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Abstract

The well-known Chowla and Zassenhaus conjecture, proven by Co-
hen in 1990, states that if p > (d2 − 3d+ 4)2, then there is no complete
mapping polynomial f in Fp[x] of degree d ≥ 2. For arbitrary finite fields
Fq, a similar non-existence result is obtained recently by Işık, Topuzoğlu
and Winterhof in terms of the Carlitz rank of f .
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Cohen, Mullen and Shiue generalized the Chowla-Zassenhaus-Cohen
Theorem significantly in 1995, by considering differences of permutation
polynomials. More precisely, they showed that if f and f + g are both
permutation polynomials of degree d ≥ 2 over Fp, with p > (d2−3d+4)2,
then the degree k of g satisfies k ≥ 3d/5, unless g is constant. In this
article, assuming f and f + g are permutation polynomials in Fq[x],
we give lower bounds for k in terms of the Carlitz rank of f and q.
Our results generalize the above mentioned result of Işık et al. We also
show for a special class of polynomials f of Carlitz rank n ≥ 1 that
if f + xk is a permutation over Fq, with gcd(k + 1, q − 1) = 1, then
k ≥ (q − n)/(n + 3).

1 Introduction

Let Fq be the finite field with q = pr elements, where r ≥ 1 and p is a prime.
Throughout we assume q ≥ 3. We recall that f ∈ Fq[x] is a permutation poly-
nomial over Fq if it induces a bijection from Fq to Fq. If f(x) and f(x) +x are
both permutation polynomials over Fq, then f is called a complete mapping.
We refer the reader to [11] for a detailed study of complete mapping polyno-
mials over finite fields. Their use in the construction of mutually orthogonal
Latin squares is described, for instance, in [9]. For various other applications,
see [10, 12, 13, 14]. The paper [8] lists some recent work on complete mappings.

The Theorem 1 below was conjectured by Chowla and Zassenhaus [3] in
1968, and proven by Cohen [5] in 1990.

Theorem 1. If d ≥ 2 and p > (d2 − 3d + 4)2, then there is no complete
mapping polynomial of degree d over Fp.

A significant generalization of this result was obtained by Cohen, Mullen
and Shiue [6] in 1995, and gives a lower bound for the degree of the difference
of two permutation polynomials in Fp[x] of the same degree d, when p >
(d2 − 3d+ 4)2.

Theorem 2. Suppose f and f + g are monic permutation polynomials
over Fp of degree d ≥ 3, where p > (d2 − 3d + 4)2. If deg(g) = k ≥ 1, then
k ≥ 3d/5.

An alternative invariant, the so-called Carlitz rank, attached to permu-
tation polynomials, was used by Işık, Topuzoğlu and Winterhof [8] recently
to obtain a non-existence result, similar to that in Theorem 1. The concept
of Carlitz rank was first introduced in [1]. We describe it here briefly. The
interested reader may see [16] for details.

By a well-known result of Carlitz [2] that any permutation polynomial over
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Fq, with q ≥ 3 is a composition of linear polynomials ax+ b, a, b ∈ Fq, a 6= 0,
and xq−2, any permutation f over Fq can be represented by a polynomial of
the form

Pn(x) =
(
. . .
(
(a0x+ a1)

q−2 + a2
)q−2

. . .+ an

)q−2
+ an+1, (1.1)

for some n ≥ 0, where ai 6= 0, for i = 0, 2, . . . , n. Note that f(c) = Pn(c)
holds for all c ∈ Fq, however this representation is not unique, and n is not
necessarily minimal. Accordingly the authors of [1] define the Carlitz rank of a
permutation polynomial f over Fq to be the smallest integer n ≥ 0 satisfying
f = Pn for a permutation Pn of the form (1.1), and denote it by Crk(f).

The representation of f as in (1.1) enables approximation of f by a frac-
tional transformation in the following sense.

For 0 ≤ k ≤ n, consider

Rk(x) =
αk+1x+ βk+1

αkx+ βk
, (1.2)

where α0 = 0, α1 = a0, β0 = 1, β1 = a1, and

αk = akαk−1 + αk−2 and βk = akβk−1 + βk−2 (1.3)

for k ≥ 2. The set

On =

{
xk : xk =

−βk
αk

, k = 1, . . . , n

}
⊂ P1(Fq) = Fq ∪ {∞} (1.4)

is called the set of poles of f . The elements of On may not be distinct.
It can easily be verified that

f(c) = Pn(c) = Rn(c) for all c ∈ Fq \ On . (1.5)

Obviously, this property is particularly useful when Crk(f) is small with re-
spect to the field size. The values that f takes on On can also be expressed
in terms of Rn, see [16]. In case αn = 0, i.e., the last pole xn = ∞, Rn is
linear. Following the terminology of [8], we define the linearity of f ∈ Fq[x] as
L(f) = maxa,b∈Fq |{c ∈ Fq : f(c) = ac + b}|. Intuitively L(f) is large when f
is a permutation polynomial of Fq of Crk(f) = n, Rn is linear, and n is small
with respect to q.

Now we are ready to state the main result of [8]. We remark that the
Theorems 1 and 2 hold over prime fields only, while the Theorem 3 is true for
any finite field.
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Theorem 3. If f(x) is a complete mapping over Fq and L(f) < b(q + 5)/2c,
then Crk(f) ≥ bq/2c.

The purpose of this note is to obtain a lower bound for the degree of
the difference between two permutation polynomials, analogous to Theorem
2, generalizing Theorem 3. In what follows we assume that f and f + g are
permutation polynomials over Fq, where g ∈ Fq[x] has degree k with 1 ≤ k <
q − 1. We give lower bounds for k in terms of q and the Carlitz rank of f , see
Theorems 2.1 and 3.1 below.

2 Degree of the difference of two permutation

polynomials

Let f be a permutation polynomial over Fq, q ≥ 3, with Crk(f) = n ≥ 1.
Suppose that f has a representation as in (1.1) and the fractional linear trans-
formation Rn in (1.2), which is associated to f as in (1.5) is not linear, in other
words αn in (1.3) is not zero. We denote the set of all such permutations by
C1,n, i.e., the set C1,n consists of all permutation polynomials over Fq, satisfy-
ing Crk(f) = n ≥ 1 and αn 6= 0. Clearly L(f) ≤ n + 2, if f ∈ C1,n. We note
that permutations f ∈ Fq[x] with αn = 0 behave very differently. For instance,
there are examples of complete mappings over Fq of Carlitz rank 4 for infinitely
many values of q. Indeed, the condition on the linearity of f in Theorem 3
corresponds to the case αn = 0. Therefore, we only consider permutations in
C1,n.

We now prove our main theorem.

Theorem 2.1. Let f and f + g be permutation polynomials over Fq, where
f ∈ C1,n and the degree k of g ∈ Fq[x] satisfies 1 ≤ k < q − 1. Then

nk + k(k − 1)
√
q ≥ q − ν − n , (2.1)

where ν = gcd(k, q − 1).

Proof. Since f ∈ C1,n, there exist a, b, d ∈ Fq, such that f(z) = Rn(z) for
z ∈ Fq \ On, where

Rn(z) =
az + b

z + d
.

The fact that ad− b 6= 0 follows from (1.3).
The polynomial f(z) + g(z) can be represented by Gn(z) = Rn(z) + g(z)

for z ∈ Fq \ On. Since f + g is a permutation over Fq, the map Gn is injective
on Fq \ On.
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For u ∈ Fq and

Gn(z) =
az + b

z + d
+ g(z) = u , (2.2)

we set

Hn(x) = Gn(x− d) =
ax− b̃
x

+ h(x) = u .

where b̃ = ad − b 6= 0 and h(x) = g(x − d). Note that Hn(x) = u for some
nonzero x ∈ Fq if and only if z 6= −d is a solution of Equation (2.2). Let S be
the set of pairs (x, y) ∈ F∗q × F∗q such that

S =
{

(x, y) ∈ F∗q × F∗q : x 6= y and Hn(x) = Hn(y)
}
.

Denote the value set of Hn by VHn , i.e.,

VHn = {u ∈ Fq : ∃x ∈ Fq with Hn(x) = u} .

Suppose that the cardinality |S| of S is µ. For u ∈ VHn , we consider the
inverse image; H−1n (u) = {x ∈ Fq : Hn(x) = u} and put nu = |H−1n (u)|. We
remark that 0 6∈ H−1n (u) and that x ∈ H−1n (u) if and only if x is a root of the
polynomial

xh(x) + (a− u)x− b̃ . (2.3)

This shows that for any u ∈ VHn we have nu ≤ k + 1 as the polynomial in
Equation (2.3) has degree k + 1. We then conclude that

µ =
∑
u∈VHn

nu(nu − 1) ≤ (k + 1)
∑
u∈VHn

(nu − 1) . (2.4)

If there exist nu distinct elements x with Hn(x) = u, then there exist nu
distinct elements z with Gn(z) = u. Since Gn(z) is injective on Fq \ On, this
shows that nu − 1 distinct elements z lie in the set of poles On. In particular,
by Equation (2.4) and the fact that −d ∈ On we conclude that

n ≥ |On| ≥ 1 +
∑
u∈VHn

(nu − 1) ≥ 1 +
µ

k + 1
. (2.5)

Therefore in order to obtain a lower bound for k in terms of q and n, it is
sufficient to determine µ in relation to q and k.

We can re-write the equation Hn(x) = Hn(y) as

y(xh(x)− b̃)− x(yh(y)− b̃) = 0 .
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Note that x − y is a factor of y(xh(x) − b̃) − x(yh(y) − b̃). We want to find
an absolutely irreducible factor over Fq of the polynomial in two variables of
degree k + 1 defined by

y(xh(x)− b̃)− x(yh(y)− b̃)
x− y

,

or equivalently defined by

xy
h(x)− h(y)

x− y
+ b̃ . (2.6)

We recall that a rational function `(x)/t(x) ∈ Fq(x) is called exceptional
over Fq if the polynomial Θ`/t, defined by

Θ`/t =
t(Y )`(X)− t(X)`(Y )

X − Y

has no absolutely irreducible factor in Fq[X, Y ]. By Theorem 5 of [4], `/t is
a permutation over Fq if it is an exceptional function over Fq. In particular,
t(α) 6= 0 for all α ∈ Fq. Now we put `/t = (xh(x) − b̃)/x, and conclude that
the rational function in (2.6) has an absolutely irreducible factor p(x, y) over
Fq. We note that b̃ is not zero and hence p(x, y) is a factor different from
x− y. Moreover we assume without loss of generality that p(x, y) is separable;
otherwise we can replace p(x, y) with a separable polynomial of smaller degree.

Consider the curve X whose affine equation is given by p(x, y) of degree
% ≤ k + 1. Then by [7, Theorem 9.57] the number of rational points N(X ) in
PG(2, q) of X is bounded by

N(X ) ≥ q + 1− (%− 1)(%− 2)
√
q ≥ q + 1− k(k − 1)

√
q .

We denote by P (X, Y, Z) the homogenized polynomial of p(x, y), i.e.,

P (X, Y, Z) = Z%p

(
X

Z
,
Y

Z

)
.

In order to find the number of affine solutions (x : y : 1) such that xy 6= 0 and
x 6= y, we proceed as follows. From Equation (2.6) we have that P (X, Y, Z) is
a divisor of the homogeneous polynomial

XY Zk−1
(
h(X/Z)− h(Y/Z)

X − Y

)
+ b̃Zk+1 . (2.7)
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Hence we conclude that there is no affine solution (x : y : 1) of P (X, Y, Z) with
xy = 0. We now estimate the number of rational points of X at infinity, i.e.,
the points of the form (x : y : 0) for x, y ∈ Fq. By Equation (2.7) the point
(x : y : 0) is on X only if

xy
xk − yk

x− y
= 0 .

This holds only if (x : y : 0) = (0 : 1 : 0), (1 : 0 : 0) or xk = yk for some
x, y ∈ F∗q. Since ν = gcd(k, q − 1), the equality xk = yk is satisfied if and only
if x/y is an ν-th root of unity in Fq. Hence there exist at most ν + 2 rational
points of X lying at infinity.

Bezout’s theorem implies that there are at most k + 1 rational points (x :
y : z) of X with x = y, since the degree of X is at most k + 1.

This shows that the cardinality µ of the set S satisfies

µ ≥ q + 1− k(k − 1)
√
q − (ν + k + 2) .

Note that we subtract ν + k + 2 instead of ν + k + 3. This is because of the
point (1 : 1 : 0). If (1 : 1 : 0) is on X then it is taken into account twice. If it
is not on X then we do not have to exclude it as a point at infinity. Therefore,
Crk(f) = n satisfies

n ≥ 1 +
1

k + 1
(q + 1− k(k − 1)

√
q − (ν + k + 2))

=
1

k + 1
(q − k(k − 1)

√
q − ν) ,

by (2.5), which implies the desired result.

For k = 1 (and hence ν = 1) we obtain Theorem 3, i.e., the main result in
[8].

Corollary 2.2. Let f ∈ C1,n. If n < (q − 1)/2, then f is not a complete
mapping.

Remark 2.3. We note that the bound given in (2.1) is non-trivial only when
q ≥ k(k − 1)

√
q + k + ν + 1.

3 The case g(x) = cxk

Throughout this section we focus on the monomials g(x) = cxk ∈ Fq[x] and
f ∈ C1,n, where xn ∈ On in (1.4) satisfies xn = 0. In this particular case, the
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lower bound in (2.1) can be simplified significantly when gcd(k+ 1, q− 1) = 1.
Let C2,n be the set of f ∈ C1,n such that the last pole xn of f is zero.

Theorem 3.1. Let f(x) and f(x) + cxk be permutation polynomials over Fq,
where f ∈ C2,n, 1 ≤ k < q − 1, c ∈ F∗q. Put m = gcd(k + 1, q − 1). Then

k(n+ 3) + (k − 1)(m− 1)
√
q ≥ q − n .

In particular, if m = 1, then k ≥ (q − n)/(n+ 3).

Proof. The condition xn = 0 implies that βn in (1.3) is zero. Hence we have
Rn(x) = ax+b

x
for some a, b ∈ Fq, with b 6= 0. That is, for x ∈ Fq \ On we can

represent f + cxk by Gn(x) = Rn(x) + cxk.
We proceed as in the proof of Theorem 2.1. The equation Gn(x) = u for

some u ∈ Fq becomes
ax+ b

x
+ cxk = u .

Then for some x, y ∈ F∗q, we have Gn(x) = Gn(y) if and only if the equation

cxk +
b

x
= cyk +

b

y
,

or equivalently the equation

xk − yk =
b

c

(
x− y
xy

)
(3.1)

holds.
We again consider the set S of pairs (x, y) ∈ F∗q × F∗q, x 6= y, where (x, y)

is a solution of (3.1), and denote the cardinality of S by µ. By using the
argument given in the proof of Theorem 2.1, we have n ≥ 1+µ/(k+1). Hence
our aim now is to express µ in terms of q and k.

Applying the change of variable (x, y)→ (xy, y), Equation (3.1) becomes

yk(xk − 1) =
b(x− 1)

cxy
.

Hence we are looking for the affine points (x, y) ∈ F∗q × F∗q of the curve

X : yk+1 =
b(x− 1)

cx(xk − 1)
. (3.2)
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Note that in this case the solutions should not lie in the set {(γ2, γ) | γ ∈ Fq}.
Recall that m = gcd(k + 1, q− 1), hence the monomial y(k+1)/m gives rise to a
permutation over F∗q. Therefore, there is one-to-one correspondence between
the affine solutions (x, y) ∈ F∗q × F∗q of the curves

Y : ym =
b(x− 1)

cx(xk − 1)
, (3.3)

and X in (3.2). Equation (3.3) defines a Kummer extension. Then by using
arithmetic of function fields, see [15, Proposition 3.7.3 ], we can estimate the
number of Fq-rational points of Y as follows.

For the rational function field Fq(x) and α ∈ Fq, we denote by (x = α)
and (x = ∞) the places corresponding to the zero and the pole of x − α,
respectively. Let F = Fq(x, y) be the function field of Y defined by Equation
(3.3), and let k = p`t with gcd(p, t) = 1. It is clear that the places (x = 0) and
(x = α), with αt = 1 and α 6= 1, are totally ramified in F . In particular, this
shows that the full constant field of F is Fq. For the place (x = ∞) we have
the ramification index e∞ = m/ gcd(m, k) = m, since m is a divisor of k + 1.
Moreover, for (x = 1) the ramification index is given by e1 = m/ gcd(m, p`−1).
Hence we conclude that the number of ramified places of Fq(x) in F is at most
k/p` + 2 if ` > 0 and is exactly k + 1 if ` = 0. That is, the place (x = 1) can
be ramified only if ` > 0. We consider the case ` = 0, i.e. gcd(k, p) = 1, where
the genus of F is the largest. In this case, the ramified places are exactly

(x = 0), (x =∞) and (x = α) with αk = 1 and α 6= 1 .

Therefore, the degree of the different divisor of F/Fq(x) is (k + 1)(m − 1).
Then by the Hurwitz genus formula the genus g(F ) of F satisfies

2g(F )− 2 = −2m+ (k + 1)(m− 1) ,

which implies that g(F ) = (k − 1)(m− 1)/2. By the Hasse–Weil theorem the
number N(F ) of Fq-rational places of F is bounded by

N(F ) ≥ q + 1− 2g(F )
√
q = q + 1− (k − 1)(m− 1)

√
q . (3.4)

We observe that the pole divisors (x)∞, (y)∞ of x, y are

(x)∞ = mP∞ and (y)∞ = P0 +
∑

αk=1,α 6=1

Pα ,
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where P∞, P0, Pα are the unique places of F lying over (x =∞), (x = 0), (x =
α), respectively.

We remark that the curve Y defined by Equation (3.3) is of degree k + m
and has two points at infinity; namely Q1 = (1 : 0 : 0) and Q2 = (0 : 1 : 0).
These are the only singular points of Y and Q1 has intersection multiplicity
m while Q2 is an ordinary point of multiplicity k. Moreover, P∞ is the unique
place corresponding to Q1, and there are k places corresponding to Q2, which
correspond to the places lying in the support of (y)∞. All the affine points in
the curve Y defined by Equation (3.3) are non-singular and there is a one to one
correspondence between these points and the places in the function field F of
Y which do not lie in the support of pole divisors of x and y. Moreover, the fact
that the zero divisors of x and y are (x)0 = mP0 and (y)0 = kP∞, respectively,
implies that the rational places not lying in the pole divisors correspond to
points (x, y) ∈ F∗q × F∗q. Therefore, Equation (3.4) implies that the number of
affine points (x, y) ∈ F∗q × F∗q of Y is at least q − (k − 1)(m− 1)

√
q − k.

Now we turn our attention to the curve X in Equation (3.2). We have seen
that X has at least q − (k − 1)(m − 1)

√
q − k affine points (x, y) ∈ F∗q × F∗q.

Next we estimate the number of affine points (x, y) of X such that (x, y) is not
of the form (γ2, γ) for some γ ∈ Fq. By Equation (3.2), the affine point (γ2, γ)
lies on X if and only if γ is a root of

T k+1

k∑
i=1

T 2i − b

c
. (3.5)

Since the polynomial in Equation (3.5) has degree 3k+1, there can be at most
3k + 1 such points. Hence the number µ of affine solutions (x, y) ∈ F∗q × F∗q of
Equation (3.2), which do not lie on the curve x = y2 satisfies

µ ≥ q − (k − 1)(m− 1)
√
q − (4k + 1) .

Therefore Crk(f) = n satisfies

n ≥ 1 +
1

k + 1
(q − (k − 1)(m− 1)

√
q − (4k + 1)) .

Example 3.2. For q = 9, n = 3 and m = 1, the bound in Theorem 3.1
gives k ≥ 1. Combining with Corollary 2.2 we get k ≥ 2 as q > 2n + 1.
Let ζ be a primitive element of F9 and consider the permutation polynomial
f(x) = (((x+a)7)+b)7+c)7 ∈ F9[x] of Carlitz rank 3, where a = ζ5, b = ζ6 and
c = ζ3. It can be checked easily that f(x) + x2 is a permutation polynomial of
F9.
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Remark 3.3. As we have seen in Example 3.2, the bound in Theorem 3.1
is weaker than the one in Theorem 2.1 for k = 1. The reason is the change
of variable (x, y) → (xy, y) in the proof of Theorem 3.1. However, a direct
calculation in this specific case is possible, and gives an alternative proof for
Theorem 3, which was proven in [8]. In fact, the change of variable is not
needed when k = 1 as Equation (3.1) becomes xy = b. In this case, each non-
zero x uniquely determines y, i.e., there exists q− 1 distinct solutions (x, y) of
xy = b. We also leave out the solutions (x, y) with x = y. We therefore obtain
µ = q − 2 if q is even, and µ = q − 3 or q − 1 (depending on b being square or
not) if q is odd. Then the fact that n ≥ 1 + µ/2 implies Corollary 2.2.

Acknowledgement

The initial work on this project began during “Women in Numbers Europe 2
(WIN-E2)” workshop, held in the Lorentz Centre, Leiden in September 2016.
The authors are grateful to the Lorentz Centre and all supporting institutions
for making this conference and collaboration possible. They would especially
like to thank the organisers of WIN-E2, Irene Bouw, Rachel Newton and Ekin
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