
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

On permutation polynomials over nite elds: dierences and iterations

Anbar Meidl, Nurdagül; Odzak, Almasa; Patel, Vandita; Quoos, Luciane; Somoza, Anna; Topuzoglu, Alev

Published in:
Women in Numbers

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Anbar Meidl, N., Odzak, A., Patel, V., Quoos, L., Somoza, A., & Topuzoglu, A. (2017). On permutation
polynomials over nite elds: dierences and iterations. In Women in Numbers

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/84595764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/on-permutation-polynomials-over-nite-elds-dierences-and-iterations(711ef8c1-f8fa-4be4-a3cf-3d6a48851041).html


On permutation polynomials over finite fields:

differences and iterations

Nurdagül Anbar1, Almasa Odz̆ak2, Vandita Patel3,

Luciane Quoos4, Anna Somoza5,6, Alev Topuzoğlu7
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Abstract

The Carlitz rank of a permutation polynomial f over a finite field Fq is a simple

concept that was introduced in the last decade. Classifying permutations over Fq
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with respect to their Carlitz ranks has some advantages, for instance f with a given

Carlitz rank can be approximated by a rational linear transformation.

In this note we present our recent results on the permutation behaviour of poly-

nomials f+g, where f is a permutation over Fq of a given Carlitz rank, and g ∈ Fq[x]

is of prescribed degree. We describe the relation of this problem to the well-known

Chowla-Zassenhaus conjecture. We also study iterations of permutation polynomi-

als by using the approximation property that is mentioned above.

1 Introduction

Let Fq be the finite field with q = pr elements, where p is a prime, and r ≥ 1. We recall

that any map from Fq to itself can be represented uniquely by a polynomial f ∈ Fq[x]

of degree less than q. A polynomial f is called a permutation polynomial if it induces a

bijection from Fq to Fq.

Permutation polynomials over finite fields have been studied widely in the last decades,

due to their applications especially in combinatorics, coding theory and symmetric cryp-

tography. In order to meet the specific requirements of individual applications, methods

of construction of various types of permutations and/or alternative ways of classifying

them are needed. Although the work on permutation polynomials goes back to the 19th

century, they still are of theoretical interest also, offering many open problems. We refer

to [14, 15, 21] for a detailed exposition of permutation polynomials over finite fields.

We recall that Sq, the symmetric group on q letters, is isomorphic to the group of per-

mutation polynomials over Fq of degree less than q, under the operation of composition

and subsequent reduction modulo xq−x, hence we identify them. A well-known result of

Carlitz [3] states that Sq is generated by linear polynomials ax+ b, a, b ∈ Fq, a 6= 0, and

xq−2. Hence any permutation f over Fq can be represented by a polynomial of the form

Pn(x) =
(
. . .
(
(a0x+ a1)

q−2 + a2
)q−2

. . .+ an

)q−2
+ an+1, (1)

for some n ≥ 0, where ai 6= 0, for i = 0, 2, . . . , n. Note that f(c) = Pn(c) holds for

all c ∈ Fq, however this representation is not unique, and n is not necessarily minimal.

Accordingly the authors of [2] define the Carlitz rank of a permutation polynomial f over

Fq to be the smallest integer n ≥ 0 satisfying f = Pn for a permutation Pn of the form

(1), and denote it by Crk(f).

The representation of f as in (1) enables approximation of f by a fractional transformation

in the following sense.

Recall that xq−2 = x−1 for x 6= 0 and xq−2 = 0 if x = 0. Hence the representation in (1)

can be expressed as a continued fraction for suitable x ∈ Fq, which yields the function
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Rk(x) defined as follows. For 0 ≤ k ≤ n, put Rk(x) = (αk+1x + βk+1)/(αkx + βk), where

α0 = 0, α1 = a0, β0 = 1, β1 = a1 and, for k ≥ 2,

αk = akαk−1 + αk−2 and βk = akβk−1 + βk−2 . (2)

The set

On =

{
xk : xk =

−βk
αk

, k = 1, . . . , n

}
⊂ P1(Fq) = Fq ∪ {∞} , (3)

is called the set of poles of f . The elements of On may not be distinct. In case an+1 = 0

in (1), Rn takes the form

Rn(x) =
αn−1x+ βn−1
αnx+ βn

. (4)

It can easily be verified that

f(c) = Pn(c) = Rn(c) for all c ∈ Fq \ On . (5)

Obviously, this property is particularly useful when Crk(f) is small with respect to the

field size. The values that f takes on On can also be expressed in terms of Rn, see [23].

If αn = 0, i.e., the last pole xn = ∞, Rn is linear. Following the terminology of [11], we

define the linearity of f ∈ Fq[x] as L(f) = maxa,b∈Fq |{c ∈ Fq : f(c) = ac+ b}|. Intuitively

L(f) is large when f is a permutation polynomial over Fq of Crk(f) = n, Rn is linear,

and n is small with respect to q.

Various problems concerning the concept of Carlitz rank are tackled in [2, 7, 8]. For

instance, the cycle structure of polynomials of a given Carlitz rank, the enumeration of

polynomials with small Carlitz rank and of particular cycle structure, or of permutations

of a fixed Carlitz rank are studied.

The relation between invariants of a polynomial f and Crk(f) is of interest. A lower

bound for Crk(f) in terms of the degree of f , denoted by deg(f), can be found in [2],

which shows that non-linear polynomials of small degree have large Carlitz ranks. A

similar bound in terms of the weight of f , i.e., the number of nonzero coefficients of f ,

is given in [9]. The classification of permutations with respect to their Carlitz ranks has

already found applications, see [23] and references therein.

This note is concerned with the permutation polynomials over Fq, classified with respect

to their Carlitz ranks, and it is structured as follows. In Section 2, we present a recent

result of the authors [1] on the difference of permutation polynomials. More precisely,

assuming f and f+g to be permutations over Fq, we give lower bounds for the degree of g

in terms of q and the Carlitz rank of f , see Theorems 1 and 4. These bounds are analogous

to a well-known result of Cohen, Mullen and Shiue where they obtain a lower bound for

deg(g) in terms of deg(f) = deg(f + g) = d when the cardinality of the field is sufficiently

large with respect to d [6, Theorem 1]. Our bound in Theorem 1 also generalizes the main
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result of [11] on the non-existence of complete mappings. Section 3 focuses on iterations of

permutation polynomials over finite fields of odd characteristic. In particular, we present

some preliminary results on the order of a permutation polynomial over Fq as an element

of Sq.

2 On the difference of permutation polynomials

Let f be a permutation polynomial over Fq. If f(x) + x is also a permutation, then f

is called a complete mapping polynomial, or a complete mapping. We refer the reader to

[17] for a detailed study of complete mappings over finite fields. See [13, 16, 19, 20, 22]

for various applications, and [11] for some recent work on complete mappings.

Theorem A below was conjectured by Chowla and Zassenhaus [4] in 1968, and proven by

Cohen [5] in 1990.

Theorem A. If d ≥ 2 and p > (d2 − 3d + 4)2, then there is no complete mapping

polynomial of degree d over Fp.

A significant generalization of this result was obtained by Cohen, Mullen and Shiue [6]

in 1995, and gives a lower bound for the degree of the difference of two permutation

polynomials in Fp[x] of the same degree d, when p > (d2 − 3d+ 4)2.

Theorem B. Suppose f and f + g are monic permutation polynomials over Fp of degree

d ≥ 3, where p > (d2 − 3d+ 4)2. If deg(g) = t ≥ 1, then t ≥ 3d/5.

The concept of Carlitz rank was used by Işık, Topuzoğlu and Winterhof [11] recently to

obtain a non-existence result, similar to that in Theorem A.

Theorem C. If f(x) is a complete mapping over Fq and L(f) < b(q + 5)/2c , then

Crk(f) ≥ bq/2c .

Theorems 1 and 4 below give lower bounds for the degree of the difference between two

permutation polynomials, analogous to Theorem B, generalizing Theorem C, see [1]. We

remark that Theorems A and B hold over prime fields only, while Theorems C, 1 and 4

are true for any finite field.

Let f be a permutation polynomial over Fq, q ≥ 3, with Crk(f) = n ≥ 1. Suppose that f

has a representation as in (1) and the fractional linear transformation Rn, which is associ-

ated to f as in (5) is not linear. In other words αn defined as in (2) is not zero. We denote

the set of all such permutations by C1,n, i.e., the set C1,n consists of all permutation poly-

nomials over Fq, satisfying Crk(f) = n ≥ 1 and αn 6= 0. Clearly L(f) ≤ n+ 2, if f ∈ C1,n.

We note that permutations f ∈ Fq[x] with αn = 0 behave very differently. For instance,

the polynomial given by f(x) =

(((
(−x/(d+ 1))q−2 + 1

)q−2
+ d
)q−2

− 1/(d+ 1)

)q−2

is
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a complete mapping for every q ≡ 1 mod 3 where d is a primitive 3-rd root of unity, see

[12]. Indeed, the condition on the linearity of f in Theorem C corresponds to the case

αn = 0. Therefore, we only consider permutations in C1,n.

Theorem 1. Let f and f + g be permutation polynomials over Fq. If f ∈ C1,n and

deg(g) = k satisfies 1 ≤ k < q − 1, then

nk + k(k − 1)
√
q ≥ q − ν − n , (6)

where ν = gcd(k, q − 1).

For k = 1 (and hence ν = 1) we obtain Theorem C, which is the main result in [11].

Corollary 2. Let f be a permutation polynomial over Fq with f ∈ C1,n. If n < (q− 1)/2,

then f is not a complete mapping.

Remark 3. We note that the bound given in (6) is non-trivial only when q ≥ k(k−1)
√
q+

k + ν + 1.

When g(x) = cxk ∈ Fq[x], gcd(k + 1, q − 1) = 1, and f ∈ C1,n where xn ∈ On in (3)

satisfies xn = 0, the lower bound in (6) can be simplified significantly. We denote by C2,n
the set of f ∈ C1,n such that the last pole xn of f is zero.

Theorem 4. Let f(x) and f(x) + cxk be permutation polynomials over Fq, where f ∈
C2,n, 1 ≤ k < q − 1, c ∈ Fq

∗. Put m = gcd(k + 1, q − 1). Then

k(n+ 3) + (k − 1)(m− 1)
√
q ≥ q − n .

In particular, if m = 1, then k ≥ (q − n)/(n+ 3).

The proofs of Theorems 1 and 4 are based on the idea of relating the Carlitz rank n

of a permutation polynomial f of Fq to the number of rational points of an absolutely

irreducible projective curve defined over Fq. The fact that f can be approximated by a

rational transformation enables us to obtain this relation. Then the well-known Hasse-

Weil Theorem yields the stated inequalities.

3 On iterations of permutation polynomials

Dynamical systems generated by polynomials in Fq[x] have been studied widely. We refer

the reader to a recent survey [18] for algebraic and number theoretic properties of alge-

braic dynamical systems over finite fields and some of their applications. The distribution

of elements in orbits of permutation polynomials in C1,n is studied in [9]. Authors use
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the approximation property in C1,n, in the sense of (5), to analyse the distribution be-

haviour of pseudorandom sequences generated by f ∈ C1,n efficiently, since this approach

enables them to avoid the usual problem of degree growth, encountered when iterations

of polynomials are considered.

We denote the m-th iteration of f ∈ Fq[x] by

f (m)(x) = f (m−1)(f(x)) for m ≥ 1,where f (0)(x) = x.

In connection with complete mappings, one may wonder if f (m), m > 1, is complete while

f is not. Such polynomials are called {m}-complete mappings, see [24] for results on the

{m}-completeness of some classes of polynomials over Fq.

In this section we consider finite fields Fq of odd characteristic and study iterations of

permutation polynomials over Fq of a given Carlitz rank n. Iterations of permutations

of Carlitz rank 1 are easy to determine since their cycle structures can be described in a

simple manner, see [7, Theorem 2]. On the contrary, the cycle structure of permutations

of higher rank are difficult to describe, see [7, Theorems 6, 7, 11, 13 and 15] for the cases

n = 2, 3. Therefore in what follows we consider n ≥ 2.

For simplicity we consider monic polynomials only, and take f ∈ C2,n. Without loss of

generality, we also assume throughout that an+1 = 0 in the representation (1) of f . For

f(x) ∈ C2,n, consider the associated rational fraction Rn(x) as in (4) and (5). We denote

the m-th iteration of Rn(x) by R
(m)
n (x). Note that

R(m)
n (x) =

αnm−1x+ βnm−1
αnmx+ βnm

,

where αk, βk, k ≥ 2, are defined as in Equation (2) and ai = aj for i ≡ j mod n, i, j ≥ 1.

Hence we have f (m)(c) = R
(m)
n (c) for all c ∈ Fq \ Onm.

If f(x) = ((x + a)q−2 + b)q−2 for some a, b ∈ Fq, b 6= 0, then by Theorem C, f (2) is not

complete for q > 9. However, as we see in the following example, f (3) is trivially complete

since f (3)(x) ≡ x. Using the terminology of [24], f(x) therefore is not {2}-complete, but

it is {3}-complete.

Example 5. Let f(x) = ((x + a)q−2 + b)q−2 be a permutation polynomial over Fq with

f(0) = 0. Then f (3)(x) ≡ x.

Proof. Since b 6= 0, the property f(0) = 0 implies that a 6= 0 and ab + 1 = 0. Note that

O2 = {−a, 0}. For any x ∈ Fq \ O6 we have

f (3)(x) = R
(3)
2 (x) =

α5x+ β5
α6x+ β6

=
((ab)2 + 3ab+ 1)x+ a((ab)2 + 4ab+ 3)

(b((ab)2 + 4ab+ 3)x+ ((ab)3 + 5(ab)2 + 6ab+ 1))
= x,
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where O6 = {−a, 0,∞}. We see by straightforward calculations that f (3)(0) = 0 and

f (3)(−a) = −a. This finishes the proof of our claim.

Consider f ∈ C1,n. Obviously if q > 2mn+ 1, then f (m)(x) ∈ Fq[x] is not complete unless

f (m) is linear. However the Carlitz rank of f (m) may be smaller than mn. Hence one may

obtain better bounds for {m}-completeness of special types of permutation polynomials

in C1,n, when f (m) is also in C1,n.

Here we focus on extending the property of permutations of Carlitz rank 2, which is

observed in Example 5 above, to those of arbitrary Carlitz rank n > 2. Therefore we

search for the cases where f is trivially {m}-complete, i.e., f (m)(x) ≡ x. This, of course,

leads to the problem of determining the order of f ∈ C1,n as an element of the group Sq.

Our approach is similar to that in Example 5, i.e., first finding when R
(m)
n (x) ≡ x. We

need to determine the values of αnm, αnm−1, βnm and βnm−1. Lemmas 6 and 10 below

enable us to express them in terms of eigenvalues of the matrix corresponding to Rn.

Lemma 6. Let R(x) = (ax + b)/(cx + d) ∈ Fq(x), γ = ad − bc 6= 0. If h(T ) =

T 2 − (a + d)T + γ has two distinct roots λ1 and λ2 in Fq2, then R(m)(x) ≡ x if and

only if λm1 = λm2 .

Proof. Let M =

(
a b

c d

)
∈ GL(2, q) be the matrix associated to R(x). Then h(T ) is

the characteristic polynomial of M . By our assumption, M has two distinct eigenvalues.

That is, there exists P ∈ GL(2, q2) such that M = PDP−1 for the diagonal matrix

D =

(
λ1 0

0 λ2

)
. Then the m-th iteration R(m)(x) of R(x) is obtained by

Mm = PDmP−1 = P

(
λm1 0

0 λm2

)
P−1 . (7)

By Equation (7), we conclude that R(m)(x) ≡ x if and only if λm1 = λm2 .

Remark 7. We recall that the set of fractional transformations (ax + b)/(cx + d), for

a, b, c, d ∈ Fq with ad − bc 6= 0, forms the projective general linear group PGL(2, q). Up

to conjugacy, a complete list of its subgroups is known, see [10, Theorem A.8]. This

classification implies that the order m of Rn(x) is a divisor of q ± 1.

Now we turn our attention to polynomials f ∈ C2,n, and consider the corresponding

rational transformations Rn. Since f ∈ C2,n, i.e., βn = 0, the associated matrix M ∈
GL(2, q) is given by

M =

(
αn−1 βn−1
αn 0

)
. (8)
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Remark 8. For f(x) ∈ C2,n, by straightforward calculations, we see that the determinant

of M associated to Rn(x) is (−1)n. Therefore the characteristic polynomial of M , which

is given in Equation (8), is hM(T ) = T 2 − αn−1T + (−1)n.

Corollary 9. Let f(x) ∈ C2,n and Rn(x) be the corresponding rational transformation.

Suppose αn−1 satisfies α2
n−1 − 4(−1)n 6= 0. Let λ1, λ2 be the distinct eigenvalues of M in

(8). Then R
(m)
n (x) ≡ x if and only if λm1 = λm2 .

The criteria given in Corollary 9 can be used to identify polynomials in C2,n, withR
(m)
n (x) ≡

x. Lemma 10 below indicates the choices for αn−1. Moreover, it enables us to construct

permutations of prescribed Carlitz rank n with R
(m)
n (x) ≡ x, see Remark 12 and Example

13.

Lemma 10. Let h1(T ) = T 2 − γT − 1 and h2(T ) = T 2 − δT + 1 be in Fq[T ].

(i) Let λ1, λ2 be the roots of h1 in Fq2. Then γ satisfies

λm1 − λm2 = (λ1 − λ2)Hm(γ), with Hm(T ) =

bm−1
2
c∑

i=0

(
m− i− 1

i

)
Tm−2i−1 (9)

for m ≥ 1.

(ii) Let λ1, λ2 be the roots of h2 in Fq2. Then δ satisfies

λm1 − λm2 = (λ1 − λ2)Gm(δ), with Gm(T ) =
m−1∑
i=0

(
m+ i

2i+ 1

)
(T − 2)i (10)

for m ≥ 1.

Proof. If λ1 = λ2, then Equations (9) and (10) are clearly satisfied. Therefore we assume

that λ1 6= λ2. For m ≥ 1, we define

Lm =
λm1 − λm2
λ1 − λ2

.

(i) It can be seen easily that

L1 = H1(γ) = 1 and L2 = H2(γ) = γ . (11)

Since λ1, λ2 are the roots of h1, for m ≥ 1, Lm satisfies

Lm+2 − γLm+1 − Lm = 0 .
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By Equation (11), it is enough to show that Hm(T ) satisfies the same recurrence for

T = γ and m ≥ 1. For m = 2k, 2k + 1 we can write Hm(γ) as follows:

H2k(γ) =
k−1∑
i=0

(
2k − i− 1

i

)
γ2k−2i−1 =

k−1∑
i=0

(
k + i

k − i− 1

)
γ2i+1 =

k−1∑
i=0

(
k + i

2i+ 1

)
γ2i+1,

H2k+1(γ) =
k∑

i=0

(
2k − i
i

)
γ2k−2i =

k∑
i=0

(
k + i

k − i

)
γ2i =

k∑
i=0

(
k + i

2i

)
γ2i .

Hence for m = 2k we have

H2k+2(γ)− γH2k+1(γ)−H2k(γ) (12)

=
k∑

i=0

(
k + i+ 1

2i+ 1

)
γ2i+1 − γ

k∑
i=0

(
k + i

2i

)
γ2i −

k−1∑
i=0

(
k + i

2i+ 1

)
γ2i+1 .

Since the identity (
k + i+ 1

2i+ 1

)
−
(
k + i

2i

)
−
(
k + i

2i+ 1

)
= 0

holds, the coefficient of γ2i+1 in Equation (12) is equal to zero for all i = 0, . . . , k.

The same argument holds for m = 2k − 1 as the coefficient of γ2i in

H2k+1(γ)− γH2k(γ)−H2k−1(γ)

satisfies (
k + i

2i

)
−
(
k + i− 1

2i− 1

)
−
(
k + i− 1

2i

)
= 0

for all i = 0, . . . , k.

(i) Similarly, we have L1 = G1(δ) = 1 and L2 = G2(δ) = δ and we replace Equation

(12) by

Gm+2(δ)− (δ − 2)Gm+1(δ)− 2Gm+1(δ) +Gm(δ) . (13)

Then by similar calculations we observe that the coefficient of (δ − 2)i in Equation

(13) satisfies(
m+ 2 + i

2i+ 1

)
−
(
m+ i

2i− 1

)
− 2

(
m+ 1 + i

2i+ 1

)
+

(
m+ i

2i+ 1

)
= 0

for all i = 0, . . . ,m+ 1, which proves the desired result.
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As mentioned earlier, a permutation polynomial f over Fq can be regarded as an element

of the symmetric group Sq. We denote the order of f in Sq by ordSq(f). Next theorem

provides a lower bound for ordSq(f).

Theorem 11. Let f ∈ C2,n with α2
n−1 − 4(−1)n 6= 0. We define

Am(T ) =

{
Hm(T ), if n is odd,

Gm(T ), if n is even,

where Hm, Gm are given as in Equations (9) and (10). If Am(αn−1) = 0, then R
(m)
n (x) ≡

x. Moreover, putting ordSq(f) = mf , q > nmf + 2 implies mf ≥ m0, where m0 =

min{m | Am(αn−1) = 0 }. In particular, mf = `m0 for some ` ≥ 1.

Proof. The first claim follows from Remark 8, Corollary 9 and Lemma 10. For the second

claim we note that f (m)(x) and R
(m)
n (x) differ at most at nm elements of Fq. Therefore if

q > nmf +2, then R
(mf )
n (c) = c for at least three distinct elements c in Fq. But this implies

that R
(mf )
n (x) ≡ x. Therefore f (mf )(x) ≡ x and q > nmf +2 imply that R

(mf )
n (x) ≡ x.

Remark 12. One can construct permutations f , represented as in Equation (1), by an

algorithm given in [2] when Rn(x) and the poles x1, . . . , xn ∈ P1(Fq) are prescribed.

Example 13. For q = 29, we fix n = 4, and choose R4(x) = (x − 5)/6x, with α3 =

−1, being a root of A3(T ), i.e., m0 = 3, (and hence of A6(T )). Therefore R
(3)
4 (x) ≡

x. We prescribe the poles as (x1, x2, x3, x4) = (27, 16, 5, 0), and as in [2] we determine

(a1, a2, a3, a4) = (2, 8, 7, 14), so that, f(x) = ((((x+ 2)27 + 8)27 + 7)27 + 14)27. It can also

be checked in this case that ordSq(f) = 6.

In the special case of polynomials f in C2,3 we obtain the following corollary.

Corollary 14. Consider the permutation polynomial f = (((x+a)q−2 + b)q−2 + c)q−2 with

f(0) = 0 and a(b2 + 4) 6= 0. Then R
(m)
3 ≡ x if and only if b is a root of the polynomial

Am(T ) =

bm−1
2
c∑

j=0

(
m− j − 1

j

)
Tm−2j−1 . (14)

In particular, putting m0 = min{m |Am(b) = 0}, and ordSq(f) = mf , we have mf ≥ m0,

when q > 3mf + 2.

Another result on ordSq(f) for a polynomial f with Crk(f) = 3 can be given as follows.
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Proposition 15. Let f(x) = (((x + a)q−2 + b)q−2 + c)q−2 ∈ Fq[x], with f(0) = 0 and

a(b2 + 4) 6= 0. Put mf = ordSq(f). Suppose q > 3mf + 2. If the order of (b + γ(b))/2 in

the multiplicative group F∗q2 is k, where γ(b)2 = b2 + 4, then mf ≥ m, where m is given by

m =


k/2, if k ≡ 0 mod 8,

k, if k ≡ 2, 6 mod 8,

k/4, if k ≡ 4 mod 8,

2k, if k ≡ 1, 3, 5, 7 mod 8.

Proof. Since a 6= 0, the assumption f(0) = 0 implies that abc + a + c = 0, i.e., β3 = 0.

This shows that f ∈ C2,3. Since α4 = b and b2 + 4 6= 0, Lemma 6 implies that R
(m)
3 ≡ x

if and only if the distinct eigenvalues satisfy λm1 = λm2 . Then the argument follows from

λ2m1 = (−1)m as λ1λ2 = −1.

Example 16. (1) Let f(x) = (((x + 7)71 + 14)71 + 25)71 be a permutation over F73.

In this case, we have b2 + 4 = 54. Then for γ(b) = 28, the order k of the element

(b + γ(b))/2 is 24 and ordSq(f) = 12 = k/2. Note that b = 14 is a root of A12(T )

given in Equation (14), but it is not root of Am(T ) for any m < 12.

(2) Let f(x) = (((x+ 13)41 + 13)41 + 28)41 be a permutation over F43. In this case, we

have b2 + 4 = 1. Then for γ(b) = 1, the order k of the element (b+ γ(b))/2 is 6 and

ordSq(f) = 6 = k. We remark that b = 13 is not a root of Am for any m < 6.

(3) If we choose γ(b) = −1 in Example (2), then we have ordSq(f) = 6 = 2k.
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