2,763 research outputs found

    On the difference between permutation polynomials over finite fields

    Get PDF
    The well-known Chowla and Zassenhaus conjecture, proven by Cohen in 1990, states that if p>(d23d+4)2p>(d^2-3d+4)^2, then there is no complete mapping polynomial ff in \Fp[x] of degree d2d\ge 2. For arbitrary finite fields \Fq, a similar non-existence result is obtained recently by I\c s\i k, Topuzo\u glu and Winterhof in terms of the Carlitz rank of ff. Cohen, Mullen and Shiue generalized the Chowla-Zassenhaus-Cohen Theorem significantly in 1995, by considering differences of permutation polynomials. More precisely, they showed that if ff and f+gf+g are both permutation polynomials of degree d2d\ge 2 over \Fp, with p>(d23d+4)2p>(d^2-3d+4)^2, then the degree kk of gg satisfies k3d/5k \geq 3d/5, unless gg is constant. In this article, assuming ff and f+gf+g are permutation polynomials in \Fq[x], we give lower bounds for kk %=\mathrm{deg(h)} in terms of the Carlitz rank of ff and qq. Our results generalize the above mentioned result of I\c s\i k et al. We also show for a special class of polynomials ff of Carlitz rank n1n \geq 1 that if f+xkf+x^k is a permutation of \Fq, with gcd(k+1,q1)=1\gcd(k+1, q-1)=1, then k(qn)/(n+3)k\geq (q-n)/(n+3)

    From van der Corput to modern constructions of sequences for quasi-Monte Carlo rules

    Full text link
    In 1935 J.G. van der Corput introduced a sequence which has excellent uniform distribution properties modulo 1. This sequence is based on a very simple digital construction scheme with respect to the binary digit expansion. Nowadays the van der Corput sequence, as it was named later, is the prototype of many uniformly distributed sequences, also in the multi-dimensional case. Such sequences are required as sample nodes in quasi-Monte Carlo algorithms, which are deterministic variants of Monte Carlo rules for numerical integration. Since its introduction many people have studied the van der Corput sequence and generalizations thereof. This led to a huge number of results. On the occasion of the 125th birthday of J.G. van der Corput we survey many interesting results on van der Corput sequences and their generalizations. In this way we move from van der Corput's ideas to the most modern constructions of sequences for quasi-Monte Carlo rules, such as, e.g., generalized Halton sequences or Niederreiter's (t,s)(t,s)-sequences

    Self-dual tilings with respect to star-duality

    Get PDF
    The concept of star-duality is described for self-similar cut-and-project tilings in arbitrary dimensions. This generalises Thurston's concept of a Galois-dual tiling. The dual tilings of the Penrose tilings as well as the Ammann-Beenker tilings are calculated. Conditions for a tiling to be self-dual are obtained.Comment: 15 pages, 6 figure

    Calabi-Yau Manifolds Over Finite Fields, I

    Get PDF
    We study Calabi-Yau manifolds defined over finite fields. These manifolds have parameters, which now also take values in the field and we compute the number of rational points of the manifold as a function of the parameters. The intriguing result is that it is possible to give explicit expressions for the number of rational points in terms of the periods of the holomorphic three-form. We show also, for a one parameter family of quintic threefolds, that the number of rational points of the manifold is closely related to as the number of rational points of the mirror manifold. Our interest is primarily with Calabi-Yau threefolds however we consider also the interesting case of elliptic curves and even the case of a quadric in CP_1 which is a zero dimensional Calabi-Yau manifold. This zero dimensional manifold has trivial dependence on the parameter over C but a not trivial arithmetic structure.Comment: 75 pages, 6 eps figure
    corecore