contains all the edges of graph G, and ∆ = V−R is the graph Laplacian

matrix (Nie et al., 2014a,Akbari, Nie, and Chua, 2015), where R ∈ RM×M is the

task relatedness matrix. Rij = r(ti, tj) indicates the relation strength between

task i, and j and Rij = 0, otherwise. V = diag(Vjj) is a diagonal matrix with

Vjj = ∑M
i=1 r(ti, tj). The regularizer parameter λ controls the impact of relations

amongst tasks in the learning process.

To construct the graph, we utilize a fully automated approach based on the

model learnt from the relaxed multi-task problem. Following the idea discussed

in (Kim and Xing, 2009), we first train a MTL model with Lasso regularizer to

compute the model for each tasks ti and then compute the pairwise correlation

between distinct tasks. We simply create an edge between each pair of tasks which

have correlation above a defined threshold ρ. We set the threshold to ρ = 0.7 since

it leads to the best performance in our experiments.

The optimization framework, which integrates content information and event

relation information into the learning process, is defined by the integration of Eq.
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(3.1), through Eq. (3.4) as the following objective function, J(W),

arg min
W

J(W) = L(X,W,Y) + Φ(W) + Ω(W), (3.5)

where the first and second terms are to consider content information and perform

regularization to avoid overfitting, respectively. The third term, i.e. Ω(.), captures

tasks relatedness to learn task-shared features.

3.4.3 Optimization

The objective function J(W) (i.e., Eq. (3.5)) is non-smooth since it is the com-

position of a smooth term and a non-smooth term, i.e. `1 penalty, and gradient

descent method is not available to solve the formulation. In this section, we in-

troduce an efficient algorithm to solve the optimization problem.

Inspired by (Nesterov, 2004, Chen et al., 2009), we propose to solve the non-

smooth optimization problem in Eq. (3.5) by optimizing its equivalent smooth

convex reformulation. We hence derive an smooth reformulation of Eq. (3.5) by

moving the non-smooth part, i.e. `1 norm, to the constraint.

Lemma 3.1. ‖W‖1 is a valid norm.

Proof. It is easy to verify that ‖W‖1 satisfies the three conditions of a valid norm,

including the triangle inequality ‖A‖1 + ‖B‖1 = ‖A + B‖1, which completes the

proof.

Theorem 3.1. Let L(X,W,Y) be a smooth convex loss function. Then Eq. (3.5)
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can be reformulated as the following `1-ball constrained smooth convex optimization

problem:

arg min
W∈Z

f(W) = L(X,W,Y) + λ tr(W∆WT ) + α‖W‖2F , (3.6)

where,

Z = {W|‖W‖1 ≤ z}, (3.7)

z ≥ 0 is the radius of the `1-ball and there was a one-to-one correspondence between

β and z.

Proof. We first prove that Eq. (3.6) is a constrained smooth convex optimiza-

tion problem. From the Lemma 3.1, we know that ‖W‖1 is a valid norm. In

(Nesterov, 2004) Nesterov proved that any norm is a closed convex function so

we can conclude that ‖W‖1 is a closed convex function. We hence conclude that

Z = {W|‖W‖1 ≤ z} is a closed and convex set (Theorem 3.1.3, (Nesterov, 2004)).

It is easy to verify that the objective function f(W) is convex and differentiable

since it is the composition of convex functions.

As we can see, our problem defines a convex and differentiable function f(W)

in a closed and convex set Z. Thus this problem is a constrained smooth convex

optimization problem and the equivalence of Eq. (3.5) and Eq. (3.6) follows from

the Lagrngian duality which completes the proof.
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We now find the solution for Eq. (3.6), which is equivalent to our optimization

problem in Eq. (3.5). To solve the problem, we first consider the optimization

problem without the constraint on Z which is defined as:

arg min
W

f(W). (3.8)

The solution to this problem can be computed from the gradient descent

method which iteratively updates Wi+1 in each step as follows,

Wi+1 = Wi −
1
γi
∇f(Wi), (3.9)

where γi is the step size and it is determined by line search according to Armijo-

Goldstein rule (Nesterov, 2004). The smooth part of the optimization problem

can be reformulated equivalently as a proximal regularization of the linearized

function f(W) at Wi as,

Wi+1 = arg min
W
Mγi,Si

(W), (3.10)

where,

Mγ,Si
(W) = f(Si) + 〈∇f(Si),W− Si〉+ γi

2 ‖W− Si‖2
F , (3.11)

where Si is computed based on the past solutions by Si = Wi + τi(Wi −Wi−1).
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Eq. (5.17) can be rewritten as,

arg min
W
Mγi,Si

(W) = (3.12)

arg min
W

(1
2‖W− (Si −

1
γi
∇f(Si))‖2

F )

By ignoring terms that are independent of W the objective function boils down

to:

Wi+1 = arg min
W
‖W−Ui‖2

F , (3.13)

where Ui = Si− 1
γi
∇f(Si) and indeed the solution of W is the Euclidian projection

of Ui on Z. Upon this discussion, we can have an efficient and optimal solution to

the convex optimization problem. Similar to the proof in (Liu, Ji, and Ye, 2009a),

it is easy to show that the convergence rate of the proposed algorithm is O(1
ε
) for

achieving an accuracy of ε. The overall optimization process can be described in

Algorithm 3.1.

In the algorithm, we utilize Nesterov’s method (Nesterov, 2004) to solve the

optimization problem in Eq. ( 3.5). We use the line search algorithm for γi from

line 5 to line 11 according to the Armijo-Goldstein. In line 12, ti is set according

to (Liu, Ji, and Ye, 2009a). Based on the algorithm, we can compute the solution

for the convex optimization problem.
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Algorithm 3.1: Optimization algorithm of Eq. (3.5)
Input: W0, γ0 ∈ R, and q = max iteration.
Output: W.

1 Set W1 = W0, t−1 = 0, and t0 = 1.
2 for i = 1 to q do
3 Set τi = (ti−2 − 1)/ti−1.
4 Set Si = Wi + τi(Wi −Wi−1).
5 while true do
6 Compute W∗ = arg minWMγi,Si(W)
7 where Mγ,Si(W) = f(S) + γ‖W‖1,1 + 〈∇f(S),W− S〉+ li

2 ‖W− S‖2F
8 if f(W∗) ≤Mγi,Si(W) then
9 break

10 else
11 Set γi = γi × 2

12 Set Wi+1 = W∗ and γi+1 = γi. Set ti = 1+
√

1+4t2i−1
2 .

13 Set W = Wi+1.

3.5 Experiments

In this section, we present the experimental details to verify the effectiveness of the

proposed framework. We conduct experiments to answer the following questions

that help to validate the framework:

1. How does the proposed framework perform as compared to other state-of-

the-art baselines?

2. How well the selected features discriminate PWEs?

3. How sensitive is our model to the involved parameters?

In the rest of the section, we first introduce the dataset and experimental

settings. We then respectively explore the answers to the aforementioned experi-

mental questions. We finally summarize the key findings from the experiments.
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3.5.1 Dataset Description

Recall that one of the main problems of this research is the lack of training data.

According to our statistics, the wellness-oriented tweets are only less than 5% of

all the messages posted by the chronic disease sufferers, and this value could be

much smaller for healthy users. Therefore, we utilize a bootstrapping method to

harvest the tweets corresponding to wellness events. We then manually label this

tweet pool to construct our ground truth.

Wellness event categories. As mentioned perviously, it has been inten-

sively studied and well-understood that physical activities, diet planning and

taking prescribed medications are key therapeutic treatments of many diseases

(Pastors et al., 2002). Inspired by (Shelley, 2005,Teodoro and Naaman, 2013), we

arrive at three high-level wellness categories, namely, diet, exercise & activities

(exercise for brevity), and health as shown in Table 3.1. Under each high-level

event category, we further organize specific sub-events which construct a taxonomy

comprises 14 distinct wellness events. We also define a null class for non-wellness

events indicating that a message is not directly related to any defined wellness

event categories.

Assigning event labels. We observed that different wellness events place em-

phasis on different hashtags and words. For instance, we observed that “#dwalk”

regularly appears in walking related posts. Inspired by (Mintz et al., 2009,Gupta

and Manning, 2014), we adopted a bootstrapping approach to select a set of tweet
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related to each wellness event. To do so, we first selected some representative seed

words for each wellness events by verifying top frequent keywords of each cate-

gory. We then gathered tweets explicitly involving these seed words. However, the

collected tweets are weakly related to events and are full of noises. For instance,

the tweet “I love music,it has a voice for every walk of life,every emotion,every

bit of love”3 even containing the word “walk”, but it is not a relevant one. To

filter irrelevant tweets, we defined patterns in local context of each seed word. We

applied the bootstrapping approach of (Thelen and Riloff, 2002) to extend the

set of keywords and patterns and collected more positive samples pertaining to

wellness events. We stopped bootstrapping after 10 iterations since it often failed

to find more positive candidates.

To construct the dataset, we first crawled a set of users who used #BGnow

hashtag in their tweets. This hashtag is very popular among diabetic patients to

post information about diabetes and their health states. In this way, we gathered

2, 500 different diabetes users. We removed accounts which had high daily traffic

to avoid spammers. This filtering process resulted in 1, 987 diabetic users. We

then crawled all historical tweets of these users using Twitter API, resulting in

a set of about 3 million tweets. We applied the aforementioned bootstrapping

procedure to find candidate tweets to construct dataset, which resulted in 11, 217

tweets. We manually labelled all the tweets based on the wellness events as shown

in Table 3.1. For each given event, we regarded tweets labelled with its class as
3This is a real tweet from the dataset.
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the positive training samples, and randomly selected negative samples from other

events. Examples of the positive and negative tweets for the event “walking” are

given below:

Positive 3 litres of water and 4 miles of walking I am feeling super refreshed...thank

god!!

Negative Further evidence of the benefits of exercise for people with type 2

#diabetes URL #doc (Error: It is not an event but reports general health

information).

Table 3.2 shows the statistics of our dataset. In total, our training set consists

of approximately 3, 000 tweets corresponding to different wellness events. We also

randomly selected about 3, 000 non-wellness tweets to be used as positive samples

for the null class (non-wellness events). We intentionally selected more samples

for null class due to the imbalance nature of events. We divided the dataset into

two sets based on their posting times. In particular, tweets that were posted

before May 2015 were utilized to train our model; while those posted from May to

July 2015 were used for evaluation process4. We call this dataset as BG dataset

throughout this dissertation as it is constructed based on the hashtag “#BGNow”.

We engaged another annotator to manually examine about 3, 000 messages.

The inter-agreement between annotator was 0.857 with the Cohen κ metric, which

verifies a substantial agreement between annotators.
4Note that the numbers in Table 3.2 do not add up to 11, 217 since our dataset is a multi-label

dataset meaning that some messages discuss about more than one PWE.
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Table 3.2: Statistics of the BG Dataset.

All samples Positive samples
Posts on Diet 1979 710

Posts of Exercise 2771 1234
Posts on Health 8802 1300

Total Number of Posts 11, 217 3, 244

3.5.2 Feature Settings

Content and linguistic features are two major features which are used for text

classification (Cherry, Guo, and Dai, 2015, Moens, Li, and Chua, 2014, Hu and

Liu, 2012). We follow them and extract the following set of features to represent

each tweet from both context and linguistic aspects:

• NGrams: We extracted unigrams and bigrams from Twitter messages since

they are commonly used to represent user-generated contents (Hu and Liu,

2012).

• NE: As shown in (Li et al., 2014), the presence of named entities is a very

useful indication of events in social media texts. We hence utilized named

entities as another feature to represent tweets (Ritter et al., 2012).

• Gazetteer: Gazetteers are commonly used as a linguistic feature in domain

specific applications (Carlson, Gaffney, and Vasile, 2009). Hence, we used

a dictionary of popular food and drink names from (Abbar, Mejova, and

Weber, 2015) to extract gazetteer feature for foods and drinks. We also

utilized LIWC’s time category which includes 68 time terms (Pennebaker,

Francis, and Booth, 2001).
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Table 3.3: Performance comparison among models.

Method Precision Recall F-1 score
Alan12 62.70 48.10 54.44
SVM 83.05 79.65 81.31
Lasso 80.45 79.21 79.82

GL-MTL 84.37 80.72 82.50
TN-MTL 83.22 78.85 80.98

gMTL 87.15 82.69 84.86

• Modality: Twitter has evolved to become a general purpose platform for

communication. Therefore, users often share general thoughts, wishes, and

opinions in their account. For our purpose of understanding personal well-

ness events, we need to filter out these irrelevant information from those

which really report an event. Modality speeches has been used to express

the possibility or uncertainty of events (Li et al., 2014). Hence, we utilized

modality verbs as an indicator of non-event information. We check whether

the message includes some modality verbs such as “may”, “could”, “must”

and etc.

3.5.3 On Performance Evaluation

We conducted experiments to compare the performance of our model with other

state-of-the-art approaches:

• Alan12: Event extraction method of (Ritter et al., 2012) which learns a

latent model to uncover appropriate event types based on available data.

• SVM: We trained a binary classifier for each event to infer the label of
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tweets.

• Lasso: Logistic regression model with Lasso regularizer, i.e. `1 term (Tib-

shirani, 1996).

• GL-MTL: Group Lasso regularizer with `1/2 norm penalty for joint feature

selection (Nie et al., 2010), which only encodes group sparsity.

• TN-MTL: Trace Norm Regularized MTL (Obozinski, Taskar, and Jordan,

2010), which assumes that all tasks are related in a low dimensional subspace.

• gMTL: Our proposed wellness event detection model.

For each method mentioned above, the respective parameters were carefully

tuned based on 5-fold cross validation on the training set and the parameters

with the best performance were used to report the final comparison results. The

overall performance is shown in Table 3.3 in terms of precision, recall, and F-1

score metrics.

From the table, we can observe that all MTL methods outperform Alan12,

SVM and Lasso in terms of precision with a substantial improvement over

Alan12. The main reason is that event discovery methods mostly focus on detect-

ing general events or major personal events (Zhou, Chen, and He, 2015). These

events are discussed bursty and highly connected to specific name entities such as

organizations, persons, and locations. However, PWEs are merely focus of indi-

viduals’ local circles and may not be significantly related to any specific name enti-

ties. This hinders the learning framework to find representative latent topics from
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data. Among the multi-task approaches, gMTL achieves the best performance as

compared to others. It verifies that there exists relationships among events and

such relatedness can boost the learning performance. GL-Lasso achieves higher

performance as compared to Lasso and TN-MTL since it tries to jointly learn

features which resulted in better generalization. This verifies that sharing sam-

ples among distinct task alleviates the data scarcity problem as pointed out by

previous studies (Ruvolo and Eaton, 2014,Xu et al., 2015). The proposed gMTL

model outperforms other methods by 2%-6% since it encodes the task relatedness

and group sparsity. By sharing samples between different tasks, i.e. event cate-

gories, gMTL simultaneously learns task-shared and task-specific features as well

as mitigates the problem of data scarcity.

3.5.4 On Feature Comparison

We also conducted an experiment to evaluate the effects of different features for

PWE detection, as shown in Table 3.4. To conduct the study, we considered

NGram feature as a baseline feature since it has been shown in many studies

to have good performance (Tang et al., 2014, Nie et al., 2014b). We then added

each distinct feature from the feature set and reported the average performance

over all event categories. We also performed significant test to validate the impor-

tance of different features. We used the asterisk mark (*) to indicate significant

improvement over the baseline.

As Table 3.4 shows, NGram and Gaz are important features for PWE de-
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Table 3.4: Average performance of PWE detection on different feature setting.

Method Precision F-1 score
NGrams (Baseline) 82.70 81.06

Baseline+Gaz * 84.31 82.31
Baseline+Gaz+NE 86.85 84.04

All * 87.15 84.86

tection. The reason might be that NGram represents the context information of

messages and food gazetteer feature is a very effective indicator of events related

to food and drink category which filter out many irrelevant samples. However,

adding name entities, i.e. NE, improves the performance but not significantly.

This shows that this feature may not be effective for wellness event detection, as

we had expected, though it is widely used for public event detection. We also

observed that Modality feature is useful for event detection. Indeed, we ob-

served that it is able to filter out activities from wishes or general thoughts and

information significantly.

3.5.5 On Parameter Sensitivity

An important parameter in our method is λ in Eq. (3.4) that determines the

impact of relation amongst tasks in the learning process. A high value indicates

the importance of these relations while a low value limits the effect of relations

amongst tasks. Another important parameter is the number of selected features.

Hence, we study how the performance of our model varies with λ and the number

of selected features. Figure 3.3 shows the performance of our model with different

parameter settings which achieves the peak of 84.86% when λ = 0.01 and 1400
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Figure 3.3: The impact of different parameter setting.

features was selected. The general pattern is that the performance is more sensitive

to the number of selected features, and the best number of features is around 1400;

furthermore, there is not a significant improvement above this point. It is worth

noting that how to determine the number of features is still an open problem in

data mining (Wang, Tang, and Liu, 2015).

3.6 Related Work

It is worth emphasizing that several practical systems and research efforts have

been dedicated to event extraction from Twitter (Zhao et al., 2013a, Diao et al.,

2012, Li and Cardie, 2014), however, existing approaches mostly focus on public

events (e.g. disaster outbreak) or major personal events (e.g. marriage, job) which

are often discussed significantly in social media platforms. The bursty nature of

these events allows the detection algorithm to utilize a large amount of aggregated

data to detect bursts or irregularities in topical contents in a short time span (Li

and Cardie, 2014, Li et al., 2014). PWEs, in contrast, are not highly discussed
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in social media since they might only be important for the user himself or his

close friends, i.e. his local circles. For example, message like “35 degrees, 25mph

winds, and rain...it’s gonna be a fun ride home...3.5 miles uphill :)” intuitively

shows an exercise event but it might not be discussed too much in user’s social

account. Further, existing event extraction approaches assume that distinct events

are independent from each other. However, previous studies in text mining have

proven that events are not independent and events under the same category are

closely related (Gella, Cook, and Baldwin, 2014).

3.7 Summary

Personal wellness events, in contrast to public events in social platform, are rarely

discussed and deeply related to each other. In this study, we proposed a learn-

ing framework that utilizes content information of microblogging texts as well as

the relation between event categories to extract PWE from users social posts.

In particular, we modeled the inter-relatedness among distinct events as a graph

Laplacian which was employed as a regularization to a sparse learning framework.

Thus the proposed model not only can learn task-shared and task-specific features

but is also robust to noise in microblogging contents. Experimental evaluations

on a real-world dataset from Twitter revealed that our proposed framework sig-

nificantly outperforms the representative state-of-the-art methods.
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Characterization Study of Diabetes on Twitter

With the increasing popularity of social media platforms, health consumers in-

creasingly utilize social platforms to fulfill their health demands through seek-

ing and sharing health information and experiences as well as providing online

social support for their peers (Attai et al., 2015, De Choudhury, Morris, and

White, 2014, Dredze, 2012). In essence, social environments and virtual commu-

nities have been transformed to a confident environment permitting users to be

connected with their peers who have experienced similar conditions, difficulties,

and challenges, assisting them to cope with their situations (Davis, Anthony, and

Pauls, 2015, Greene et al., 2011). The emerging of self-tracking gadgets and the

enthusiasm of users in taking informed health decisions has also intensified this

trend. This motivates users disclose their health information in social platforms

(De Choudhury et al., 2013). Further, the ubiquity of social media encourages

health consumers to not only discuss about their health conditions and share expe-

riences but more importantly share their health related measurements, like blood
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pressure and blood glucose, which provides an invaluable resource to study and

analysis individuals’ and communities’ wellness and behaviour (See examples in

Chapter 1 and Chapter 3).

In previous chapter we demonstrated a learning framework for extracting well-

ness information of users from online social networks. In this chapter we aim to

analyze the rich collected data to gain better insights about a specific wellness

problem. To be more specific, we aim to study the capability of social media

as a sensor for reflecting wellness statuses and attributes of social users. To do

so, we take diabetes as an example in the wellness domain and investigate users’

online behaviors to distinguish the success of users in managing their health con-

dition. Through this study, we attempt to distinguish users who are successful in

controlling their blood glucose from those who fail to do so.

4.1 Motivation and Challenges

Diabetes is the sixth leading cause of death in the US and it is estimated to be the

seventh cause of the worldwide by 2030 1. It causes serious complications and can

lead to poor quality of life (Association and others, 2014). People with diabetes

are more suspectable to other illnesses. However, they can reduce the occurrence

of these potential complications through diabetes self-management. Training and

education of self-management of diabetes prevent unnecessary health care uti-

lization and hospitalization and improve patients wellness (Haas et al., 2013).
1http://www.cdc.gov/diabetes/data/statistics/2014statisticsreport.html
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However, diabetes self-management is not a trivial task for chronic patients since

it is highly linked to several individual and cultural factors such as demographic

attributes, psychological mood, patient knowledge and lifestyle. The prominent

role of self-management in diabetes has resulted into the emergence of several dia-

betes management programs and schemes (Haas et al., 2013). Despite the success

and efficacy of these programs, many factors affecting on the success of patients in

managing their condition are still unclear or partially opaque due to the following

reasons (Garrett and Bluml, 2005,Lorig et al., 2010). First, most of these studies

have been performed in a controlled clinical setting and only investigate some of

health factors of interest like diet and activities. Even though these factors are

important the effects can vary from patient to patient making the reported results

almost restricted to the local community studied. Second, the adherence of the

user is a major factor in these programs. However, users adherence and ambition

vary from time to time making the generalization of results optimistic. Third,

traditional studies in health sciences are mostly based on an observational study

or based on survey data from patients which are limited in the number of subjects

and the time period of the study, making it hard to derive a comprehensive conclu-

sion. Therefore, the factors affect on success of users in managing their diabetes

are still not fully studied. In particular, the role of personal characteristics like

user’s behavior and mood is still unclear.
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4.2 Aim and Significance of the Study

In this chapter, we investigate the success of users to self-manage their diabetes,

the role of users’ behaviors on self-management, and how exactly user’s behaviors

correlate to self-management and health of the user. In particular, we investigate

the factors which differentiate two cohorts of users: Adapted and Non-Adapted

diabetes patients, where they are divided by their success in controlling their blood

glucose values on the healthy target range. In contrast to traditional studies,

we utilize users’ self-reported values of blood glucose on Twitter microbloging

service. We study users from three aspects, namely, linguistic attributes, published

textual content, and shared multimedia contents, i.e., images on Instagram, to find

their behavioural distinction. More specifically, we address the following research

questions:

RQ1: What are the characteristics which differentiate adapted and non-adapted

users in terms of linguistic, cognitive and affective styles and attributes?

RQ2: How do adapted users differ from non-adapted users in terms of their posts

content published in social platforms?

RQ3: How different are the multimedia interests of adapted and non-adapted users

on social platforms, i.e. what entities and concepts do they often share in

pictures on social networks?
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Studying behavioural characteristics of successful patients provides significant

insight about individual’s wellness. First, understanding behaviour factors corre-

lated with success in managing diabetes will help us to design proper intervention

program to assist users coping with their condition and improve their wellness.

Second, by understanding success factors in self-management, we can assist new

diagnosed users as well as users struggling with their condition to adapt their

lifestyle with the disease condition. Third, several years of research in user be-

haviour and wellness have clearly revealed that social networks and health are

closely related through the social reinforcements come from observing and mod-

eling others’ behaviors (Ruths, Pfeffer, and others, 2014). By linking users in dif-

ferent categories, i.e. suggesting successful users to strugglers, we can assist them

to learn positive behaviours from new friend on social communities (Maibach and

Cotton, 1995,Korda and Itani, 2013,Hawn, 2009). This study is also beneficial for

understanding collaborative behaviour of communities. By aggregating behaviour

of individuals, we can shed light on public health, trying to understand the well-

ness patterns and trends of user groups in large scale. Overall, the answers to

these questions will enhance our understanding of users’ online interactions about

diabetes, in particular on the Twitter microblogging platform and Instagram mul-

timedia sharing service, and how their behaviours are correlated with their health

condition, assisting us in various applications like group wellness analysis (Tang,

Wang, and Liu, 2011), public health (Hawn, 2009,Luxton, June, and Fairall, 2012),

and health policy making (Murray and Lopez, 1996), to name a few.
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The contribution of this study are multifold:

• We conduct a behavioural analysis of social media users who can successfully

manage their diabetes and the factors which cause a fail.

• We conduct an open vocabulary analysis that captures language use of dia-

betic patients toward identifying behavioural patterns result in self-managing

diabetes.

• We investigate media contents shared by diabetes patients to reveal their

preferences in sharing various visual concepts.

Our results open a new research direction to study wellness in large scale

utilizing social media data. Further, the study demonstrates the potential of

social media to design proper intervention and treatment programs for diabetic

patients.

4.3 Data Collection and Ground-Truth Genera-

tion

4.3.1 Dataset

We utilized the BG dataset introduced in Chapter 3 (See Section 3.5.1) for con-

ducting this study. As previously mentioned, the dataset was constructed based

on a set of users who actively share their wellness information on Twitter and
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Instagram. These users, besides posting about their diet, activities, and wellness,

disclose their health information in terms of medical events and measurements

like the onset of hypoglycaemia/heyperglocemia and their blood glucose values.

A main characteristic of this cohort of users is that they report the exact values

of their blood glucose in tweets using ‘#BgNow’ hashtag. This hashtag is popular

among diabetic patients to report their blood glucose values and other diabetic re-

lated information online. In essence, ‘#BgNow’ plays the role of an online support

group for diabetic patients through which they share, explore, and validate their

health states and knowledge. The hashtag is special interest for us since it enables

us to study the correlation between diabetes patients’ behaviours and their health

indicators, e.g. blood glucose value. Indeed, #BgNow hashtag acts as a social

sensor through which we can measure the blood glucose values of individuals on

social networks.

Analyzing this collection of tweets provides invaluable insight about diabetic

patients and their health information disclose on social media as well as the cor-

relation between their behaviour online and their health conditions. To link the

twitter account of users with their Instagram, we obtained the cross-platform links

in which they publish a post from their Instagram account on Twitter. By stor-

ing all such links, we can find their Instagram account and avoid the problem of

user identification across different networks(Vosecky, Hong, and Shen, 2009). It is

worth noting that, by utilizing this approach, we may fail to find the correspond-

ing Instagram account for those users who are not post cross network, resulting
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Table 4.1: Statistics of the BG Dataset

Twitter Instagram
# of Users 1, 174 113

# of AC users 436 36
# of NC users 738 77

# of Posts 1, 060, 105 2, 623
# of Bgnow posts 20, 079 −

Avg. posts per users 903 17

into a smaller dataset for Instagram. Table 4.1 shows statistics of our datasets for

both Twitter and Instagram.

4.3.2 Extraction of Blood Glucose Values

The aim of our research is to investigate the behavioural distinction between two

different cohorts of patients with respect to their health attributes, in our study

blood glucose values. To do so, we need to extract the reported measurements of

blood glucose values in their tweets. Several approaches have been proposed in

information extraction to detect the right piece of information from a text corpus,

like pattern-based methods, supervised classification, and Conditional Random

Field (CRF) (Chang et al., 2006). Here, we utilized a simple but effective rule

based approach. Intuitively, we defined a set of regular expression to extract the

measurement values of blood glucose for individuals as shown in Table 4.2. We

followed a bootstrapping approach similar to (Thelen and Riloff, 2002) to ensure

the coverage and diversity of the used patterns, where all extracted patterns are

manually verified to ensure accuracy. Given a user post, we apply these set of
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Table 4.2: Representative examples of regular expressions for extracting blood glucose
values from users’ posts.

195.0 BG @ 08:20AM
after bike ride 90 minutes

NUMBER
(mg—mmol)
(BG—Bgnow)

BG : 195

Going on a 3 mile run,
#BGnow 120 #bigbluetest

* (BG—BGnow)
NUMBER BG : 120

rules to find whether a given tweet contains any reported values of blood glucose2.

4.3.3 Ground-truth Generation

Medical studies suggest that diabetic users maintain their blood glucose between

70 and 130, which is considered as controlled blood glucose. A measurement

in this range demonstrates that the patient could successfully manage his blood

glucose while he was unsuccessful otherwise. The out of range values normally need

to be corrected by lifestyle changes or treatments. Motivated by this principle,

we partition the users into two distinct cohorts based on their reported blood

glucose values: Adapted Cohort (AC), and Non-adapted Cohort (NC). The

definitions of these two cohorts are as follows,

• Adapted Cohort (AC): An adapted user is able to control and maintain

values of his blood glucose in the suggested range most of the times. For

such a user, the probability of observing a blood glucose value in the safe

range is more than t, where t is a predefined threshold.

• Non-adapted Cohort (NC): A user is non-adapted if he fail to have a
2In some cases, several numerical values might be found as a candidate for blood glucose

value. We used the value which is closer to #Bgnow hashtag as the reference value.
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controlled blood glucose, i.e., his blood glucose measurements are usually

out of range.

We intuitively set the threshold t = 0.5 to divide the users in our dataset into

two groups of different blood glucose patterns. Mathematically, we utilized the

following decision function to construct ground truth labels,

d(ui) =


+1 if Pr(ui ∈ AC) ≥ t

−1 otherwise

, (4.1)

where Pr(ui ∈ AC), and Pr(ui ∈ NC) are the probability that the measurements

for the user ui are in the controlled range and out of the controlled range, respec-

tively. Here The probability of having a measurement in the prescribed range is

computed based on the history of his blood glucose values, which can be computed

by the following formulation,

Pr(ui ∈ AC) = # of reported values in prescribed range for user i

total # of reported values for user i
(4.2)

This grouping is coarse, but it is motivated by health studies (Franciosi et al.,

2001, Malanda, Bot, and Nijpels, 2013) stating that users who can manage their

blood glucose will have a better long term health and fewer diabetes complications.

In the future, we aim to define more detailed groups, e.g., users who have on

target, below target, above target measurements and also different trends like

stable, and fluctuating trends. By using Eq.(4.1), we can intuitively divide our
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diabetic patients into two groups of users based on the self-reported values of blood

glucose extracted in Section 4.3.2, which clearly show how they have managed their

diabetes. In the remainder of the chapter, we study how these two communities’

online behaviour differ in terms of linguistic, textual, and visual content published

on their social network posts.

4.4 Analysis Method

In this section, we explain different analytical experiments we applied for under-

standing the behavioural distinction between AC and NC users.

4.4.1 LIWC Analysis

To identify and understand behaviour distinction of adapted and non-adapted

groups, we leverage a variety of indicators including linguistic and non-linguistic

indicators. The motivation behinds the investigation is that several psychological

studies demonstrate behavioural expression of individuals and their responses ex-

pose their life context, crises, and vulnerabilities (Pennebaker, Francis, and Booth,

2001). Our analysis, in this section, is largely based on LIWC, which has been

widely used in literature to study individuals behaviours in depression (De Choud-

hury, Counts, and Horvitz, 2013c), addiction recovery (MacLean et al., 2015),

anorexia (De Choudhury, 2015), to name a few. We hence examine three cate-

gories of attributes named (1) affective attributes, (2) cognitive attributes and (3)

linguistic and stylistic attributes.
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Affective attributes. Affective measures have attracted a lot of research in text

and opinion mining to detect the objectivity of user towards products, organi-

zation, and services (Liu, 2012). Recently, affective measures have been largely

utilized to measure emotional disclosure of users in social media (Kumar et al.,

2015). Motivated from prior literature, we measure positive affect (PA) and nega-

tive affect (NA) based on LIWC categories. We also compute four other emotional

expression indicators: anger, anxiety, sadness, and swear.

Cognitive attributes. Several studies in psychology have demonstrated that

cognitive process is largely associated with health improvement. For example,

greater usage of cognitive words is related to less anxiety after treatments (Alvarez-

Conrad, Zoellner, and Foa, 2001). Cognitive words are also utilized for explanatory

purposes and demonstrate the demands of individuals for understanding the situa-

tion. We therefore evaluate the cognitive process of individuals based on cognition

and perception word categories of LIWC.

Linguistic attributes. We consider five measures of linguistic style: (a) Lexical

Density: consisting of words that are verbs, adjectives (identified using NLTK’s

POS tagger), and adverbs. (b) Temporal References: consisting of past, present,

and future tenses. (c) Social/Personal Concerns: words belonging to family,

friends, social, work, health, and death. (d) Interpersonal Awareness and Focus:

words that are 1st person singular, 1st person plural, 2nd person, and 3rd person

pronouns. (e) We also evaluated words associated with quantities such as numeric

values as diabetes patients frequently need to consider amount of and quantities
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of their foods, medications and activities to manage their health condition.

4.4.2 Topical Content Analysis

We studied the textual contents shared by diabetic users from two aspects: words

and phrases (N-grams), and topics discussed.

N-Gram Analytic. In addition to linguistic analysis, we also investigate the

usage of various n-grams in the contents shared by adapted and non-adapted

people. Specifically, we investigate to discover the difference in usage of uni-,

bi-, and tri-grams between two groups3. However, comparison between two set

of n-grams is a challenging task mostly demonstrated by word-cloud. Inspired

by recent research efforts in computational social sciences (Kumar et al., 2015),

we compute the log-likelihood of the ratio between usage pattern of each n-gram

between adapted and non-adapted groups. Mathematically, it can be computed

as follows,

LLR = 2× [ln
(
Pr(ui ∈ AC)

)
− ln

(
Pr(ui ∈ NC)

)
] (4.3)

Indeed, LLR demonstrates a clear measure to compare the differences between

usage of an n-gram between two groups. As it computes the log likelihood ratio,

when a n-gram is equally used in two groups then its LLR will be near zero.

Meanwhile, it would be greater than zero if it is more frequent in first group as
3In this chapter, we use the general term ‘n-gram’ to refer to uni-, bi-, and tri-grams in the

text.
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compare to the second group, whereas it would be less than zero if the pattern is

reverse 4.

Topic Analytic. Although content analysis based on n-grams provides an in-

tuitive way for understanding the published contents by individuals, it processes

the text based on low level features, i.e., words, and may fail to capture high level

semantics inside the text. We hence apply topic models to discover the semantic

topics inside the posts published by different user groups. Topic models have been

commonly used to analyze health data (Paul and Dredze, 2014). Following the

prior literature, we obtain topics by applying latent Dirichlet Allocation (LDA)

over the entire set of posts shared by all users. To train the topic model, we used

the default hyper-parameter settings and set the number of topics to 50, which

we observed to work well in our experiments 5. To measure topic differences be-

tween two groups of users, we first compute the posterior probability of each topic

separately for the adapted and non-adapted users. We then compute the rate of

increase for each topic as the difference between the posterior of the topic using the

LLR measure, which is the difference between logarithms of the ratio of posterior

probability of the topic in adapted group to non-adapted group.

4.4.3 Visual Content Analysis

With the advent of social networking services, users are increasingly involved in

multiple social networks to benefits from diversity of services. For instance, more
4To compute LLR measure, we assume that all n-grams are probable in both cohorts with a

very low prior probability of p = 10−6.
5We tuned the number if topics by perplexity as suggested by (Wallach et al., 2009).
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than half of US adults (52%) and majority of youngsters (71%) participate in

two or more social media sites6. Recent studies revealed that users expose dif-

ferent characteristics and behaviours across multiple social networks (Song et al.,

2016,Song et al., 2015a). Indeed, analyzing users from different social views pro-

vides a better way to comprehensively understand user’s behaviours. Hence, we

also investigate the differences between AC and NC groups according to the visual

contents shared in Instagram social service. Comparing visual concepts of shared

images however is a challenging task due to the richness and complexity of shared

images. To effectively represent visual contents, we represent each image with a

bag-of-visual-concept in which each images is represented with a vector of visual

concepts happening in it. Inspired by prior studies (De Choudhury, Sharma, and

Kıcıman, 2016, Deng et al., 2009, Farseev et al., 2015), we utilized 1000 visual

concepts of ImageNet as a predefined visual concept dictionary due to its popu-

larity in multimedia studies (Deng et al., 2009). We hence constructed a feature

vector for each image based on the state-of-the-art deep learning architecture of

GoogleNet (Szegedy et al., 2015). We next compute the user’s feature vector by

averaging the feature vector of all images which were shared by the user.
6According to Pew Research Center, Social Media Update, 2014
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4.5 Results

4.5.1 LIWC Analysis

Table 4.3 summarizes the LIWC measures of behavioural attributes for the two

cohorts of users: adapted and non-adapted users. Overall, the contents published

by AC users are less negative than those published by NC users, demonstrating

that AC users have a positive perspective towards their health and lifestyle.

Affective attributes. As can be seen from the table, adapted users are less

negative. Previous studies also reported similar correlation where negative affec-

tion is associated with poor health conditions and engagement (Schwartz et al.,

2016). Further, NC contents demonstrate more anger and sadness rather than AC

contents. This result may attribute to the fact that being unsuccessful to cope

with their issues make patient to be more angry and feel hopeless, loneliness and

restless. The impact can be amplified in reverse direction where feeling hopeless

and loneliness is highly correlated with less engagement and success, which needs

further investigations.

Cognitive attributes. In terms of cognitive attributes, AC patients use more

negation structures such as ’not’, ’no’ as compared to NC patients. Further,

they also share perception words, i.e. ‘see’ and ‘feel’, which shows they are more

likely to express their feeling. Meanwhile, NC users use less certainty in their

publishing which is associated to more self-consciousness rather than users who
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are able to control their health condition (Taylor and Brown, 1988). This finding

is interesting which indicates NC users feel guilty regarding their situation and

hence may engage less with their community (See section 4.5.2 for more results).

Linguistic style attributes. NC users have higher lexical density. They also

share longer sentences as compared to AC. This is to be expected as NC users

utilize social media as a means for acquiring information about their health con-

cerns, as pointed by (De Choudhury, Morris, and White, 2014,Gray et al., 2005);

such contents are mostly about self and hence people try to completely describe

their situation (Cao et al., 2011). This result needs to be studied more carefully

as some studies associate lower lexical density to negative emotions as NC already

has shown such characteristics. NC contents are more concerning about past and

less focused about future, while AC users are more discussing about future. This

is likely attributed to the anxiety of users and their concerns about their health

conditions and issues. The literature has leveraged that lower future concern is

a known attribute of negative attitude towards user’s own life, arising from their

problems in managing their health condition(Chapman, Perry, and Strine, 2005).

Further, NC users show less social concerns since negative thought are associated

with the self. Hence, they are less likely to talk about social concerns and com-

munity topics. More surprisingly, AC users are less concern about health and

death as compared with NC users. This can own to the fact that these users

have already adapted their lifestyle to their situation and health condition, con-

cerning less about their health and their disease consequences. Further, AC users
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Table 4.3: The result of Mann-Whitney U -test between posts published by AC and NC
according to different behavioural attributes. Each value shows the percentage of words
in tweet messages shared by users in each linguistic or psychological category. We used
non-parametric test to compute significance.

Category AC NC p-value
Affective

Positive 4.278 4.168 0.103
Negative 1.580 1.659 0.060
Anxiety 0.269 0.271 0.241
Anger 0.437 0.485 0.004
Sad 0.387 0.412 0.195

Swear 0.138 0.167 0.002
Cognitive

Negation 1.289 1.315 0.174
Certainty 1.032 1.031 0.247
Cognition 0.757 0.750 0.231
Perception 0.478 0.466 0.222

Linguistic style: Lexical density
Word Counts 31638 38749 0.002

Word Per Sentence 21 156 0.103
Verbs 10.565 10.669 0.242

Adjectives 3.581 3.635 0.162
Adverbs 2.1× 10−5 1.0× 10−5 0.191

Linguistic style: Tense
Past tense 1.925 1.938 0.342

Present tense 7.179 7.308 0.151
Future tense 0.736 0.686 0.040

Linguistic style: Interpersonal awareness
1st person singular 3.767 3.968 0.096
1st person plural 0.560 0.562 0.046

2nd person 1.427 1.535 0.011
3th person 0.653 0.728 0.014

Linguistic style: Quantities
quantities+numbers 6.072 5.481 0.009

Linguistic style: Social concerns
social 5.903 6.194 0.007
family 0.250 0.274 0.037
friend 0.143 0.159 0.121
health 1.900 1.957 0.340
death 0.104 0.131 0.003
work 1.833 1.678 0.056
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Table 4.4: The result of n-gram study between posts published by AC and NC.

N-gram LLR N-gram LLR N-gram LLR N-gram LLR

N-grams (AC > NC) N-grams (NC > AC)
miles hour 7.222 mins felt good 7.179 feeling support −0.419 num hr later −0.419
ran miles 6.348 strides 6.348 units novorapid −0.419 novorapid 2hr later −0.418
felt good 1.953 hills 1.873 sugar level −0.418 continued ride cyclemeter −0.418
keeping 1.873 ride 1.801 suggestion −0.418 glucose level −0.418

check strava 1.448 min walk 1.284 hate −0.418 shouldnt hurt bgnow −0.418
awesome 1.251 finish 0.887 hurt bgnow −0.418 high −0.418

sweatbetes 0.873 beautiful 0.738 really want −0.415 latest level −0.389
a sweet life 0.782 cure 0.732 weird −0.388 crazy sugar −0.388

ready 0.715 lovely 0.677 stupid −0.364 shit −0.361
mysugar 0.642 easy 0.630 how to −0.331 nightmare −0.301

have already shown positive affection in their behavior so they may less discuss

about negative concepts like death. Last but not least, AC users are more talk

about quantities and numbers; this is an important finding and specific to our

study. It clearly demonstrates that those are successful to manage their condition

are concern about the quantities, which is deeply related to self-management of

their condition. This demonstrates that diabetes management demands a careful

consideration to balance the lifestyle; adjust their consuming calories, specifically

carbohydrates, which will result into a successful management. This finding was

already reported by research efforts in health sciences. However, our results re-

veal that people who discuss about quantities in social media are more likely to

follow the correct management program, probably due to the fact that discussing

about topic shows its importance for users. Overall our study attests the potential

value of social media as a sensor for understanding users’ success which can be

utilized as an information source in designing better intervention programs and

social services as well as investigating public health issues.
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4.5.2 Topical Content Analysis

In this section, we investigate how the contents published by these two cohorts

of users are different from each other in terms of topics discussed. As mentioned

in section 4.4.2, we studied the frequency of different n-grams and topics in posts

published by users.

N-grams comparison. We observed a great distinction between the usage of n-

grams in posting of AC and NC users. Generally speaking, the content published

by two groups of diabetic users demonstrates that AC users mainly act as a social

supporter or content providers for diabetic users. This finding itself is interesting

and demonstrates that, by designing appropriate intervention tools/programs, we

can help diabetic users to better manage their health condition.

Table 4.4 shows a list of 40 different n-grams organized in two different groups

with their associated LLR values. The right group lists n-grams with highest LLR

values, demonstrating those are important for AC users and the left group sum-

marizes the list of important n-grams for NC users. Overall, our finding verifies

the results observed in the last section, as we observe positive n-grams in the first

group compared to the last group, which may attribute to the fact that NCs are

struggling with their diabetes and focusing to find a proper way to manage their

condition. In contrast, AC users are optimistic to the situation and spread positive

emotions and experiences. The following contextual themes were observed from

the data. (1) We found clear evidences of anxiety and anger (e.g., ‘crazy sugar’,
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’shit’, and ‘hate’) in NC contents owing to the fact that managing diabetes is prob-

lematic, in some sense, for this cohorts. This shows that online environment may

be a place for them to release their emotional pressure through interacting with

their peers. (2) Contents on seeking help and assistance (‘how to’, ’really want’,

and ’suggestion’) is also evident in NC users. This finding align with the pervious

one which shows social platform may be perceived as a supporting environment for

patients with diabetes, where not only users seek emotional support but also ask

for informational support (Wang, Kraut, and Levine, 2012). Retrospective studies

have reported that receiving emotional support is one of the main intentions that

attracts users to utilize social networks for health, especially for chronic diseases

like diabetes, insomnia, depression and so on (Greene et al., 2011,Jamison-Powell

et al., 2012,Taylor and Brown, 1988). (3) AC users, however, more frequently use

positive words (‘felt good’, ‘beautiful’, ‘nice’, and ‘lovely’). The use of positive

n-grams shows a positive view on the life and the tendency of spreading positive

emotions and feelings. (4) Compared to NC users, AC users use diabetes manage-

ment tools and platforms like ‘mysugar’, demonstrating they are more curious and

ambitious on managing their diabetes. Despite the importance and value of using

computational framework in managing health problems, the benefits and impacts

of using computational frameworks, from simple recording to high-end supporting

framework like ‘mysugar’7, and ‘onedrop’8, in managing diabetes is still not fully

investigated and more research needs to be investigated.
7https://mysugr.com/
8http://onedrop.today/
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Figure 4.1: Changes in topic usage for two cohorts of diabetes patients, where positive
value shows that the topic is important for AC users, otherwise NC users.

Table 4.5: Examples of topics and corresponding representative words

ID Representative Words Topic

T3 tired, hate, missed, hurt, horrible,
struggled, sick, damn, ugh, lol Self-critical

T8
afraid, want, useless, comfortable,

bad, pain, except, tough,
nothing, easy

Conflicting feeling
and emotions

T17
running, gym, daily, hypo, mile,

ride, walking, sugar,
cyclometer, check

Activities and Sports

T31 talk, dsma, advice, bed, insulin,
diet, nutrition, sugar, ask, help Social support

T43
research, interested, diet,

DiabeticDiary, prove, fact, fitness,
food, sleep, hyperglycemia

Authorized information
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Topic analysis. We also extracted the underlying topics exists in the corpus

and investigated to which extend the content published by AC and NC users are

different from each other. We adopted LDA framework as described in Section

4.4.2 to extract textual topics from document corpus. Figure 4.1 depicts the

differences of the existence of topics across two groups. As you can see from the

Figure, the mean change across two groups is 20%, which shows two cohorts of

users are discussing on different topics online. Specifically, we observe that topics

#3 (Self-critical), #8 (Conflicting feelings), #17 (Activities and Sports), #31

(Social support), #43 (Authorized information) show notable variations between

two groups. To have a better sense of these topics we listed top 10 representative

words for each topic in Table 4.5. From the Figure 4.1, following points can be

observed. (1) Topic #3 represents ‘self-critical’ contents and thoughts about being

guilty and negative attitude about self in NC cohort. This can be attributed to

the failure of users in self-managing diabetes and similarly their desire to handle

the situation. This is also consistent with the literatures, reporting that chronic

disease sufferers develops tendencies of self-criticism which sometimes goes beyond

the normal level and may result in mental disorders (Anderson et al., 2001,Katon

and Sullivan, 1990). (2) Topic #8 represents struggling and conflicting feelings

and emotions that are often perceived by NC users. Investigating on the springs

and outcomes of these conflicting emotions is worthwhile, which may result to

establish better intervention in lifestyle medicine. (3) Discussing about activities

and sports is common in AC communities as expressed by topic #43. Indeed a
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detail checking of extracted topics shows that two other topics which thematically

talks about activities (#25, #28); however, they did not show strong distinction

between two groups of diabetes. This result verifies the findings from health

sciences which states the positive correlation between regular sport activities like

‘running’ and better management of diabetes, especially diabetes Type II(Klein

et al., 2004). It is worth noting that users discuss about sports and exercise

activities in social media often utilize tracking devices linked with web portal and

mobile applications, which assist them recording the history of their activities and

planning for future. The finding is aligned with a recent research reporting that

persistent usage of mobile applications significantly increases the success of users

in weight loss program (Park et al., 2015). Despite the increasing popularity of

tracker devices and mobile applications, limited studies have investigated their

impacts and roles in managing chronic diseases, especially diabetes. (4) Topic

#31 describes contents related to social support in online communities. Indeed,

#Bgnow acts as a support groups, or a fast-response support group, for patient

with diabetes, where they seek and provide informational and emotional support

from their peers. This was already verified by the difference between n-grams

usage within two groups. (5) Topic #17 reflects authorized information about

diabetes, medications and management programs, showing that diabetic patients

in AC groups spread more authorized information about diabetes. In essence,

professional health providers leverage the power of social media to disseminate

health content for health seekers and AC users republish this information in their
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(a)

(b)

Figure 4.2: Example images have been shared by AC users (a), and NC users (b).

network. This result highlights other aspects of social media in healthcare.

4.5.3 Visual Content Analysis

Figure 4.2 shows some representative examples from the images which have been

shared by two groups of users. Our analysis demonstrates that the visual contents

in shared images of users’ Instagram accounts are highly related to the success of

users in managing diabetes. Figure 4.3 depicts top 20 statistically significant corre-

lations between visual concepts and the category of users. Several interesting sig-

nals can be observed from the Figure. For example, the visual concepts ‘mountain

bike’ and ‘unicycle’ are positively correlated to AC category which demonstrates

the strong preference of AC users to manage their diabetes with lifestyle change.

Some other concepts like ‘sunglasses’, ‘crash helmet’, and ‘street sign’, which are

objects related to activities, also demonstrate the same preferences. Prior research

efforts have also reported similar results in obesity and fitness related studies from

social media platforms (Mejova et al., 2015). Conversely, visual concepts ‘menu’,
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Figure 4.3: Visual concepts which commonly shared by two cohorts of users: AC, and NC
users.

and ‘plate‘ are correlated to NC users, which illustrates the possible reason for

failing to control their blood glucose level. Further, the positive correlation be-

tween the visual concept ‘Band Aid’ and NC users may indicate that they like to

share the picture of their injection site, e.g. Insulin injection or pump site, which

shows their anxiety related to their health condition.

4.6 Discussion

Our findings reveal several characteristics of social media, specifically Twitter, for

diabetes. Many of our finding align with prior studies, stating that social media

is a rich platform for health consumers through which they seek and share health

information. Overall, the study revealed that people online behaviours expose

their health conditions and states as well as their success in adapting their life style
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to their wellness condition. Waving together these observations, it demonstrates

that patient generated wellness data on social media can be effectively utilized for

inferring users’ success in managing his health condition, which can be effectively

used for designing better intervention programs and services to assist patient in

better management of their diabetes.

4.6.1 Clinical Relevance

The abundant amount of available data can also assist us to better understand pa-

tient behaviours and detect potential issues resulting failures in self-management of

diabetes. From a clinical perspective, social media can be utilized to complement

patient self-report diaries by implicitly tracking his/her online behaviour. Social

media can also assist to provide intervention through non-intrusive assessment of

content providing and publishing, as discussed below.

Persuasion Oriented Intervention. With a proper lifestyle and behavioural

change, we can successfully manage several chronic diseases such as diabetes, and

obesity. While it seems an easy task, in practice, changing lifestyle is a challenging

and complex task. According the Fogg Behavioural Model (FBM), three elements

need to converge together in order to a behaviour occur: motivation, ability, and

trigger (Fogg and Hreha, 2010). Indeed, when a behaviour does not occur, one

of these elements is missing. Chronic disease sufferers usually have enough mo-

tivation to perform the target behaviour, which is suggested by the management

program; however, they frequently will not trigger to perform the task on the
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correct time, e.g. reduce their sugar consumption or their sedentary lifestyle. By

utilizing social networks not only we can understand the user lifestyle and wellness

condition, but, more importantly, it is possible to motivate the user and trigger

him in the same time. For example, we can suggest him some interesting outdoor

activity based on his past preferences or suggest him to have a healthier meal.

Further, providing useful health information regarding his/her health condition

can effectively motivate user to follow the disease management program, in our

case of the diabetes management program.

Social Influence Intervention. In psychology, social influence theory attests

that individual’s emotions, opinions, and behaviours are affected by others. Social

influence has been studied in different domains and environments such as sales,

marketing, leadership, and so on (Kelman, 1958). The holistic concept of wellness

traditionally has been studied from different aspects includes, physical, mental,

social, and spiritual components. Late studies extend this perspective to the

social interactions finding that social interactions may affect individual’s wellness

either in positive and negative manner. For example, recent studies have revealed

that person’s circle of friends may influence his/her weight(Shoham et al., 2012)

and his/her sport activity level, i.e., how active he/she is in sports. Upon these

findings, we can assist NC diabetic patients to better manage their health condition

through connecting them to AC users, i.e. diabetic users who already find how to

successfully manage their disease.
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4.7 Related Work

The emergence of social media delineated a shift among users from passive con-

sumption of information to active creation and sharing of contents, which provides

new resources to understand and analyse population behaviour. Web search is an

important and ubiquitous way through which users acquire information about

health conditions and major events like epidemics. Therefore, analysing the query

logs of events provides an implicit way to understand public health. Eysenbach

(2006) reported the high correlation between click rates on influenza topics and

the influenza-linked illness cases reported by CDC. Another study by Yahoo! and

CDC reported that the rate of search queries pertaining to cancer is correlated to

mortality rate and news coverage of cancer (Chunara, Andrews, and Brownstein,

2012). Google Flue 9 trend is a successful service which predicts flue infection

trends based on online queries.

The emergence of Twitter also opened new opportunities to public health

researchers to understand the wellness of society. For example, Twitter data

was employed for outbreak surveillance of swine flu (H1N1) (Ritterman, Os-

borne, and Klein, 2009), understanding misinformation on epidemic events, e.g.

Ebola (Kalyanam et al., 2015), behavioural change of new mothers (De Choud-

hury, Counts, and Horvitz, 2013a,De Choudhury et al., 2014), and so on.

Thanks for the richness and veracity of social media data, which provides an
9http://www.google.org/fluetrends
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invaluable opportunity to public health researchers; it is now possible to study

public health and wellness in large-scale, which was not possible with traditional

methods both in terms of time and cost. While all these research are useful, many

of them only focus on public health trends and behaviours, failing to provide

any insight about a specific user wellness. Consequently, studying and developing

approaches which are able to provide insights to individual’s lifestyle and wellness

are highly demanded. Towards this research avenue, in this Chapter, we utilize

social media to study factors affecting the success of diabetes patients in managing

their blood glucose values.

4.8 Summary

Social media is continually being used as a platform for informational and emo-

tional support around health challenges transforming these platforms as a source

for knowledge, support and engagement for patients living with chronic diseases

such as diabetes. In such a context patients are encouraged to share the exact val-

ues of their health measurements such as blood glucose level. In this chapter, we

investigated the behavioural distinction of two groups of diabetes patient based on

their published posts online. In particular, we studied the behavioural distinction

between patients who can successfully manage their blood glucose value and those

who fail. We have observed several distinctions in terms of linguistic, textual and

visual contents of published posts online. We also provided a supervised approach

to predict the success of users based on their online behaviours.
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Wellness Representation of Users

Due to the pervasiveness of social media platforms, everyday, millions of users

increasingly utilize social networks such as Twitter and Instagram to share their

wellness data and to fulfil their health demands. Effective mining of patient gen-

erated wellness data (PGWD) can provide actionable insights into the wellness of

individuals as well as collaborative behaviour of communities. While data-driven

approaches are increasingly used for personalized healthcare (He et al., 2014a,Liu

et al., 2015, Xu, Sun, and Bi, 2015), as an important and distinct data source,

understanding PGWD available on social networks presents great opportunities

to improve care delivery.

Representation learning, also called latent feature learning or in general fea-

ture learning, has become an effective tool for many machine learning and data

mining applications and is still an open problem (Jin et al., 2015,Weston, Weiss,

and Yee, 2013,Zhao, McAuley, and King, 2014,Zhao, McAuley, and King, 2015).

The hypothesis behind representation learning is to find a low-dimensional embed-
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ding of data instances while preserving different discriminative factors of variation

behind the data. Regarding the importance of data representation, we propose

to explore representation learning approach towards analyzing and understanding

users’ wellness from PGWD. In particular, in this chapter, we demonstrate a rep-

resentation learning approach to learn the latent profile of users from their social

media contents.

5.1 Challenges

Despite its value and significance, PGWD in social networks has not been fully

utilized due to the following challenges. (1) Longitudinality. Wellness data are

longitudinal per se, which means multiple measurements or repeated events are

available for each subject (Liu et al., 2015,Xu, Sun, and Bi, 2015,Zhou et al., 2014).

For example, Hemoglobin A1c (HbA1c) test might be done several times per year

for diabetic patients. The longitudinal nature of the problem provides a matrix

of wellness data describing patient at different time points (Wang et al., 2013,Xu,

Sun, and Bi, 2015,Zhou et al., 2014). This is quite different from standard machine

learning representation where we have a static vector of features, as shown in

Figure 5.1. In such a context, time dimension plays an essential role. (2) Noisiness

and Incompleteness. As perviously discussed (see Chapter 1 and Chapter 3), social

media is a highly varied and informal media; arising from various background and

intention of users (Wang et al., 2011). Moreover, missing data is an intrinsic nature

of PGWD since patients do not persistently report their wellness data. In most
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cases, users are not keen enough to expose the event or they self-censor the content

due to privacy concerns (De Choudhury, Morris, and White, 2014,Lin et al., 2014).

This means that the absence of a wellness event in PGWD does not always mean

that the event did not happen. (3) Heterogeneity. An intrinsic characteristic of

the wellness domain is heterogeneity of the patient population according to their

health conditions; meaning that wellness attributes and events related to each

user can be highly different from the others (Nori et al., 2015). For instance, even

though diabetic users often share similar characteristics, they are still different

from each other based on demographic attributes (e.g., age and gender), type of

disease (e.g., Type I Diabetes, Type II Diabetes, Gestational Diabetes, etc.), and

many other behavioral and genetic factors. Even though patient stratification is a

well-established approach in health informatics (Wang, Zhou, and Hu, 2014), this

kind of disease-specific context has not been fully investigated in many wellness

models such as re-admission prediction (He et al., 2014a), disease progression

modelling (Wang, Sontag, and Wang, 2014, Zhou et al., 2013), risk prediction

(Wang et al., 2014); and the assumption of a homogenous cohort does not hold in

the population. How to share information among homogenous population while

simultaneously avoid interactions between heterogeneous populations is still an

open problem in wellness modelling.
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Figure 5.1: Vector-based and Longitudinal representation, where different colors show
distinct features and color intensity shows relative value of the feature. (a) Representation
of three distinct users in vector-based approach; vector-based approach represents a single
measurement for each feature; (b) Representation of one user in longitudinal approach
with 8 different time points. Longitudinal data represents each feature with a set of values
pertaining to different time points.

5.2 Overview

To deal with the challenges raised by the distinct PGWD, in this chapter, we inves-

tigate to learn wellness representation of users from social media. Our framework,

in contrast to conventional models, determines the wellness latent space directly

from users’ longitudinal data, instead of attribute-value data, by considering two

types of domain priors, namely the heterogeneity in data space and temporal con-

tingency of wellness concepts. In particular, the proposed approach decomposes

longitudinal data into two components: wellness latent space, and temporal rep-

resentation of users. To effectively handle data heterogeneity, the learned wellness

latent space is comprised of two sub-spaces, i.e., shared and personalized latent

spaces, as shown in Figure 5.2. The learned temporal representation is constrained

to model the temporal progression of wellness attributes and simultaneously tackle

the problems arising from missing data values. The proposed framework has been

extensively examined through several machine learning tasks to evaluate its effec-
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Figure 5.2: The conceptual view of the proposed framework for representation learning
of longitudinal data from social networks. The wellness latent space is comprised of two
sub-spaces: shared and personal latent space. The final representation of each user, i.e.,
Hi, embeds the user in the latent space while each row is his/her representation at one
time point, where different colors show distinct features and color intensity shows relative
weight of the feature.

tiveness in user embedding.

The main advantageous of the proposed representation learning are as follows:

• We propose a representation learning approach for longitudinal wellness data

available in social networks. Specifically, we decompose longitudinal PGWD

into wellness latent space and the temporal progression of users in that space.

• We exploit consistency within homogenous population as well as distinction

between heterogeneous population to learn a shared and personalized latent

space for embedding users.

• We incorporate the temporal progression prior of wellness data in the learn-

ing process to tackle the problems arising from missing and sparsity of data.

• We propose an efficient approach to find the embedding of the users in the

two sub-spaces which scales well. This is an important feature permitting

us to use the framework in web scale.

100



CHAPTER 5. WELLNESS REPRESENTATION OF USERS

5.3 Problem Statement

In this section, we first present the notations and then formally define the problem

of representation learning of longitudinal data. Note that the problem we study

is different from traditional representation learning since the latter merely focuses

on learning a latent representation for “flat” attributed-value data, in contrast to

longitudinal data; only projecting high-dimensional vectors to a low-dimensional

space.

5.3.1 Problem Formulation

Let U = {U1,U2, . . .Un} denote a set of n users’ longitudinal information. Each

user longitudinal information Ui is denoted by Ui ∈ Rf×t, where f is the number

of different wellness events and features1 and t is the length of observation window

in which we measure the events. Note that the user’s longitudinal data is a matrix

where Ui(j,k) represents the measurement value of the wellness event j at time point

k for the user i.

We want to learn a low-rank representation of users in U so that if two users

u and v have similar wellness data, their representation would be closer. We

assume that the longitudinal data can be factorized to two components: a latent

space representing wellness concepts and the temporal progression of each user

in the latent space, as shown in Figure 5.2. The factorization process is capable
1In this text, we use wellness feature (e.g., blood glucose, hypertension) and wellness events

(onset of asthma attack, hyperglycemia) interchangeably.
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of reconstructing the user data matrix on observed values. In general, a user’s

longitudinal representation is formally defined as a matrix Hi, where each row of

the matrix, i.e., Hi(j∗), represents the user wellness state at time point j.

With the notation above, we formally define the longitudinal user representa-

tion problem as: Given a set of users’ longitudinal information U , we aim to learn

a model as follows,

f : U → {Wi,Hi}, (5.1)

which can compute wellness latent space Wi ∈ Rf×k and temporal progres-

sion of each user in the wellness latent space, i.e., Hi ∈ Rt×k.

The final representation of each user, i.e., Hi, precisely embeds the user in

wellness latent space while each row is his/her representation at one time point.

5.4 Factorization of Longitudinal Data

As mentioned, PGWD includes two major aspects: wellness aspect and tempo-

ral aspect. Constructing an effective representation requires to subtly decompose

these two components from each other. The key hypothesis behind longitudinal

data factorization is that user’s data matrix can be decomposed into two fac-

tors: (1) wellness latent space, and (2) the temporal onset of wellness events over

observation windows, i.e., time dimension.
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5.4.1 Preliminaries

Retrospective studies have shown that the wellness features can be projected to

a latent space with a lower dimensionality; resulting in a dense representation of

the original features (Zhou et al., 2014). This factorization process is capable of

reconstructing the observed entries of original matrix, i.e., patient longitudinal

wellness data. Inspired by these research findings, we utilized nonnegative matrix

factorization (NMF) to decompose patient data matrix into two low rank matrices

which are capable of approximately reconstructing the observed matrix. NMF is

a matrix factorization algorithm that factorizes the non-negative data matrix into

two positive matrices (Lee and Seung, 2001). Assume that Ui ∈ Rf×t represents

the data matrix for patient i, the aim of factorization is to decompose Ui into

to non-negative matrices Wi ∈ Rf×k and Hi ∈ Rt×k, whose product provide a

good approximation of Ui, i.e., Ui ≈WiHT
i , where k is a pre-specified parameter

denoting the dimension of reduced space. For instance, in topic modeling, k

represents the number of topics while it denotes the number of desired latent

dimensions in feature learning. Formally, NMF aims to minimize the following

objective function,

min
Wi,Hi

‖Ui −WiHT
i ‖2

F s.t. Wi ≥ 0,Hi ≥ 0, (5.2)

where Wi is called the wellness basis matrix and Hi is the temporal progression

matrix. Intuitively, Hi represents how wellness dimensions evolve over time for
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the given user. In other words, it demonstrates how the user’s wellness is going

to improve, stable, or worsen as time passes. As the above objective function is

not jointly convex in Wi and Hi, finding the global minima is infeasible (Lee and

Seung, 2001). Therefore, alternating minimization is iteratively utilized to find a

local minima. The iterative update rules are as follows,

Wi ←Wi �
UiHi

WiHT
i Hi

, Hi ← Hi �
UT
i Wi

HiWT
i Wi

. (5.3)

where � and the division symbol in this matrix context denote element-wise mul-

tiplication and division, respectively. Note that the above setting is different from

standard matrix factorization where Ui represents an item-feature matrix con-

structed from the whole dataset.

It is also worth noting that there are several useful properties in using matrix

factorization (Gu, Zhou, and Ding, 2010,Tang et al., 2013) for sub-space learning:

(1) the non-negative property of NMF ensures an intuitive decomposition of the

patient matrix into wellness and temporal parts, in contrast to other matrix fac-

torizations that do not hold this property, e.g., PCA and SVD; (2) the model has

a nice probabilistic interpretation with Gaussian noise; (3) many existing opti-

mization approaches can be utilized to find an optimal solution for the the model;

(4) it can be scaled to a large number of users, which is a common setting in social

media platforms; (5) this formulation is flexible and allows us to introduce prior

knowledge such as heterogeneity and temporality of the wellness attributes.
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5.4.2 Shared Wellness Space for Homogenous Cohort

Factorization of user’s longitudinal data provides an intuitive decomposition of

data matrix of a given user into wellness latent features and their temporal pro-

gression over time. However, decomposing wellness data of each user in isolation

may not provide effective representation due to the excessive sparsity in data. Be-

sides, comparing latent spaces of different users would be a challenging task since

the factorization process may extract diverse latent features fitted on each user

data. Therefore, extracting a common latent space from the entire collection of

data is normally preferred. The hypothesis behind collective latent space learning

is that the wellness latent space extracted from different data instances, in our case

users, should admit the same underlying structure, corresponding to higher-level

latent features constructed from the combination of lower level features. At the

same time, the temporal progression of these wellness latent features can vary from

user to user depending on user’s attributes, behaviors and so on. Mathematically,

it can be formulated as the following objective function,

min
W,Hi

JSLS = 1
2n

n∑
i=1
‖Ui −WHT

i ‖2
F + λ1

2 (‖W‖2
F

+ 1
n

n∑
i=1
‖Hi‖2

F ) s.t. W ≥ 0,Hi ≥ 0, (5.4)

where the first term factorizes users’ longitudinal data, while the second and third

terms control the complexity of models. Here, W is to compute the shared wellness
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latent space among all patients. The above objective function assumes that all

patients share the same wellness space and learns a unique mapping W from the

original feature space to the wellness latent space.With sharing of the latent space

among all patients, we indeed transfer knowledge among the patient cohorts, which

is attractive especially when the available information for each patient is limited

and the cohort is homogenous (Pan et al., 2014,Song et al., 2015a). Sharing also

reduces the effect of noise since the latent space is derived from a large amount of

data.

5.4.3 Personalized Wellness Space for Heterogeneous Co-

hort

Even though learning a common latent space from dataset is an intuitive and

well-established tradition in machine learning, its performance is highly varied in

real applications since it assumes a rigid consensus in dataset; i.e., all the data

instances need to follow a specific latent space (Pan et al., 2014). This is, however,

impossible in real situations since patients can be divided into different cohorts

with different characteristics. For example, diabetic users can be divided into

three major patient groups: type I, type II, and gestational diabetics and several

minor groups merely based on disease type, where each group holds different

characteristics (Groop, 2015, Nori et al., 2015, Sun, Wang, and Hu, 2015). This

suggests that we need a personalized feature learning framework to deal with

heterogeneity in data space.
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Inspired by the notion of “dirty models” in machine learning for handling het-

erogeneous high-dimensional data (Jalali et al., 2010,Jin et al., 2015), we assume

that individual’s wellness latent space can be slightly deviated from the shared

space extracted from the whole population. Mathematically, we consider the fol-

lowing learning model,

min
W,Hi,Pi

JPLS = 1
2n

n∑
i=1
‖Ui − (W + Pi)HT

i ‖2
F

+ λ1

2 (‖W‖2
F + 1

n

n∑
i=1
‖Hi‖2

F ) + λ2

n

n∑
i=1
‖Pi‖1

s.t. W ≥ 0,Hi ≥ 0,Pi ≥ 0, (5.5)

where the latent space is estimated by the summation of two parameters W and

Pi. The first part of Eq. (5.5) learns three sets of parameters: (1) W is the

shared latent space for all users inferred from the entire dataset; (2) Pi is to

model heterogeneity in the data space, i.e., the personalized feature space; and

(3) Hi demonstrates the temporal evolution of each individual in the latent space.

By imposing different regularizations for each parameter, we can fit an effective

personalized learning model. The above formulation includes two set of regular-

izers; the second term, i.e., (‖W‖2
F + 1

n

∑n
i=1 ‖Hi‖2

F ), controls the generalization

performance of the model to avoid overfitting and the third term (`1-norm) leads

to a sparse model. It is worth noting that the aforementioned model extends the

concept of dirty model to longitudinal data (Jalali et al., 2010).

From clinical aspects, the proposed model is closely related to precision medicine (Groop,
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2015, Mirnezami, Nicholson, and Darzi, 2012), where medical treatments are tai-

lored to individual patients based on their detailed genetic and clinical profiles as

well as lifestyle factors. By learning personalized latent space, i.e. Pi, our model

follows precision medicine paradigm through modeling distinct characteristics of

individuals. Our model also considers disease principle paradigm by providing a

computational model with the shared feature space, i.e., W, where disease treat-

ment and prevention are learned from the entire population. This also presents

significance in treating patients with missing values.

5.4.4 Modeling Temporal Information

Recall that wellness attributes smoothly evolve over time. The temporal progres-

sion of wellness attributes suggests that these values gradually changes over time

(Liu et al., 2015, Xu, Sun, and Bi, 2015). Thus, modelling the temporal evo-

lution of wellness attributes can effectively reduce the noise and sparsity of the

wellness data through imputation of missing values as pointed by (Sun, Wang,

and Hu, 2015, Xu, Sun, and Bi, 2015). As each row of the temporal progression

matrix Hi(j∗) indicates the wellness representation of the user i at time point j,

we hence penalize the sudden changes of wellness attributes between neighbouring

time points. Specifically, the temporal progression of wellness attributes can be

mathematically modelled as,

Rtemporal = 1
2n

n∑
i=1

t−1∑
j=1
‖Hi(j∗) −Hi(j+1∗)‖2, (5.6)
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where Hi(j∗) denotes the wellness representation of the user i at time point j.

To facilitate the optimization of the temporal progression term, Eq.(5.6) can be

restated in an equivalent form as follows,

Rtemporal = 1
2n

n∑
i=1

t−1∑
j=1
‖Hi(j∗) −Hi(j+1∗)‖2 = 1

2n

n∑
i=1
‖HiRi‖2

F , (5.7)

where Ri ∈ Rt×t−1 is the temporal smoothness indicator and is precalculated by

the following definition,

Ri(j,k) =



1 if j = k;

−1 if j = k + 1

0 otherwise .

(5.8)

Intuitively, Eq.(5.7) imposes that the wellness representation of the given user

at two consecutive time points be close to each other.

5.5 Algorithm Details

The optimization framework, which integrates prior information into representa-

tion, is defined as follows,

JSpace + αRtemporal, (5.9)
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where the first term, i.e., JSpace, denotes the objective function for learning latent

space, i.e. Eq.(5.4) and Eq.(5.5) for homogenous and heterogenous settings, re-

spectively. Meanwhile, the second term incorporates temporal prior of wellness

attributes into the learning model.

In this section, we introduce an efficient algorithm to solve the optimization

problems and discuss its time complexity. Note that the optimization problem

of homogeneous setting is a special case of the heterogenous setting. Therefore,

we only provide the algorithm for heterogenous setting. Here, by substituting

Eq.(5.5) in the above equation, we have the following cost function,

min
W,Hi,Pi

O = 1
2n

n∑
i=1
‖Ui − (W + Pi)HT

i ‖2
F

+ α

2n

n∑
i=1
‖HiRi‖2

F + λ1

2 (‖W‖2
F + 1

n

n∑
i=1
‖Hi‖2

F )

+ λ2

n

n∑
i=1
‖Pi‖1

s.t. W ≥ 0,Hi ≥ 0,Pi ≥ 0, (5.10)

where α, λ1, and λ2 are regularizers to control the trade-off between different

components.

5.5.1 Optimization Algorithm

We adopt an alternating optimization strategy to find the optimal values for model

parameters. Specifically, we alternatively update W, Hi, and Pi to minimize the

objective function while keeping the others fixed. To enforce the non-negativity
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constraints, we need to incorporate Lagrange multipliers. Let Λw, Λpi, and Λhi be

the Lagrange matrices for constraints W ≥ 0, Pi ≥ 0, and Hi ≥ 0, respectively.

The Lagrange L is:

L = O + Tr(ΛwW) +
n∑
i=1

(Tr(ΛpiPi) + Tr(ΛhiHi)). (5.11)

Optimizing W

By fixing Hi and Pi, we can rewrite the objective function as follows,

min
W
L = 1

2n

n∑
i=1
‖Ui − (W + Pi)HT

i ‖2
F + λ1

2 ‖W‖
2
F

+ Tr(ΛwW) + C, (5.12)

where C is constant with respect to W. Taking the derivative with respect to W,

we have,

∂L
∂W = 1

n

n∑
i=1

(PiHT
i Hi −UiHi) + 1

n

n∑
i=1

WHT
i Hi + λ1W + Λw. (5.13)

Using the Karush-Kuhn-Tucker (KKT) complementary condition, we have the

following update rule for W,

W←W�
∑n
i=1 UiHi −

∑n
i=1 PiHiHT

i∑n
i=1 WHT

i Hi + nλ1W
. (5.14)
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Optimizing Pi

By ignoring terms that are independent of Pi in Eq.(5.11), the objective function

boils down to:

min
Pi

L = 1
2n‖Ui − (W + Pi)HT

i ‖2
F + λ2

n
‖Pi‖1 + Tr(ΛpiPi). (5.15)

The above objective function is non-smooth since it is the composition of a smooth

term and a non-smooth term, i.e., `1 penalty, and gradient descent method is not

available for solving the formulation. Inspired by (Chen et al., 2009, Nesterov,

2004), we utilize the accelerated proximal method (APM) to solve its equivalent

smooth reformulation. APM has been excessively utilized in data mining and

machine learning communities (Chen et al., 2009,Hu et al., 2013) due to its optimal

convergence rate among all first-order techniques and its ability of dealing with

large-scale non-smooth optimization problems. Note that we focus on discussing

the key concepts of APM, i.e, the proximal operator and its efficient computation;

the detailed description of APM can be found in (Nesterov, 2004).

APM maintains two sequences of variables: a feasible solution sequence {Pj
i}

and a searching point sequence {Sj}, where the superscript, i.e., j, shows the index

in the sequence. We denote the smooth and non-smooth part of the objective

function L by f(.) and g(.). APM reformulates the optimization problem by a
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proximal operator which is formally defined as,

Pj+1
i = arg min

Pj
i

Mγj ,Sj (Pj
i ), (5.16)

where,

Mγj ,Sj (Pi) = f(Sj) + 〈∇f(Sj),Pj
i − Sj〉+ γj

2 ‖P
j
i − Sj‖2F , (5.17)

where Sj is computed based on the past solutions by Sj = Pj
i + τ j(Pj

i − Pj−1
i )

and ∇f(Sj) denotes the derivatives of the smooth component f(.) in the objective

function, i.e., Eq.(5.15), at the search point Sj. The parameter γj is the step size

and is determined by line search according to Armijo-Goldstein rule. By ignoring

terms that are independent of Pj
i the objective function boils down to:

Pj+1
i = arg min

Pj
i

‖Pj
i −Qj‖2

F , (5.18)

where Qj = Sj− 1
γj∇f(Sj) and indeed the solution of Pj

i is the Euclidian projection

of Qj onto convex set of constraints (Nesterov, 2004). Here, ∇f(Sj) denotes the

gradient of the smooth component f(.) in Eq.(5.15) at Sj, which is defined as:

∇f(Pi) = 1
n

(WHT
i Hi + PiHT

i Hi −UiHi). (5.19)
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Optimizing Hi

To minimize the cost function with respect to Hi, we first fix W and Pi, and then

compute the derivative with respect to Hi as follows,

∂L
∂Hi

= 1
n

[−UiPi −UT
i W + Hi(W + Pi)T (W + Pi)]

+ (λ1

n
I + α

n
RiRT

i )Hi, (5.20)

where I denotes the identity matrix with correct dimensions. Using the Karush-

Kuhn-Tucker (KKT) complementary condition, we have the following update rule

for Hi,

Hi ← Hi �
UT
i Pi + UT

i W
Hi(W + Pi)T (W + Pi) + (λ1I + αRiRT

i )Hi

. (5.21)

It is worth noting that the convergence of the updating roles can be proven

using standard auxiliary function approach introduced in (Lee and Seung, 2001).

5.5.2 Computational Complexity and Convergence

We now analyze the time complexity of our learning framework using big O no-

tation. The learning algorithm includes three main steps for optimizing three set

of variables, i.e. W, Pi, and Hi. In update rule for W, the time complexity is

O(nkft), where n is the number of users, k is the dimension of latent space, f

is the dimension of original feature space, and t is the length of the observation
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window. The main computational time for Pi is to compute the derivation of

smooth part of objective function, i.e., Eq.(5.19), which is O(ftk). As we need

to update Pi for all samples, in our case each user, the total computational time

is in order of O(nkft). The computation for Hi is similar to Pi with time com-

plexity of O(nkft). If we need q iteration for updating the values of variables,

the time complexity of the final algorithm is in order of O(qnkft). As t denotes

the length of observation window and it is in the size of few hundred, which is a

small constant, in our experiment it is a six months period and t = 25, the final

complexity can be approximated by O(qnkft) ≈ O(qnkf), making PLS a linear

representation learning algorithm. We empirically verified this in our experiments,

as the actual running time of our framework was similar to running plain NMF

on all longitudinal data matrices.

Note that the complexity of time dimension is less critical, as discussed, because

that in most cases, the time dimension of the patients are often less than 1000.

Recall that the finest time unit of the longitudinal data of users is day. Using

weekly granularity, 1000 time dimension covers up to 20 years of records.

Considering the convergence aspect, the optimization function is non-convex

in with respect of all three variables in the Eq.(5.10). However, it is convex with

respect of each variable. Hence we can use coordinate descent approach to find

the minimum of the function. Coordinate descent in the function would converge

to a stationary point and it would be a local minimum for the function. Please

note that the function is non-smooth with respect to Pi. To solve the optimization

115



CHAPTER 5. WELLNESS REPRESENTATION OF USERS

problem with respect to Pi, we utilized the proximal approach which projects the

non-smooth part of the problem to a convex constraint. (Liu, Ji, and Ye, 2009b)

demonstrated that the convergence rate of the optimization approach is O( 1√
ε
)

where ε is the desired accuracy.

5.6 Experiments

In this section, we conduct extensive experiments to evaluate the effectiveness

of the proposed representation learning of users from social networks in both

homogenous and heterogeneous settings. We used our approach in two real-world

datasets to accomplish different tasks, which show superiority of our proposed

approach over the state-of-the-art baseline methods.

5.6.1 Experimental Settings

Datasets

Diabetes Dataset. We evaluated our approaches on a real-world dataset containing

posting of diabetic users about diabetes and their associated symptoms, medica-

tions, and activities. To construct the dataset, we first gathered a set of users

who actively utilized diabetes related hashtags like “#diabetes” and “#bgnow” or

follow diabetes support groups, such as American Diabetes Association, in Twitter

microblogging service. Table 5.1 shows the list of hashtags and twitter support

groups which were used for collecting candidate twitter users.

116



CHAPTER 5. WELLNESS REPRESENTATION OF USERS

Table 5.1: The list of seed hashtags and twitter support group used for collecting twitter
user pool.

Hashtags Support Groups
#Dibetes #Bgnow @AmDiabetesAssn @WDD
#Diabetic #T1D @DiabeticConnect @DiabetesUK

#type2diabetes #T2D @diabetesdaily @NDEP
#diabeteschat #Doc @DiabetesMine @citiesdiabetes

#LivingwithDiabetes #Dblog @DiabetesHealth @diabeteshf

We next crawled the twitter profile of these users using Twitter API and se-

lected the users who explicitly mention diabetes as an interest in their Twitter pro-

file, resulting into 14, 108 different candidate user accounts. To construct ground

truth labels, we utilized an automatic approach, inspired by similar efforts in com-

putational social science (Lin et al., 2014), based on users who self-declared their

disease information. We used expressions like “I am (Type—T) (1|2) diabetic” to

extract disease type for each user based on his/her profile information 2. Disease

type here refers to the major types of diabetes and includes three categories: Type

I diabetes, Type II diabetes, and Others. We merged all the other non-common

diabetes types as one category3. Table 5.2 shows the statistics of our dataset. As

you can see, we could extract the health attributes of more than 50 percent of users

(7, 474 Twitter accounts) based on their self-declared information in their profiles,

which we will use for the evaluation of our framework. Table 5.3 shows some ex-

ample profiles from our collected dataset and their associated regular expression
2We followed a bootstrapping approach similar to (Thelen and Riloff, 2002) to ensure the

coverage and diversity of used patterns, where all extracted patterns are manually verified to
ensure accuracy.

3In our dataset, there are three non-common diabetes types: gestational diabetes, diabetes
LADA (Type 1.5), and diabetes insipidus.
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Table 5.2: Statistics of the Diabetes Dataset

# of Users 14, 108
# of Tweets 11, 491, 036

Disease Type
Diabetes Type I 4, 194
Diabetes Type II 2, 477

Others 803

Table 5.3: Example profiles from our diabetes dataset

Husband. Dad. I’ve diag-
nosed as Type 1 diabetic since
DATE. On a journey ...

I *diagnose* Type (1—2)
diabetic Type 1

I LOVE LIFE!! I am type 2
diabetic and take insulin .... I * Type (1—2) diabetic Type 2

Writer, avid reader, ...; live
with T1 diabetes, ...

* with (T1—T2) dia-
betes Type 1

and ground truth labels4.

BG Dataset. This is the dataset which was constructed in Chapter 3 and

also used in Chapter 4. The dataset comprises of Twitter activities of diabetes

patients who actively share their wellness information on Twitter. They not only

post about their lifestyle information and activities such as their diet, activities,

and emotional states but also share their health information in terms of medical

events and measurements like their blood glucose value, HbA1c test results and

hypoglycaemia/hyperglycaemia onset. In Chapter 4, we labelled all users in the

dataset with “successful”, and “unsuccessful” tags showing that he managed to

maintain an on-target blood glucose value or failed to do so, respectively. We used

this dataset to evaluate the effectiveness of our method in predicting the wellness

states of users (such as the blood glucose value) based on the longitudinal wellness

data of users on social media. This is important since wellness states are highly
4Due to user privacy concerns, some words/sentences may be different from original version.
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Table 5.4: Statistics of the BG dataset

# of Users 1, 174
# of Tweets 1, 060, 105

# Successful Users 436
# Unsuccessful Users 738

dependent on historical values, i.e. temporally dependent, showing that we need to

consider longitudinal information of user’s wellness instead of merely considering

current state. Table 5.4 shows the statistics of this dataset.

Extraction of Longitudinal Wellness Descriptions

Feature extraction is an important aspect in our approach since it determines the

original representation of data. However, compared with textual documents in

traditional media, a distinct characteristic of texts in social media platforms is that

they are noisy and short (Tang et al., 2012). To comprehensively represent user’s

wellness, inspired by studies in clinical text mining (Akbari et al., 2016,Aronson,

2001,Xu et al., 2010), we extracted three kinds of features as follows.

1) RxNorm description. Medication information is one of the most im-

portant types of wellness data. It is critical for healthcare safety and quality as

well as for prognostic modeling (Zhou et al., 2006). Extracting medication infor-

mation from free text reports is a traditional but challenging problem in clinical

text processing (Doan et al., 2012,Chhieng et al., 2006,Sohn et al., 2014,Zhou et

al., 2007). To extract medication information, we utilized the approach proposed

in (Xu et al., 2010) which utilizes semantic parser and domain knowledge to accu-

rately extract medication information, i.e. medication names and signatures, from
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free texts and was commonly used as medication representation in literature.

2) UMLS description. We also used a widely-used knowledge-based sys-

tem called MetaMap to assign Unified Medical Language System (UMLS) Meta-

thesaurus semantic concepts to user’s social posts (Aronson, 2001). MetaMap

is a rule based system that assigns UMLS Meta-thesaurus semantic concepts to

phrases in natural language text. MetaMap is commonly used as a complemen-

tary resource containing tremendous amount of medical knowledge, which is in-

dependent from training dataset, in contrast to other systems. We collected all

MetaMap’s finding in the dataset and used their gold standard medical concepts

as features. Along with the analogy of bag-of-words, we constructed a Bag-of-

Concepts (BoC) in medical terminology and represent each user in the resulting

space. The final BoC contains 5, 370 distinct concepts.

3) Personal Wellness Events. Personal wellness events are defined as

events that are directly related to wellness of individuals; providing a summary of

users’ lifestyle and wellness such as diet event, medication use, and hospitalization.

Patients frequently post these events in their social accounts. We utilized the

approach proposed in Chapter 3 to extract personal wellness events from users’

published messages on Twitter. This will provide a high level description of user’s

wellness state; containing 14 distinct dimensions.

To construct the longitudinal wellness matrices of users, we utilized social

media posts of users. We need to select a granularity level in time dimension and

extract the information according to the selected granularity. We observed that
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the daily granularity is too sparse with more than 0.95% of users seemed reluctant

to report information daily. We thus constructed the users’ longitudinal data at

the weekly granularity. As we collected the data for six months, from May to

October 2015 and constructed 25 time points for the entire period 5.

Evaluation Tasks and Metrics

To demonstrate the effectiveness of the proposed representation learning approach,

we implicitly evaluated its performance in two commonly-used machine learning

settings: supervised and unsupervised learning. The hypothesis behind implicit

evaluation is that a good representation will improve the performance of the se-

lected tasks as compared to other baselines. We hence evaluated our problem in

two supervised problems: attribute prediction and success prediction and one un-

supervised problem community detection, where communities were extracted by

clustering of users in the user latent space.

Attribute Prediction. Attribute detection was widely applied in user profiling

to infer latent attributes of users such as age and gender prediction, education and

occupation detection, political party detection (Farseev et al., 2015, Gottipati et

al., 2013). As inferring wellness attributes is a critical step in many downstream

applications like recommendation (Wing and Yang, 2014), we hence proposed to

predict wellness attributes of users using information from social media. We eval-

uated the performance of learning representation in predicting disease type which
5We did not consider the first week of May and the last week of October because the data

was partially crawled.
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is the major wellness attribute of users. To evaluate our approach, we utilized

diabetes dataset with 10-fold cross validation and reported the performance in

terms of precision, recall, and the area under the receiver operating characteristic

curve (AUC). Due to the imbalance nature of the dataset, the latter provides a

good explanation of the effectiveness of the proposed method (Powers, 2011).

Success Prediction. Success prediction is the task of predicting whether a spe-

cific user can successfully maintain his/her health indicators in a suggested range.

For example, a diabetic patient who can successfully control his blood glucose

value in the healthy range would be categorized as a successful patient, otherwise

an unsuccessful patient. Due to its importance in wellness domain (Weber and

Achananuparp, 2015), we evaluated our feature learning framework in predicting

users’ success in managing their diabetes, i.e., maintaining their blood glucose

value in the healthy range. Here, we considered the success prediction as a binary

classification problem and utilized BG dataset to evaluate our problem.

Clustering. We also evaluated our representation learning approach under the

clustering task. Compared to classification, clustering is totally unsupervised and

heavily relies on the learned features and similarity measure. We adopted the

commonly used cosine similarity for clustering of users in the learned latent space.

We compared the performance of different approaches in terms of accuracy and

normalized mutual information (NMI) on diabetes dataset.
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5.6.2 On Performance Comparison

To the best of our knowledge, we are the first to study feature learning of the lon-

gitudinal data in social media. To demonstrate the effectiveness of representation

learning approaches, we compared our learned features with those of other state-

of-the-art unsupervised feature learning methods, while keeping the classification

and clustering scheme fixed. We compared the following baseline methods:

• ALL. All original features are adopted for each user.

• LapScore. Laplacian score evaluates feature importance by its ability to

preserve the local manifold structure of data (He, Cai, and Niyogi, 2005).

• Spec. Features are selected by spectral analysis. This approach can be

considered as an extension of Laplacian score method (Zhao and Liu, 2007).

• NDFS. Nonnegative discriminate unsupervised feature selection via joint

nonnegative spectral analysis and `2,1-norm regularization (Li et al., 2012b).

• Shared Latent Space (SLS). Users are embedded into shared latent space

of Eq.(5.4).

• Personal Latent Space (PLS). Each user’s is represented using personal-

ized latent space learned from Eq.(5.5) which models both temporality and

heterogeneity.

We followed previous research studies to tune the parameters for all baseline

methods (He, Cai, and Niyogi, 2005,Li et al., 2012b). The neighborhood size has
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been fixed to 5 for LapScore and NDFS, as suggested to be the best in (He,

Cai, and Niyogi, 2005,Li et al., 2012b). There are some regularization parameters

for NDFS, and LapScore, which were set based on the experiments from the

original papers. SLS, and PLS have three different regularizer parameters α, λ1,

and λ2. In the experiments, we empirically set α = 0.1, λ1 = 10, and λ2 = 0.4

using grid search and 10-fold cross validation. More details about the effects of

these parameters on the proposed framework will be discussed in Section 5.6.3 and

5.6.4.

We evaluated the predictive performance of the proposed framework in super-

vised setting using attribute prediction and success prediction experiments. From

the learnt feature space, we derived features by averaging the latent features along

the time dimension within a given observation window (25 weeks). The perfor-

mance of attribute prediction and success prediction is presented in Table 5.5 in

terms of precision, recall, and AUC. From the Table, we can observe the following

points: (1) Feature selection is important as well as effective. The selected fea-

tures not only can reduce the computational time of the algorithm (Zhao and Liu,

2007) but more importantly can improve the final prediction performance, where

all the feature learning approaches outperform ALL baseline. (2) LapScore and

Spec have a neck to neck performance with a slight improvement by LapScore

which is consistent with the results reported in past research efforts (Li et al.,

2012b, Zhao and Liu, 2007). (3) NDFS often outperforms both LapScore and

Spec which is attributed to the feature selection process in NDFS. LapScore
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and Spec analyze features individually which may overlook possible correlation

between distinct features, as reported in (Li et al., 2012b), while NDFS consid-

ers feature correlation. (4) SLS and PLS consistently outperform other baseline

methods on both tasks. For example, PLS approximately gained up to 6% and

3% relative improvement in terms of precision in attribute prediction and success

prediction, respectively. The reason is probably that SLS and PLS takes advan-

tages of temporal correlation between feature values to mitigate problems arising

from data sparsity and missing values. However, all baseline methods assume the

i.i.d assumption, which is not valid in the wellness domain (Xu, Sun, and Bi,

2015). Moreover, PLS outperforms SLS most of the time, which shows the im-

portance of modeling heterogeneity in data space, as reported by past efforts (Jin

et al., 2015, Liu et al., 2015). Overall, these observations support the fact that

joint learning features and modeling domain prior knowledge would achieve the

best performance (Liu et al., 2015,Sun, Wang, and Hu, 2015).

We also evaluated our method under unsupervised setting, i.e., clustering. Ta-

ble 5.6 summarizes the result of clustering users in learned latent space in terms

of accuracy and NMI. The results are similar to that for supervised setting, i.e.,

classification. (1) SLS and PLS approaches outperform all the baseline methods

in terms of accuracy and NMI, which demonstrates the importance of modeling

temporal progression of wellness features as well as feature learning. The reason

is probably that vector-based representation cannot capture the context around

each user probably due to excessive sparsity of data, noisy information in social
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Table 5.5: Performance of attribute and success prediction

Disease Type Prediction
All LapScore Spec NDFS SLS PLS

Prec 42.31 44.71 41.50 46.32 53.02 59.34
Recall 42.66 46.11 44.82 43.71 48.21 54.20
AUC 63.05 64.47 62.35 67.33 69.85 72.15

Success Prediction
Prec 62.21 67.34 64.08 68.82 71.33 74.12

Recall 67.45 66.72 64.31 65.01 68.20 68.75
AUC 64.10 61.20 61.40 68.95 72.21 76.80

Table 5.6: Performance of users clustering

All LapScore Spec NDFS SLS PLS
ACC 51.32 56.10 52.84 54.88 56.11 58.01
NMI 0.0224 0.0227 0.0233 0.0240 0.0272 0.0287

media, and inability to model temporal evolution of user. (2) PLS can effectively

improve the performance with relative improvement of 2% over SLS, in terms of

accuracy. This improvement is attributed to the effectiveness of modeling hetero-

geneity of the patient populations, i.e., different sub-populations in patients, which

is modeled in PLS while SLS assumes a homogeneous cohort of patients. Overall,

the proposed method of joint modeling temporality of wellness features and het-

erogeneity of user space can outperform other baselines and achieve the state of

the art performance. This result is consistent with several past research in multi-

feature machine learning where dirty models are used to model heterogeneity in

samples (Liu et al., 2015,Sun, Wang, and Hu, 2015).
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5.6.3 On the Effect of Temporal Information

We are now interested in figuring out the effectiveness of different components

in our proposed model. In particular, we compared the performance of incorpo-

rating temporal smoothness of wellness features in our model. i.e., Rtemporal. We

hence conducted experiments to comparatively validate the following experimental

settings:

• PLS. Our proposed framework which models both heterogeneity and tem-

porality, i.e., Eq.(5.5).

• SLS. Our proposed framework which models temporality with homogenous

assumption, i.e., Eq.(5.4).

• PLS-noTP. We did not consider the temporal smoothness in PLS by set-

ting α = 0.

• SLS-noTP. We did not consider the temporal smoothness in SLS by setting

α = 0.

We only reported the results for the success prediction task since similar ob-

servations have been made for the other tasks. The results of component-wise

analysis are reported in Table 5.7. From the table, the following observations

can be made: (1) SLS-noTP achieves the worst results. This can be explained

by the fact that SLS-noTP neither models the temporal smoothness in wellness

features, nor considers the heterogeneity in the patient population. These results
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Table 5.7: Effectiveness evaluation of each involved component in our proposed models.

Precision Recall P-value
PLS 74.12 68.75 -
SLS 71.33 68.20 3.1e-3

PLS-noTP 64.02 58.91 1.7e-3
SLS-noTP 62.37 56.09 2.4e-4

imply the importance of joint modeling the temporality of wellness features and

heterogeneity of the patient population. (2) SLS and PLS consistently outper-

form their counterparts SLS-noTP and PLS-noTP, which significantly supports

the importance of modeling temporality of wellness features. This result has also

been reported in modeling disease progression based on patient’s EHR (Xu, Sun,

and Bi, 2015, Zhou et al., 2006). (3) PLS is superior to others; demonstrating

that all components in our proposed model is indispensable.

It is worth noting that we also conducted a significance test based on the pre-

cision of success perdition task. In particular, we performed paired t-test between

our PLS model and other baseline methods based on 10-fold cross validation and

the results shows that the improvements of our proposed model are statistically

significant (p-values are smaller than 0.05).

5.6.4 On Parameter Sensitivity

We also studied the parameter sensitivity of our proposed method. Our model

holds two sets of parameters: (1) the latent space dimension, i.e., k; and (2)

the regularizers α, λ1, and λ2 in Eq.(5.5). We first evaluated the sensitivity of

the proposed approach to the dimension of the latent space and then examined
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Figure 5.3: Effect of latent space dimension. Small values of latent dimension result into
limited discrimination power, and large values yield overfitting.

the effects of other parameters in combination with latent space to see how the

parameters affect the learned latent space. We only performed parameter study

for clustering task to save space.

We first vary dimension of the latent space k in the range of {50, 100, 150, . . . , 500}

while fixing the other parameters, i.e., α, λ1, and λ2. Figure 5.3 illustrates the

clustering performance in terms of accuracy and NMI. The clustering performance

is the best when the number of latent dimensions is around 200. The results show
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that when the number of latent dimensions is too small, the model is unable to

find a good representation. In contrast, a large latent dimension tends to overfit

and results in loss of performance. It is worth noting that how to determine the

number of features is still an open problem in data mining (Li et al., 2012b).

To assess the effect of parameter λ1 which controls the complexity of the model,

we varied λ1 as {0.001, 0.01, . . . , 100} while fixing λ2, and α. Figure 5.4a demon-

strates the sensitivity of our framework with respect to various λ1, and k values.

With the increase of λ1, the clustering performance rises rapidly and then keeps

stable between the range of 1 to 10. A high value of λ1 controls the effects of

noise; making the model more robust. The results also demonstrates that the

performance is more sensitive to the number of latent dimensions than λ1.

We studied the effect of parameter λ2 which controls the personalization as-

pects of feature learning; making the model more robust in heterogeneous data.

Similarly, we changed λ2 in the range of {0.001, 0.01, . . . , 100} while making other

parameters fixed. The results are shown in Figure 5.4b. It can be seen that the

performance of our model significantly improved when λ2 varies between 0.1 and 1,

verifying that modeling heterogeneity in the patient population is vital in wellness

domain.

We finally investigated the trade-off between temporal smoothness of well-

ness features and latent space dimension by varying α in {0.001, 0.01, . . . , 100} as

presented in Figure 5.4c. As shown in the Figure, in most cases, the clustering

performance first increases, reaches its peak and then gradually decreases. The
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Figure 5.4: The effect of different regularizers on final latent features. Overall, latent
dimension is an important factor in learning good representation. Besides, finding the best
values for hyperparameters results into learning an effective latent space.
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best performance was achieved when α is around 0.1. These observations suggest

the importance of modeling both temporal smoothness of wellness features as well

as feature learning.

5.7 Related Work

Representation learning, also called latent feature learning, has been widely used

as an effective tool for many machine learning and data mining tasks to derive

an effective latent space from original data (Jin et al., 2015, Weston, Weiss, and

Yee, 2013,Zhao, McAuley, and King, 2014,Zhao, McAuley, and King, 2015). The

key idea of representation learning is to seek a low-dimensional embedding of data

instances while preserving different discriminative factors of variation behind the

data. Recently, factorization based methods have been attracting a lot of inter-

ests in modeling user behaviors and interests due to its ability to alleviate data

sparsity (He et al., 2014b, Jin et al., 2015, Zhao, McAuley, and King, 2014, Zhao,

McAuley, and King, 2015). For example, MaxMF (Weston, Weiss, and Yee, 2013)

was developed to represent each user with a set of latent factors representing

his/her different latent interests. Zhao et al. (Zhao, McAuley, and King, 2014) in-

corporated social connections into latent space to improve the performance of rec-

ommendation. Seen from the personalization aspect, Zhao et al. (Zhao, McAuley,

and King, 2015) proposed a personalized feature projection method that employs

users’ projection matrices and items’ factors to solve one-class recommendation

problem.
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While various techniques have been proposed for learning representation in

machine learning and data mining, most of the existing approaches for latent factor

learning have been designed for vector-based representation to embed users (or

items) in a low dimensional space. They will fail to provide effective representation

if applied to longitudinal wellness data. Furthermore, existing feature learning

assumes that data items are i.i.d., which is clearly violated in longitudinal data.

Moreover, most of these approaches fail to model heterogeneity in data space or

model temporal dependency as a regularized multi-task learning framework but

overlook heterogeneity in data space. Our aim is to learn a latent representation

directly from longitudinal data where temporality and heterogeneity of data are

jointly modeled.

In the area of data-driven health care, phenotyping has been applied to Elec-

tronic Health Records (EHRs) to predict the onset of congestive heart failure

(CHF) and end stage renal disease (ESRD) by learning a general model (Zhou

et al., 2014). Our framework, however, is different from their approach since we

simultaneously model the shared latent space between homogenous populations to

transfer knowledge among homogenous population as well as learn personalized la-

tent space for each user to learn individual-based features. Their framework either

considers a shared space or an individual latent space, which can be considered as

a special case of our formulation, i.e., SLS. Similarly, Wang et al. (Wang, Zhou,

and Hu, 2014) proposed a clustering-based approach to model the heterogeneity

in the patient population, where the shared latent space is learnt for each group
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of users. It is worth noting that multi-task learning paradigm was also used for

investigating EHRs, where they mostly assume the task are homogenous and learn

task models simultaneously (Nori et al., 2015,Zhou et al., 2006).

5.8 Summary

In this chapter, we introduced a novel representation learning approach for longitu-

dinal wellness data. The proposed method jointly models the temporal progression

of wellness attributes as well as the heterogeneity in the patient populations. In

particular, we factorized user’s longitudinal data into two components, namely, the

latent space representation and user temporal evolution in the space. The latent

space is comprised of two sub-spaces: shared latent space and personalized latent

space, which permits to exploit both consistency within homogenous cohorts as

well as difference amongst heterogeneous cohorts to share an effective represen-

tation. Extensive experiments on two real-world datasets and different learning

tasks in wellness domain verified the potential ability of the proposed framework

in learning a good user embedding.
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Discovering and Profiling User Groups and

Communities

Social media has been integrated into our life as an inevitable tool for seeking, shar-

ing, and spreading information, opinions, and experiences. The abundance and

growing usage of social media along with its ubiquity have significantly changed

our information sharing and socialization behaviours. One fundamental task in

such network data is to detect salient communities among individuals, aiming at

understanding collaborative behaviour of users as well as investigating individu-

als’ behaviour in the context of the group1. Hence, discovering user communities,

which is the task of finding tightly connected and highly similar user groups,

has attracted much attention in recent years. While a large body of work has

been devoted to user profiling in social media, little has explored profiling user

groups in order to understand the formation of groups as well as construct bet-
1In this text, we use community and group, interchangeably.
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ter user groups (Harvey, Crestani, and Carman, 2013,Majumder and Shrivastava,

2013,Shin et al., 2015).

6.1 Motivation and Challenges

Group profiling can provide valuable insights about the group and users’ behav-

iors which is important to many social media services. First, group profiling can

help understand collective behavior of users and the rationale of group formation.

In other words, it explains why individuals join the community. Second, learning

the group profile enables us to complete individual’s profile in the context of their

group affiliations. This is important for handling sparsity and noise of user-level

information in social platforms (Li et al., 2015). Besides, understanding social

structure underlying users’ interactions provides a macro-level understanding of

network, compared to micro-level user information, facilitating several applications

such as visualization and navigation of networks (Namata et al., 2007), tracking

interest shifts of communities (Zhou, Jin, and Liu, 2012), and online market-

ing (Wang, Guo, and Lan, 2014, Zhao, McAuley, and King, 2015), just to name

a few. For instance, recommender system can provide better recommendation by

exploiting aggregated interest of the group’s members. Further, it facilitates vi-

sualization and navigation of large scale networks through coarse and fine grain

profiling of communities and sub-communities.

Retrospective studies in social media and data mining have proposed useful

approaches for discovering social communities from network and user informa-
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tion. For example, modularity decomposition has been applied to link informa-

tion in social networks (Newman, 2006, Ruan, Fuhry, and Parthasarathy, 2013),

and communication pattern has been used for expert team detection (Lappas,

Liu, and Terzi, 2009), and generative models were used to find topical commu-

nities(Zhou, Jin, and Liu, 2012). While a large body of work has been devoted

into community detection, yet many challenges remain to be addressed. First,

many existing techniques utilize either network information or content analysis

to discover communities (Leskovec, Lang, and Mahoney, 2010, Newman, 2006).

However, neither information alone is satisfactory for accurate community affil-

iation estimation (Yang et al., 2014b). It is attributed to the extremely sparse

link information and noisy contents in social platforms, which may significantly

drift community discovery process and result in poor performance (Yang et al.,

2009). Second, people can perform a wide range of activities in social networks

ranging from publishing a post to following their friends to directly communi-

cating through replies. Although exploiting these heterogenous behaviours are

essential for discovering good communities, how to integrate them in a unified

model is a challenge (Yang et al., 2014b). Third, in many real-word scenarios,

some prior knowledge about the community affiliation of users might be available.

Take the wellness domain as an example; label information about patients’ disease

type provide clear evidences about the community affiliation of users, i.e., users

with same disease type (e.g., diabetes type I, Type II, etc) belong to the same

community. Further, discovering communities without the prior knowledge might
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Figure 6.1: The conceptual view of the proposed framework for joint profiling of users
and communities in social networks. The framework integrates different social views into
a latent space in which we learn the profile of users, W, and their community affiliations,
H. Prior knowledge is incorporated into the discovery process by imposing constraints on
the affiliation vectors of the users.

result to ill-posed communities which are not interpretable in real-world scenarios.

However, how to incorporate the domain knowledge in the learning and discovery

process is a popular and still an open problem. Last but not least, most existing

community detection techniques fail to provide any rationale and insight about

the formation of the community as well as the collective behavior of the members.

How to derive a community profile from its member data pose a great challenge.

6.2 Overview

To tackle these challenges, in this chapter, we propose a learning framework which

simultaneously learns the profile of users and communities in social networks, per-

mitting to tackle the challenges mentioned in Section 6.1. As shown in Figure 6.1,

in contrast to conventional models, the proposed framework performs community

discovery in the latent space, which considers the similarity of users’ profiles. In

particular, we first exploit different social behaviors of users into various social
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views. To effectively handle the sparsity and noise in social media data, we in-

tegrate different social views of the network into a low-dimensional latent space

representing users’ profiles. Next, the optimal community structure is learnt by

imposing a similarity constraint over the affiliation vector of users, which seeks

dense clusters of users in the latent space. We seamlessly incorporate prior knowl-

edge about the community structure into the community discovery process and

turn the process into an optimization problem, where community profile is con-

structed using a linear pooling operator integrating the profiles of the members.

Taking the wellness domain as an example, we constructed a large scale real-world

dataset of twitter users who post about diabetes and its associated concepts such

as medication use, symptoms, etc. Extensive experiments on the dataset have

demonstrated the effectiveness of the proposed approach on discovery and pro-

filing communities as well as leveraged several interesting insights about users’

interactions in social media.

The main contributions of this study are as follows,

• To mitigate problems arising from noise and sparsity of data, we seamlessly

integrate various social behaviors of users into a unified latent space. Specif-

ically we propose an approach to learn the profile of users and communities

from the combination of all social behaviors of users in the social network.

• To learn the optimal embedding of users and their community affiliation, we

propose to simultaneously learn the embedding and community affiliation

of the users through a semi-supervised approach which is guided by prior
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knowledge.

• To learn the community profile, we propose to pool the members’ profiles

through a simple linear computation which scales well.

6.3 Problem Formulation

The problem we study in this paper is different from traditional community de-

tection approaches since the later normally discovers communities in the feature

space by considering either the topology of the network or the contents published

by the users. We instead discover communities in a latent space which is con-

structed from the fusion of different social views in the network. Further, we

simultaneously learn user’s embedding and community structure, which allows us

to directly compare users and groups in the latent space. In this section, we first

present the notations and then formally define the problem of joint profiling of

users and community in a social networks.

Let U = {u1, u2, . . . , un} denote a set of n different users in a social network,

who can performm different behaviors B = {b1, b2, . . . , bm}. We construct different

social views V = {V1,V2, . . . ,Vm} based on these behaviours, where the i-th

social view, i.e. Vi, represents users based on the i-th social behaviour, bi. In

particular, we construct m social view matrices Vi ∈ Rn×fi , where n, and fi

denote the total number of users and the number of features in the i-th social view,

respectively. In general fi can be any low-level (e.g. words, users) or high-level (e.g.
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hashtags, entities) feature. Further, prior knowledge about community structure

is available in the form of positive and negative observation pairs O = {O+,O−},

where any pair (ui, uj) ∈ O+ shows that two users ui and uj belong to the same

community and (ui, uj) ∈ O− indicates that they belong to different communities.

Knowing that these users form k different communities, we aim at harvesting their

online data to co-profile users and communities as well as estimate the affiliation

of users to the discovered communities.

With the above notations, the problem of joint user and community profiling

can be formally defined as:

Joint User and Community Profiling: Given a set of n users on social

media, their representation in m different social views V, and prior knowledge O

about community structure, we aim to learn a model as follows,

f : {U ,V ,O} → {W,G,H}, (6.1)

which can compute users’ latent profiles W ∈ Rn×l, communities’ latent profiles

G ∈ Rk×l, and the optimal community affiliation matrix H ∈ Rn×k such that

H(ij) = 1 demonstrates the membership of user ui to community j, otherwise

H(ij) = 0. W denotes the user profile matrix and G denotes the community

profile matrix, where W(i∗), and G(j∗) represent the latent profile of the i-th user

and the j-th community, respectively.

In the rest of this chapter, we introduce an optimization framework which
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can jointly learn the profile of users, the optimal community structure, and the

profile of communities. We then evaluate the performance of the proposed method

through extensive experiments.

6.4 Dataset Description and Representation

In this Section, we first describe dataset construction and ground-truth labeling

and next explain how to extract different social views, where each of them repre-

sents the users based on one social behavior.

6.4.1 Dataset Description

As previously mentioned, people often utilize social media services for seeking

and sharing wellness information. Naturally, they follow and participate on on-

line support groups like “diabeteslife”, “diabetesconnect” to discuss about specific

wellness topics. Most popular support groups hold an account in Twitter to pub-

lish online content and inteact with their members. Thus we utilized these support

groups and their participants for evaluation. To construct the dataset, we first

gathered a set of users who followed these diabetes support groups in Twitter.

These users have already expressed their interest in joining the community and

discussing on diabetes and its related challenges. Table 6.1 shows the list of seed

support groups that have been used for selecting diabetes users. We then crawled

the twitter profile of these users in November 2015. We removed all the users who

have not published any short messages in the last month to filter out those who
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Table 6.1: The list of seed support group in Twitter which were used for collecting twitter
user pool.

Support group # users Support group # users
@AmDiabetesAssn 1245 @WDD 1120
@DiabeticConnect 1240 @DiabetesUK 940

@diabetesdaily 1210 @NDEP 425
@DiabetesMine 1185 @citiesdiabetes 300

@DiabetesHealth 1145 @diabeteshf 1270

Table 6.2: Summary of different defined social views.

ID Social aspect Definition Relation: Description

1
Network

ui
follow−−−−−→ uj Following: ui follows uj

2 ui
folllow−−−−−→ u

follow←−−−−− uj Co-Following: ui, and uj follow the same user u
3 u

follow−−−−−→ ui, and u
follow−−−−−→ uj

Co-Followed: ui, and uj are followed by the same user u

4 Interaction ui
reply−−−−→ uj Reply: ui replied a tweet from uj

5 ui
retweet−−−−−→ uj Retweet: ui re-posted uj tweet

6 Content ui
post−−−→ wj Content: ui’s posts containing wj word

7 Semantic ui
used−−−→ hj Semantic: ui used hj hashtag

were inactive and failed to participate in the community. This process resulted

into 10085 total number of users which we used for the evaluation. We crawled all

online behaviours of these users including their tweets, retweets, and reply posts

along with their social network to construct the dataset2.

6.4.2 Data Representation

Users in social media can perform various activities such as content publishing

(e.g., post a tweet), network construction (e.g., following a friend), and direct

communication (e.g., reply3 a post). Each of these activities represents the users

from different aspects or social views, which together can completely reveal users’

behaviours and interest. We propose to build different social views based on
2We used Twitter search API and only crawled the latest 3200 tweets for each user due to

the twitter API limitation.
3In Twitter, a user can reply a post by clicking on the reply icon appear on each tweet.
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different social behaviors of the users to comprehensively represent each user. We

hence defined six social views which belong to four main categories representing

users from different aspects of: network, interaction, content, and semantic. Table

6.2 shows different social views of users and we describe how to construct these

views in the following sub-sections.

Network-centric Views

In social media research, it is widely accepted that interests and affiliations of

users are correlated with that of their social connections and friends, referring as

homophily and contagious theory(Shalizi and Thomas, 2011). We hence utilize the

network connections between users to represent the social context around them.

We quantitatively capture these kind of connections by three types of relations

namely “Following”, “Co-following” and “Co-followed”, as shown in Table 6.2.

Inspired by (Hu et al., 2013), we utilize the social connection of the users as social

features and construct a user-user matrix for each type of relation. To capture the

following relation, we intuitively define V1 as,

V1(ij) =


1 if ui follows uj.

0 otherwise.

, (6.2)

where V1(ij) shows the following relationship amongst users. Similarly, we define

two matrices for co-following and co-followed views as the number of shared friends

and the number of users who follow both ui and uj, respectively. It is worth noting
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that the two matrices are normalized by dividing each element by the largest

element in the matrix. For example, the co-following matrix is normalized by,

V2(ij) = V2(ij)

maxi,j V2(ij)
(6.3)

As a result, we have generated three views which capture different aspects of

connections between users.

Interaction-centric Views

In addition to sharing posts and contents, users in social networks can interact

with each other in many different forms such as reply each others statuses, and re-

tweeting messages. Interaction in social networks is another important aspect of

social communities (Zhao et al., 2015). Retrospective studies have demonstrated

that these interactions, while too sparse, provide stronger evidences of similar

interest and affiliations (Yang et al., 2014b). We hence define two different inter-

action views: reply and re-tweets. For each pair of users, we compute the average

number of such interactions as their interaction strength. More specifically, the

reply interaction matrix can be computed as follows,

V4(ij) = 1
2{|ri→j|+ |rj→i|}, (6.4)

where |ri→j| shows the total number of replies from the i-th user to the j-th user.

Note that we compute the interactions in two directions since any direction shows
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an evidence of connection. In this way, we construct two distinct views V4, and

V5 from interaction of users and normalize them as we do with network-centric

views.

Content-centric Views

From the content perspective, we represent each user with the widely-used bag-

of-words model, where each user is represented by a vector in the vector space

model. To do so, we extract all the words from twitter messages and construct a

user-word matrix, i.e., V6, where its i-th row V6(i∗) denotes the i-th user’s vector

which is constructed by Tf-Idf model. As textual features are known to be noisy

and the feature space is large, we remove common stop words and only retain

words which has been used more than two times to improve the quality of the

extracted features, as suggested by several studies (Li et al., 2015,Tang and Liu,

2012,Yang et al., 2014b)

Semantic Views

Tags are known as user-defined keywords demonstrating the underlying topics and

semantic concepts exist in the text (Lu, Chen, and Park, 2009). As such, many

existing studies have utilized the tags occurred in the text as a semantic feature

and description (Lu, Chen, and Park, 2009, Wu et al., 2009). Inspired by these

research efforts, we consider hashtags as instances of semantic concepts of the text,

which demonstrate the user’s interest. We thus construct a user-hashtag matrix,
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i.e., V7 in which each row V7(i∗) represents a vector of hashtags used by the i-th

user in status messages.

6.5 Multi-View Profile Learning

In this section, we first introduce an approach to integrate different social be-

haviours of the users into a unified latent space for user profiling ( Section 6.5.1

and Section 6.5.2), and then illustrate how to discover communities (Section 6.5.3)

and guide community discovery process with prior knowledge (Section 6.5.4). We

finally introduce a pooling approach for constructing community profile from its

members (Section 6.5.5).

6.5.1 Preliminaries

Prior studies have shown that social media features can be projected to a latent

space with a lower dimensionality, resulting in a dense representation of the orig-

inal features (Li et al., 2015, Song et al., 2015a). This factorization process is

capable of reconstructing the observed entries of original matrix with an effective

approximation, i.e., user-item matrix in recommender systems. Inspired by these

research findings, we utilize nonnegative matrix factorization (NMF) to decompose

users’ information into two low rank matrices which are capable of approximately

reconstructing the observed matrix. Assume that V ∈ Rn×f represents the data

matrix of non-negative elements, the aim of factorization is to decompose V into

two non-negative matrices W ∈ Rn×l and S ∈ Rf×l, whose product provide a

147



CHAPTER 6. DISCOVERING AND PROFILING USER GROUPS AND
COMMUNITIES

good approximation of V, i.e., V ≈WST . Note that l � f is the a pre-specified

parameter denoting the dimension of the latent space. Formally, NMF aims at

minimizing the following objective function,

min
W,S
‖V−WST‖2

F s.t. W ≥ 0,S ≥ 0, (6.5)

where W is called the latent representation of users and S is the latent repre-

sentation of features in the low-dimensional latent space. Both W and S are

non-negative matrices to be learned.

6.5.2 Multi-View Profile Learning

In typical user profiling techniques, users are embedded in a low-dimensional space

representing the latent profile of the users, i.e., W. As we have multiple social

views corresponding to distinct social behaviors of the user, it is feasible to con-

struct the user profile based on each behavior. More specifically, given m distinct

views denoted as V1,V2, . . . ,Vm, each view can be factorized as Vi ≈ WiSTi ,

where Wi ∈ Rn×l and Si ∈ Rfi×l, where fi denotes the number of features in the

i-th social view.

The hypothesis behind multi-view user profiling is that the latent embedding

of users from different views should be consistent to each other. Mathematically,
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it can formally be stated as the following objective function,

Juser =
m∑
i=1

λi‖Vi −WSTi ‖2
F , s.t. W ≥ 0,Si ≥ 0, (6.6)

where W is the extracted embedding of users from the fusion of different social

views, Si is the embedding of features from the i-th social view, m is the number

of extracted views, and λi is a weight parameter which modulates the effect of the

i-th view.

6.5.3 Community Discovery

Recently Yang et. al (Yang et al., 2015) demonstrated that existing community

detection algorithms, such as spectral clustering, and modularity, can be inter-

preted as a clustering of network’s nodes in a latent space, where the members

of each community form a distinct cluster. Further, similar reserach efforts have

demonstrated that each latent dimension in the user profile represents a certain

aspect of user interest or behavior. These two observations enlighten us to cluster

users in the latent space instead of nodes in the network structure.

Upon the above discussion, we assume that the users form k � n communities,

and the j-th cluster is defined as Ij = {i | i ∈ community j}. We capture the

optimal community structure of users by minimizing the sum of square differences

between profiles of users in each community, where differences are computed in the

latent space, analogous to major clustering techniques such as K-means and spec-
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tral clustering. Let W̄(j∗) = 1
nj

∑
i∈Ij

W(i∗) denote the mean of the j-th cluster,

and nj denotes the number of users in the j-th community. Hence, the opti-

mal community structure can be discovered by minimizing the following objective

function (Jain, 2010),

min
I
Jcom =

k∑
j=1

∑
i∈Ij

‖W(i∗) − W̄(j∗)‖2
2, (6.7)

where W(i∗) is the latent representation of the i-th user, and Eq. (6.7) tends to

discover user groups with the highest intra-similarities. Similar to (Zha et al.,

2001), Eq. (6.7) can be rewritten as follows,

Jcom = tr(WWT )− tr(HTWWTH) s.t. HTH = I, (6.8)

where H is the cluster indicator matrix and Hij = 1√
nj

if the i-th user is a member

of j-th cluster, otherwise 0. If we ignore the special structure on H and only

keep the orthogonality requirement, the relaxed minimization problem can be

mathematically formulated as follows,

min
W,H:HT H=I

Jcom = tr(WWT )− tr(HTWWTH), (6.9)

where H ∈ Rn×k demonstrates the affiliation matrix of users so that its ij-th entry,

i.e., H(ij), represents the membership of the i-th user to the j-th community.
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6.5.4 Incorporation of Prior Knowledge

It is well-known that the performance of community detection algorithms is lim-

ited in situations with excessive noise and missing data (Leskovec, Lang, and

Mahoney, 2010). Further, in many real cases, users may have partial prior knowl-

edge or specific community of interest in mind. This prior knowledge can be

effectively utilized to boost the performance of community discovery. Although

different type of domain knowledge may be available, we focus on pairwise priors

since alternative structures (e.g., tree, graph) can simply be converted to pairwise

constraints (Wang, Qian, and Davidson, 2012). In previous section, we trans-

formed the community detection into a clustering process in the latent space. In

this section, we propose an approach to incorporate domain knowledge into the

community discovery process.

Generally, positive and negative pairwise priors are two common type of prior

knowledge about community structure. A positive pair (ui, uj) attests that the

two users should have similar community affiliations, while a negative prior de-

clares different communities. Intuitively, we transfer prior knowledge into the

latent space by imposing constraints in affiliation vectors of the users. Specifi-

cally, we assume that the affiliation vector of positive pairs are close to each other

while the negative pairs are far from each other. Thus these constraints can be

mathematically formulated as minimizing the following objective function,
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Jprior =
∑

(ui,uj)∈O+

‖H(i∗) −H(j∗)‖22 −
∑

(ui,uj)∈O−

‖H(i∗) −H(j∗)‖22

=
n∑
i=1

n∑
j=1

Zij‖H(i∗) −H(j∗)‖22, (6.10)

where Z ∈ Rn×n is the pairwise prior matrix and is precalculated by the following

definition,

Zij =



+1, (ui, uj) ∈ Ω+,

−1, (ui, uj) ∈ Ω−,

0 no prior is available.

(6.11)

We can rewrite the Eq. (6.10) as follows,

Jprior = tr(HT (D− Z)H) = tr(HTLH) (6.12)

where L = D − Z is the Laplacian matrix (Joachims and others, 2003), and

D ∈ Rn×n is a diagonal matrix with D(ii) = ∑n
j=1 Z(ij).

6.5.5 Community Profiling

The ultimate goal of community profiling is to seek attributes and features which

are held by the majority of the group. Thus, we estimate the profile of a community

by aggregating of its member profiles, which boils down to the following pooling
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operation,

Gj∗ =
n∑
i=1

Wi∗Hij, (6.13)

where Gj∗ ∈ R1×l is the latent profile of the j-th community. Indeed, by finding

the affiliation matrix of users, computing the group profile in the latent space is

a straightforward and a linear operation. This is an interesting property which

enables us to directly compare users and communities in the latent space, assisting

us in solving the “cold-start” problem for new incoming users and those with sparse

information.

6.6 Unified Framework

In our unified framework, we fuse the aforementioned collective behavior co-

factorization, user clustering in the latent space, and domain knowledge, which

can be formalized as the following minimization problem:

min
W,Si,H

J =
m∑
i=1

λi‖Vi −WSTi ‖2F + α
(
tr(WWT )− tr(HTWWTH)

)

+ βtr(HTLH) s.t. W ≥ 0,Si ≥ 0,H ≥ 0 (6.14)

where α, and β are regularizer parameters to control the tradeoff between different

components.
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6.6.1 Alternating Optimization

The objective function defined in Eq. (6.14) is not convex with respect to the three

variables W, Si, and H, simultaneously. Hence, there is no closed-form solution

for the problem. We adopt alternating optimization approach to find the optimal

values for the model parameters. In particular, we alternatively optimize one

variable while keeping the others fixed. To enforce the non-negativity constraints,

we need to incorporate Lagrangian multipliers. Let ∆w, ∆si, and ∆h, be the

lagrange matrices for constraints W ≥ 0, Si ≥ 0, and H ≥ 0, respectively, we

rewrite the Lagrange J as,

min
W,S,H

J =
m∑
i=1

λi‖Vi −WSTi ‖2F + α
(
tr(WWT )− tr(HTWWTH)

)

+ βtr(HTLH) + tr(∆wW) +
m∑
i=1

tr(∆siSi) + tr(∆hH). (6.15)

We first optimize W while keeping Si, and H fixed. Taking the derivative with

respect to W, we have,

∂J
∂W =

m∑
i=1

2λi[WSTi Si −ViSi] + 2αW− 2HHTW + ∆w. (6.16)

Using the Karuch-Kuhn-Tucker (KKT) complementary condition, we have the
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following update rule for W,

W←W�
∑m
i=1 λiViSi∑m

i=1(λiWSTi Si)−HHTW + αW
(6.17)

Similarly, we can obtain the derivation and update rule for Si as follows,

∂J
∂Si

= −2λiVT
i W + 2λiSiWTW + ∆si (6.18)

Si ← Si �
λiVT

i W
λiSiWTW

(6.19)

Finally, we can rewrite the cost function as follow,

J = αtr(HTWWTH) + βtr(HTLH) + C

= αtr
(
HT (WWT − ξL)H

)
+ C (6.20)

where C is constant with respect to H, and ξ = β
α

. With the following Ky

Fan theorem, we know that the optimal solution of Eq. (6.20) would be H∗ =

[h1,h2, . . . ,hk], where h1,h2, . . . ,hk are the eigenvectors of matrix WWT − ξL.

Theorem 6.1. (Ky Fan) (Zha et al., 2001). Let Q ∈ Rd×d be a symmetric matrix

with eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λd (6.21)
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and the corresponding eigenvectors U = [u1,u2, . . . ,ud]. Then

λ1 + λ2 + . . .+ λd = max
XT X=Ik

tr(XTQX). (6.22)

Moreover, the optimal X∗ = [u1,u2, . . . ,ud] subject to orthonormal transforma-

tion.

6.7 Experiments

6.7.1 Evaluation Metrics

Several metrics have been proposed in previous studies to evaluate the quality of

communities. The evaluation metrics can be divided in two categories: quality

metrics and consensus metrics. We evaluated the quality of the extracted commu-

nities from both aspects.

For quality metrics, we utilized two widely-used metrics named Davies-Bouldin

index(dbi), and silhouette (sil). The dbi metric computes the ratio of the within

cluster scatter to the between cluster separation, and hence a lower value means

better clustering result. Let ci be the center of the i-th cluster, and d(ci, cj) denotes

the distance between centroid ci and cj, and σi is the average distance between all

members of the i-th cluster and ci. Then dbi metric is computed as follows,

dbi(C) = 1
k

k∑
i=1

max
i 6=j

( σi + σj
d(ci, cj)

). (6.23)
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The sil score, however, indicates the degree of similarity of a member to its own

community compared to other communities, where higher value indicates better

clustering and it is defined as,

sil(C) = 1
k

k∑
i=1

( 1
|Ci|

∑
i∈Ci

b(i)− a(i)
max{a(i), b(i)}

)
, (6.24)

where

a(i) = 1
|Ci| − 1

∑
j∈Ci,i 6=j

d(i, j), b(i) = min
j,j 6=i

1
|Cj |

∑
j∈Cj

d(i, j). (6.25)

While quality metrics measure the performance based on the data itself, con-

sensus metrics evaluate the performance of community detection based on external

information that was not used in the clustering such as the known class labels and

an alternative gold clustering. For consensus metrics, we utilized normalized mu-

tual information (nmi), and variation of information (vi). In information theory,

the vi metric computes the amount of information we obtain when going from one

clustering to the other clustering, and it is formally defined as,

vi(C, C ′) = H(C) +H(C ′)− 2MI(C, C ′), (6.26)

where H(C) denotes the entropy of a clustering C, and MI(C, C ′) denotes mutual

information between C and C ′. Intuitively, a lower value of vi represents better
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clustering. Similarly, nmi is computed as,

nmi(C, C ′) = MI(C, C ′)√
H(C)H(C ′)

, (6.27)

where a higher value indicates better clustering.

6.7.2 On Model Performance Comparison

To demonstrate the effectiveness of our approach, we compared our community

detection method with the following state-of-the-art methods,

K-Means: K-Means is a traditional clustering method which is widely used for

discovering communities in social networks based on users’ social connec-

tions (Qi, Aggarwal, and Huang, 2012).

N-Cut: N-Cut is the clustering method based on normalized cut proposed in

(Shi and Malik, 2000) which detects communities based on the network

structure between users.

Pair-Spec: Pair-Spec extends the well-known spectral clustering method into

multi-view setting by co-regularizing the clustering hypothesis across views (Ku-

mar, Rai, and Daume, 2011).

SI: Zhou et. al (Zhou and Liu, 2013, Zhang and Yu, 2015) recently proposed a

method for community detection based on social influence. SI propagates

heterogenous information across views to calculate the co-influence of users
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Table 6.3: Community detection results for different approaches in terms of quality metrics
(first two rows) and consensus metrics(last two rows).

Methods dbi sil vi nmi
K-Means 0.912 -0.340 5.941 0.120

N-Cut 0.860 -0.387 6.221 0.115
Pair-Spec 0.855 -0.342 4.341 0.146

SI 0.824 -0.219 5.347 0.123
MCD 0.790 -0.118 4.191 0.147
Latent 0.782 -0.022 2.875 0.175

based on the social graph and its associated activity graphs.

MCD: Mutual clustering discovery (MCD) is proposed to detect communities

of users across multiple networks based on a meta-path similarity measure.

We changed the method proposed in (Yu and Zhang, 2015) to compute the

communities from multiple views of the social network.

Latent: Latent is our proposed community discovery approach, i.e., Eq. (6.14),

where communities are discovered in the latent space. As these baseline

cannot utilize prior knowledge, to have a fair evaluation, we did not use

prior information in this section (set β = 0).

Table 6.3 shows the clustering results of different methods in terms of the

introduced metrics in Section 6.7.1. From the table, the following points can be

observed. In terms of community quality: (1) Latent achieves the lowest dbi and

the highest sil amongst all the community discovery approaches, demonstrating

that our model is able to detect highly dense clusters in the latent space with

proper discrimination between distinct communities. (2) K-Means and N-Cut

achieve neck to neck performance with a slight improvement by N-Cut, which is
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consistent with previous studies (Yu and Zhang, 2015). This is due to the fact that

N-Cut is intrinsically defined to partition the graph into dense subgraphs. (3)

Pair-Spec obtains better result than N-Cut verifying the importance of other

information sources in the community discovery process. Similar findings have also

been reported in retrospective research efforts (Kumar, Rai, and Daume, 2011).

SI and MCD outperform their counterparts with MCD has better performance

in both metrics, which is attributed to the information fusion techniques in the two

approaches. SI analyzes each of the views separately and transforms information

from one to the other, which may fail to capture the correlation between the views.

MCD, on the other hand, models the heterogenous information in multiple views

using meta-paths by considering all possible correlations between the views, as

reported by (Yu and Zhang, 2015).

Similar results can be observed from consensus metrics under the evaluation of

vi and nmi metrics. For example, K-Means, and N-Cut have the lowest nmi,

emphasizing that the network-information fails to find the underlying community

structure on social networks due to its sparsity (Leskovec, Lang, and Mahoney,

2010, Yang et al., 2009). Further, Pair-Spec, SI, and MCD achieve better per-

formance by utilizing other side information. Last but not least, Latent model

achieves lower vi and higher nmi, which shows the ability of the proposed model

in discovering dissimilar communities.
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Figure 6.2: The Effect of incorporation of prior knowledge in community extraction, which
clearly indicate a positive correlation between amount of prior knowledge and the perfor-
mance of community discovery. Further, positive constraints contribute more in perfor-
mance rather than negative priors.
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6.7.3 On Incorporation of Prior Knowledge

In this section, we conducted experiments to evaluate the performance of the

framework in utilizing prior information in the community discovery process. As

the amount of prior information is an important factor in semi-supervised learn-

ing (Ver Steeg, Galstyan, and Allahverdyan, 2011,Zhang, Sun, and Wang, 2013),

we randomly sampled a set of users to construct the positive and negative pairs of

prior information. To construct prior constraints, we randomly selected two users.

If these two users belong to the same community, they form a positive pair, other-

wise a negative pair. The community label of each user was inferred based on the

ground-truth labels extracted from the social network (Section 6.4). The number

of communities was set to the ground-truth’s community number, i.e. k = 10,

where other parameters were set to their best value based on the parameter study

(See Section 6.7.4).

Figure 6.2 demonstrates the performance of our method corresponding to dif-

ferent percentages of prior information used. As can be seen from the Figure, there

exists a clear positive correlation between the value of nmi and the amount of

prior pairs used, where the effect of positive pairs is clearly stronger than the effect

of negative prior pairs. This is owning to the fact that positive priors precisely

describe the local community structure as compared to negative priors which avoid

misclassification. Further, the effect of prior information is not obvious when the

amount of prior knowledge is low, i.e. less than 10%. Overall, guiding the commu-
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nity discovery process with prior information results in better performance, where

the positive priors contribute more in the final performance. Similar results have

been observed for the vi metric.

6.7.4 On Parameter Tuning
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Figure 6.3: Effect of model’s hyper-parameters. (a) shows the effect of the latent dimension,
l. (b) and (c) show the effect of the number of clusters, k. The stability of performance
for values above 50 demonstrates that there exists several sub-communities in each social
support group.

We also studied the parameter sensitivity of our proposed framework. Our

framework holds two sets of parameters: (1) the model hyper-parameters which

define two distinct aspects of the model: the latent space dimension l and the

number of clusters k; (2) the regularizers α, β, and λi in Eq. (6.14), which control

the effect of different components. We first evaluated the sensitivity of the pro-

posed approach to the dimension of the latent space and the number of clusters
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Figure 6.4: Effects of different regularizer parameters in community discovery. (a) The
effect of regularizer weight for different components of the model. (b) to (d) The effect of
weight value for different social views.

to see how these parameters affect the community discovery process. We next

evaluated the performance of the proposed approach with respect to regularizers.

To assess the effect of the dimension of the latent space, we varied l in the

range of {50, 100, . . . , 500}, while keeping the other parameters fixed. Figure 6.3a

illustrates the performance of the community discovery process in terms of nmi.

The performance reaches the best value when the number of latent dimensions is

around 150. The results show that when the number of latent dimension is too

small, the model is unable to find effective communities. In contrast, a large latent

dimension will result into the loss of performance, probably due to overfitting

phenomenon. This result is also consistent with a large body of research in feature
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learning which attests the importance of proper feature learning (Li et al., 2015,

Tang and Liu, 2012).

To study the effect of the parameter k which determines the number of clusters,

we conducted the experiment with various values for k = {10, 20, . . . , 100} while

keeping the latent dimension fixed to its best value, i.e., l = 150. Figure 6.3b,

and 6.3c show the performance of the proposed framework in terms of both nmi

and vi, respectively. As can be seen from the Figure, the results achieved by our

method is very stable for k values above 50 for both nmi, and vi. It is worth

noting that the instability of nmi for values below 50 shows the targeted support

communities can be divided into several sub communities with focused interests.

We next studied the effect of α and β which are regularizer parameters to

modulate the effect of different components, as shown in Figure 6.4a. From the

Figure, we observe that low values of α and β cannot find effective clusters in

the latent space as well as fail to incorporate prior knowledge into the commu-

nity discovery process, respectively. The reason is that with low values of these

parameters the model tends to scatter the users in the latent space to learn an

effective embedding for each users, failing to find similarities amongst users to

construct communities. In other words, the learning process focuses to minimize

the first term in Eq. (6.14) and overlooks the remaining components. Similarly,

large values of α have a negative effect making all the embedding of the users are

located near to each other to have dense clusters, failing to find existing contrasts

between different clusters.
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There is another set of parameters {λi} in the proposed method, which controls

the relative importance of each view in computing the latent space. We evaluated

the effect of each parameters in the final performance of the framework. To do

so, we selected one parameter at each time and varied its values in the range of

{0.001, 0.01, . . . , 100} while setting the others to their best values. The results are

shown in Figure 6.4b to 6.4d, where we categorized them based on their effects

on the final performance. From the Figure, we can observe that the performance

of the model is stable with respect of the parameters, while the optimal value is

different for each parameter. The best value for the network information, i.e., V1,

which traditionally is the main information source for community detection is,

λ1 = 1, when more sparse views like V2, and V3 hold a larger weight, i.e., λ2, λ3 ∈

[10− 50]. Meanwhile, noisy views with a lot of redundant features obtain a lower

weight λ6 = 0.2, and λ7 = 0.5, probably to perform feature selection. As far as we

know, while multi-source and multi-view research in social network has recently

attracted much research, there is a limited research on quantifying the importance

of different social views. This finding itself demonstrates the importance of distinct

behavior of the user as well as provides insights about their relative importance

in community discovery. Further research in this direction is important and can

reveal invaluable insights.
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6.7.5 Qualitative Study

While macro-level quantitative evaluation is useful, it is also instructive to examine

actual results to better understand the outputs of the Latent model in commu-

nity profiling. To accomplish this end, we first investigate the interpretability of

extracted latent features from the data, and next give some case studies drawn

from the dataset to demonstrate its ability in extracting profilable communities.

Interpretation of the Latent Features

In the Latent model, W is the low-dimensional latent space, while each Si serves

as the basis matrix for representing a view. Thus, we are able to explain the

interpretation of the learnt embeddings from the data by mapping them into the

original features. To accomplish this end, we first normalized the weights of the

rows in Si such that the sum of each row was equal to 1. We then ranked the latent

features according to their normalized weights and found the representative latent

dimension corresponding to each social views (He et al., 2014b). In Table 6.4 we

showed lists of words that were mapped to the leading basis in the content space

S6. For readability, we manually labelled each row. The result verifies that the

latent dimensions are constructed by grouping meaningful and correlated words

from the published posts. For example, the first dimension represents a word

group related to negative emotion and feeling which is typical in people struggling

with their health condition (Eysenbach et al., 2004). Similarly, many symptoms

and side-effects of medication are clustered into a separate dimension (the last
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row), representing a topic pertaining to consumer health information. The results

are consistent with several studies in social sciences and health informatics, which

reveal that patients are coming online to fulfill their health demands, where in-

formation and emotional support are the main themes (Eysenbach et al., 2004).

Interestingly, our analysis on BG dataset in chapter 4 also demonstrated similar

results ( See Section 4.5).

Case Study

To have a tangible understanding of the outcome of our method, we show examples

of discovered communities with their profiles in Table 6.5. For each community,

we show top latent features in terms of prominent words, hashtags, and leading

users. As shown in the first row, spammers frequently publish advertisements

related to devices ( #insulin pump, and glucometer) or nutritional supplements

( herbal, supplement, and #weightloss). Further, a closer inspection of twitter

accounts u 1794, and u 52374 reveals that these two accounts frequently mention

products related to diabetes. Similarly, health seekers also use twitter to acquire

real-time information about their health questions ( the second row), such as “Is

there any cure for diabetes?”, and “Why do my legs hurt when I start walking?”,

while the former asked by a user who have been active for few days, probably

recently diagnosed, and the second question published by “@diabetes sanofi” along

with a web page address. Indeed, @diabetesdaily,@diabetes sanofi are diabetes

advocates groups which often publish authorized health information in Twitter.
4Due to the privacy issues, we have anonymized these users.
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Table 6.4: Sample leading latent features drawn from the content social view.

ID Name Top 5 Words
43 Negative emotion tired, horrible, hurt, missed, shit
72 Medications insulin, pump, actos, avanda, metformin
116 Social support ask, help, advice, sweet, easy
127 Activities running, gym, daily, work, runtastic

130 Symptoms hypertension, thirst, neuropathy, disease,
cataract

Table 6.5: Sample community profiles in terms of prominent words, hashtags, and leading
users.

Name Top words Top hashtags Leading users

Spammers
weight, herbs, less,
supplement, review,
beat, Glucometer

#weightloss,
#insulin

u1794, u1001,
u5237

Health seekers

care, treatment, ad-
vice, change, meal,
hyperglycaemia, foot,
depression

#diabetestips,
#doc, #dsma

@askUHC, @dia-
betesdaily, @dia-
betes sanofi

Similarly, @askUHC is also an important social feature for this community since

it is the twitter account of UnitedHealth Group, which answers patients question

online, and it was introduced by one member several times during the crawling

period.

6.8 Related Work

Discovering communities has been of interest by many retrospective studies in

complex network analysis (Newman and Girvan, 2004). Existing approaches can

be categorized into two groups: measure-based approaches and probabilistic ap-

proaches. Typically, measure-based approaches define an objective function to

quantify the quality of a cluster with the assumption that a good cluster is a set
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of nodes with dense internal connectivity and sparse external connectivity (New-

man and Girvan, 2004). Upon this intuition, several quality measure have been

proposed in the literature to evaluate the clusters based on link and content infor-

mation such as normalized cut (Shi and Malik, 2000) and modularity (Newman

and Girvan, 2004). Probabilistic approaches, such as stochastic block model (Abbe

and Sandon, 2015) and its variants (Hofman and Wiggins, 2008), assume that

links are generated with the probability that only depends on the communities

of the nodes. However, due to the excessive noise in content and sparsity in link

information, neither link information, nor content information is sufficient for in-

ferring the optimal community structure (Yang et al., 2009,Zhuang et al., 2015).

Thus, combining link and content information has been utilized to improve the

performance of community detection such as Link-LDA (Erosheva, Fienberg, and

Lafferty, 2004), kernel fusion (Yu, De Moor, and Moreau, 2009), and PHITS-

PLSA (Cohn and Hofmann, 2001). However, most of these approaches apply a

generative model for content analysis which is sensitive to noisy information in so-

cial networks. Moreover, most of these approaches fail to provide an interpretable

community profile.

In the area of semi-supervised learning, several community detection approaches

have been proposed recently (Eaton and Mansbach, 2012,Ma et al., 2010,Ver Steeg,

Galstyan, and Allahverdyan, 2011). For example, spin-glass model from statistical

physics has been utilized to incorporate prior knowledge into community detec-

tion (Eaton and Mansbach, 2012). Similarly, several research efforts proposed to
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directly change the adjacency matrix in order to apply prior knowledge in commu-

nity detection process (Ma et al., 2010,Zhang, 2013,Zhang, Sun, and Wang, 2013).

However, directly modifying the adjacency matrix cannot guarantee that the two

nodes belong to the same community as reported by (Ma et al., 2010,Zhang, Sun,

and Wang, 2013). In contrast to prior investigations, our aim is to fuse all the

social views available in the network for discovering user communities as well as

provide a latent profile for each extracted communities, which can be explained in

the feature space.

6.9 Summary

In this chapter, we proposed a community discovery and profiling approach for

social media users. The proposed model simultaneously learns the profiles of

users and their affiliations to communities in a low-dimensional space, which is

constructed from the integration of different social views of the network. In par-

ticular, we integrated different social views of the network into a low-dimensional

latent space in which we sought dense clusters of users as communities. By impos-

ing a Laplacian regularizer into affiliation matrix, we further incorporated prior

knowledge into the community discovery process. Finally community profiles were

computed by a linear operator integrating the profiles of members.

This study have demonstrated: (1) the importance of learning the community

structure from all social behaviors of users, which can be achieved by learning

a unified latent space; (2) the significance of incorporating prior knowledge in
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community discovery and profiling; and (3) an approach to learn the profile of

communities, which helps understand the collective behavior of users.
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CHAPTER 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we aimed to make sense of wellness of users on social networks,

both at micro-level of individuals, i.e., user profiling, and macro-level of groups

and communities, i.e., community profiling. In particular, we focused on learning

the wellness profile of users, where we exploited their social media information to

identify, understand and estimate the wellness attributes and states of users and

communities. To accomplish this, we first harvested social media posts of users

to extract personal wellness events which directly expose wellness information

and attributes of users. We then studied that how online behavior of users can

reflect their wellness information and attributes. Specifically, we attempted to

differentiate between adapted and non-adapted users based on their social media

data. Following this line of research, we proposed to learn the wellness profile of

users and communities on social media platform. The investigated approaches, in
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this thesis, permit us to better understand the wellness of users and communities,

get actionable insight about the wellness of users and communities from social

media, and provide better social and information services.

As a first step towards understanding the wellness of user from social media,

we proposed a framework for extracting the mentions of personal wellness events

from posts of users in Twitter microblogging service. The proposed framework

leveraged the content information of microblogging text as well as the relations

amongst wellness event categories to categorize events into a wellness taxonomy.

This approach permits us to learn both task-specific and task shared features,

which significantly boosts the performance of the learning framework. By imposing

a sparse constraint on the learning model, we also tackled the problems arising

from noise and variation in microblogging texts. Experimental results on a real-

world dataset from Twitter have demonstrated the superior performance of our

framework in extracting personal wellness events.

We next studied the behavioral distinction between diabetes patients aiming

at characterizing two groups of patients: patients who can successfully manage

their diabetes, in terms of blood glucose value, and those who fail to manage their

diabetes, referred by adapted and non-adapted patient cohorts, respectively. We

studied online behaviors of users in terms of linguistic, textual and visual attributes

and contents in their online posts. We have observed several characteristics such

as negative affective, seeking and sharing supportive contents, and difference in

shared visual concepts, which differs adapted and non-adapted users. We discussed
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the implication of our finding from clinical aspect and elaborated on the various

limitations and ethical issues of using social media in the wellness domain.

To learn the latent profile of users, we proposed an approach which directly

learns the embedding from longitudinal data of users, instead of vector-based

representation. In particular, we simultaneously learned a low-dimensional latent

space as well as the temporal evolution of users in the wellness space. The proposed

method takes into account two types of wellness prior knowledge: (1) temporal

progression of wellness attributes; and (2) heterogeneity of wellness attributes in

the patient population. Our approach scales well to large datasets using parallel

stochastic gradient descent. We conducted extensive experiments to evaluate our

framework at tackling three major tasks in wellness domain: attribute prediction,

success prediction and community detection. Experimental results on two real-

world datasets demonstrated the ability of our approach to learn effective user

representations.

To learn the profile of user groups, we proposed to discover communities in

a low-dimensional latent space in which we simultaneously learned the represen-

tation of users and communities. Specifically, our approach leveraged different

online behaviors of users as multiple social views, and fused them into a latent

space representing all users’ behaviors. Community discovery was then performed

in the latent space by considering all social behaviors of the users. By guiding

the community discovery process with available prior knowledge, we not only was

able to discover communities based on the entire user behaviors but also was able
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to compute the community profile which helps to explain the collective behavior

of the members of the community. Taking the wellness domain as an example, we

have conducted experiments on a large scale real world dataset of users publishing

tweets about diabetes and its related concepts, demonstrating the ability of our

approach in discovering and profiling user communities.

7.2 Future Work

This research begins a new research direction towards connecting social media and

health informatics with many downstream applications. In the previous chapters,

we have discussed how to harvest social media information towards making sense

of the wellness of users and communities. Following the proposed framework, we

can envision several directions for future work. We summarize them into two

aspects of: mining information and profile learning.

7.2.1 Mining Information

We demonstrated the possibility of mining social media data to extract rich in-

formation about the wellness of users. However, social media platform, per se, is

a high-velocity streaming information source. Social media data is generated dy-

namically, where, everyday, users generate new data and features at a rapid pace.

For example, in Twitter, more than 320 tweets are produces daily with a large

number of slang words and new hashtags. These terms grab the attention of users

and become popular and trending in a short time. Therefore, streaming feature
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selection is more practical and desirable to rapidly adapt to the changes (Li et al.,

2015,Guo et al., 2014).

Wellness event extraction is an initial step to understand the wellness of users

from social media data. However, events are accompanied with several attributes

providing specific information about the various aspects of the events. Taking the

tweet “195.0 #BGNow @ 08:20AM after bike ride 90 minutes” as an example,

the tweet refers to a biking event and an examination of blood glucose. While

knowing the event type is important and useful, extracting the details of the event

provides precise information about the event which is useful for further analysis.

We utilized a bootstrapping rule-based approach for extracting events. Sequence

labelling with Conditional Random Field (CRF) is another approach which have

demonstrated promising results in information extraction studies. Our proposal

for future work in this direction is to have a comparative study between these two

algorithms and assess their efficiency and effectiveness on extracting attributes of

the wellness events.

7.2.2 Profile Learning

In individual user profiling, this study demonstrated the importance of feature

learning approaches which are intrinsically designed for longitudinal data. Differ-

ent extensions of this work can be investigated in future. The first is to utilize

the social context around users in a collaborative learning approach. As social

media users are linked to each other, incorporation of network-centric information
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is a promising direction. Indeed, recent studies attest that using social context

of users can improve the performance of prediction in different tasks such as sen-

timent analysis (Hu et al., 2013), user interest profiling (Yang et al., 2011), rec-

ommendation (Geng et al., 2015), trust prediction (Tang et al., 2013), and so on.

One can examine the correlation between wellness attributes and states of users

in their ego-network to gain better insight about the wellness of users and develop

an effective learning framework.

With the proliferation of social networking services, users simultaneously par-

ticipate in multiple social networks to enjoy their diverse services. For example,

more than half of US adults (52%) and a majority of US teenagers (71%) in 2014

use two or more social media services. Indeed, they publish different information,

disclose different attributes, and share about different events in each social net-

work. Thus the integration of users’ data from multiple social networks would be

a promising research direction.

From group profiling aspect, community profiling can be used to investigate the

evolution of communities in a dynamic network environment, where communities

can grow, merge, and dissolve. Another promising direction is to complement

the individual profiles based on their community affiliation and study how it can

facilitate recommendation. Identifying the users who play crucial role in group

formation and activities is another interesting promising direction, as this study

has already presented such capability (See Section 6.7.5)
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7.3 Ethics and Limitations

While thinking about designing intervention programs on social network and in

general health, it is important to bear in mind that wellness and health data

can be extremely sensitive and need to be verified before providing to the user.

Finding the authorized and reliable wellness information is a challenging task

especially in a noisy platform such as social media with a lot of user generated

contents and spams contents. The truthworthy of the information needs to be

considered with a proper automatic or semi-automatic way. This can be done by

a human in loop procedure to verify the potential risky unreliable information.

Further, the design consideration in social platforms should honor the privacy

of the affected individuals and abide the proper ethical guidelines ensuring that

the intended profit of the intervention exceeds the potential difficulties and risks.

To sum, we hope this research open a new avenue to not only detect and help

diabetic patients through social platforms, but also understand the collaborative

behaviour of different diabetics communities towards designing better healthcare

interventions and treatments.

It is worthwhile noting that this study does not make any claim to attribut-

ing the social network as an individual platform through which we can obtain

a complete understanding of wellness condition of diabetic users and provide a

full intervention program. We however attest that patient generated wellness and

lifestyle data on social media can be utilized as a complementary source through
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which we can sense users’ wellness and lifestyle. Social sensors can be utilized

as a complementary source of information in combination of the popular concept

of quantified-self measuring users’ attributes with wearable devices. We caution

against using this method as standalone technique for diagnosis and prediction of

diabetes. We also note that social media is a noisy and sparse platform where

many users may not utilize it for health information explicitly. However, the im-

plicit signals and clues in their social account can provide useful information when

aggregated in scale. Moreover, selection bias and confounding factors are always

important problems in social and health studies. There are always a cohort of

users who are not active users of social media and social sensors would fail to

provide a complete perspective about these users. For instance, while social me-

dia is used by different age groups in society, majority of social media users are

youngsters, which introduces an inherent source of bias in social media studies.

Finally, our findings reveals the richness of patient generated wellness data on

social media demonstrating that it can be used in combination of other information

sources to obtain a comprehensive understanding of diabetes patient. It also

raises several difficult questions for researchers, as mentioned below. How much

social media information is reliable in health domain? How precise user’s online

behaviours reveal his offline attributes and behaviours? And how effective would

the designed intervention be, in terms of changing the user behaviour?
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