7,645 research outputs found

    Distant Supervision for Entity Linking

    Full text link
    Entity linking is an indispensable operation of populating knowledge repositories for information extraction. It studies on aligning a textual entity mention to its corresponding disambiguated entry in a knowledge repository. In this paper, we propose a new paradigm named distantly supervised entity linking (DSEL), in the sense that the disambiguated entities that belong to a huge knowledge repository (Freebase) are automatically aligned to the corresponding descriptive webpages (Wiki pages). In this way, a large scale of weakly labeled data can be generated without manual annotation and fed to a classifier for linking more newly discovered entities. Compared with traditional paradigms based on solo knowledge base, DSEL benefits more via jointly leveraging the respective advantages of Freebase and Wikipedia. Specifically, the proposed paradigm facilitates bridging the disambiguated labels (Freebase) of entities and their textual descriptions (Wikipedia) for Web-scale entities. Experiments conducted on a dataset of 140,000 items and 60,000 features achieve a baseline F1-measure of 0.517. Furthermore, we analyze the feature performance and improve the F1-measure to 0.545

    Bayesian Non-Exhaustive Classification A Case Study: Online Name Disambiguation using Temporal Record Streams

    Get PDF
    The name entity disambiguation task aims to partition the records of multiple real-life persons so that each partition contains records pertaining to a unique person. Most of the existing solutions for this task operate in a batch mode, where all records to be disambiguated are initially available to the algorithm. However, more realistic settings require that the name disambiguation task be performed in an online fashion, in addition to, being able to identify records of new ambiguous entities having no preexisting records. In this work, we propose a Bayesian non-exhaustive classification framework for solving online name disambiguation task. Our proposed method uses a Dirichlet process prior with a Normal * Normal * Inverse Wishart data model which enables identification of new ambiguous entities who have no records in the training data. For online classification, we use one sweep Gibbs sampler which is very efficient and effective. As a case study we consider bibliographic data in a temporal stream format and disambiguate authors by partitioning their papers into homogeneous groups. Our experimental results demonstrate that the proposed method is better than existing methods for performing online name disambiguation task.Comment: to appear in CIKM 201

    MAG: A Multilingual, Knowledge-base Agnostic and Deterministic Entity Linking Approach

    Full text link
    Entity linking has recently been the subject of a significant body of research. Currently, the best performing approaches rely on trained mono-lingual models. Porting these approaches to other languages is consequently a difficult endeavor as it requires corresponding training data and retraining of the models. We address this drawback by presenting a novel multilingual, knowledge-based agnostic and deterministic approach to entity linking, dubbed MAG. MAG is based on a combination of context-based retrieval on structured knowledge bases and graph algorithms. We evaluate MAG on 23 data sets and in 7 languages. Our results show that the best approach trained on English datasets (PBOH) achieves a micro F-measure that is up to 4 times worse on datasets in other languages. MAG, on the other hand, achieves state-of-the-art performance on English datasets and reaches a micro F-measure that is up to 0.6 higher than that of PBOH on non-English languages.Comment: Accepted in K-CAP 2017: Knowledge Capture Conferenc

    Knowledge will Propel Machine Understanding of Content: Extrapolating from Current Examples

    Full text link
    Machine Learning has been a big success story during the AI resurgence. One particular stand out success relates to learning from a massive amount of data. In spite of early assertions of the unreasonable effectiveness of data, there is increasing recognition for utilizing knowledge whenever it is available or can be created purposefully. In this paper, we discuss the indispensable role of knowledge for deeper understanding of content where (i) large amounts of training data are unavailable, (ii) the objects to be recognized are complex, (e.g., implicit entities and highly subjective content), and (iii) applications need to use complementary or related data in multiple modalities/media. What brings us to the cusp of rapid progress is our ability to (a) create relevant and reliable knowledge and (b) carefully exploit knowledge to enhance ML/NLP techniques. Using diverse examples, we seek to foretell unprecedented progress in our ability for deeper understanding and exploitation of multimodal data and continued incorporation of knowledge in learning techniques.Comment: Pre-print of the paper accepted at 2017 IEEE/WIC/ACM International Conference on Web Intelligence (WI). arXiv admin note: substantial text overlap with arXiv:1610.0770

    Event-based Access to Historical Italian War Memoirs

    Full text link
    The progressive digitization of historical archives provides new, often domain specific, textual resources that report on facts and events which have happened in the past; among these, memoirs are a very common type of primary source. In this paper, we present an approach for extracting information from Italian historical war memoirs and turning it into structured knowledge. This is based on the semantic notions of events, participants and roles. We evaluate quantitatively each of the key-steps of our approach and provide a graph-based representation of the extracted knowledge, which allows to move between a Close and a Distant Reading of the collection.Comment: 23 pages, 6 figure
    • …
    corecore