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Self-dual tilings with respect to star-duality
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Abstract

The concept of star-duality is described for self-similar cut-and-project tilings in arbitrary dimensions. This generalises
Thurston’s concept of a Galois-dual tiling. The dual tilings of the Penrose tilings as well as the Ammann–Beenker tilings are
calculated. Conditions for a tiling to be self-dual are obtained.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Non-periodic discrete structures like infinite words, tilings, or point sets, are a rich source of exciting objects
studied within many fields of mathematics, including automata theory, combinatorics, discrete geometry, dynamical
systems, group theory, mathematical physics and number theory. Many interesting examples of such structures can
be produced by substitutions as well as by cut-and-project schemes. For such structures there are several concepts of
‘dual’ tilings (words, point sets) [17,21,24]. The present article describes how Thurston’s concept of Galois-duality
[23] generalises to arbitrary cut-and-project sets. This generalisation does not depend on Galois conjugacy but on the
star map (see [15], or Definition 5) wherefore the term star-dual (resp. ?-dual) is used, rather than Galois dual. The
benefits of star-duality are that it gives a purely algebraic approach to certain geometric problems; that it covers a
pretty wide range of examples; and that it may help to find the certain concepts of duality. Furthermore, and hopefully,
it can be utilised to attack open problems in the theory of non-periodic structures.

The first section of the present paper collects necessary facts and definitions about substitutions and cut-and-project
tilings, resp. model sets. Section 2 contains the definition of ?-duality, together with an example. The calculation of
the ?-dual tilings of the famous Penrose tilings and Ammann–Beenker tilings [11] is carried out in Section 3. It turns
out that the star-dual tilings of the Penrose tilings are the well-known Tübingen triangle tilings (and vice versa),
which coincides with a related result in [2]. In contrast, the star-dual tilings of the Ammann–Beenker tilings are very
similar to the Ammann–Beenker tilings themselves. In fact, they are mutually locally derivable [4] with the Ammann–
Beenker tilings. This motivates the question whether there are self-dual tilings w.r.t. star-duality. Therefore, Section 4
is dedicated to self-duality in arbitrary dimensions. A necessary, and a sufficient condition for a tiling to be self-dual
w.r.t. star-duality are obtained.
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Fig. 1. The substitution for the Penrose tiling in the version with triangles S and L (left), the first iterates of the substitution on the obtuse triangle

L (right). The substitution factor in this example is τ =

√
5+1
2 .

The concept of star-duality is not new, see for instance [23,10,24]. The relevant results of this paper are the
following: First, Theorem 3 gives a useful technical result which is exploited in the next sections, and will be exploited
further in future work. Second, the dual tilings of the Penrose tilings and the Ammann–Beenker tilings are obtained,
where the latter is done for the first time here, up to the knowledge of the author, where the former one is obtained in
[2] with much more effort in a slightly different framework (but not in [10], as the title might suggest). Last, Lemma 10
and Corollary 11 are the first steps towards a classification of self-dual tilings, in one dimension as well as in arbitrary
dimension.

Remark: For convenience, we will exclude periodic structures in the following. Each occurring biinfinite sequence,
tiling etc. is assumed to be non-periodic. The set of positive integers is denoted by N. The closure (interior) of a set A
is denoted by cl(A) (int(A)).

1.1. Substitution sequences

Let A be an alphabet, i.e., a finite set of letters; let A∗ be the set of all finite words over the alphabet A, i.e.,
all words which are concatenations of letters of A. Usually, the empty word ε (consisting of no letters) is required
to be an element of A∗. A substitution is a map ζ : A → A∗ \ {ε}. We will call such a substitution also symbolic
substitution if we want to emphasise the difference to a tile substitution. By setting ζ(a1 · · · am) = ζ(a1) · · · ζ(am), ζ

acts also as a map fromA∗ toA∗, fromAN toAN, and fromAZ toAZ. The family of all biinfinite words, where each
finite subword is contained in some σ k(a) (a ∈ A), is denoted Xσ . There is a lot of literature devoted to symbolic
substitutions, see for instance [16] and the references therein for more details.

1.2. Substitution tilings

A tile is a non-empty compact subset of Rd which is the closure of its interior. A tiling of Rd is a set {T j } j∈N of

tiles which is a covering of Rd (i.e., Rd
=

⋃
j∈N T j ) that is non-overlapping (i.e., int(T j ) ∩ int(Ti ) = ∅ for j 6= i).

A simple way to generate tilings – periodic ones as well as non-periodic ones – is via a tile substitution. Roughly
speaking, a tile substitution is given by a finite set {T1, . . . , Tm} of tiles, the prototiles, an expanding map Q, and a
rule how to dissect each QT j into isometric copies of some prototiles Ti .

Example: A diagram of the tile substitution for the Penrose tiling [11] is shown in Fig. 1. Here, we use triangles as
prototiles rather than rhombi or the celebrated kites and darts. Since the two prototiles are mirror-symmetric, but their
substitutions are not, we have to respect the orientation of each tile. This is achieved by a black dot on each triangle.
As indicated in the figure, iterating the substitution several times fills larger and larger portions of space, eventually
resulting in a tiling of the plane. However, the proper definition of a tile substitution and a substitution tiling is as
follows.

Definition 1. A (self-affine) tile substitution is defined via a set of prototiles and a map σ . Let T1, T2, . . . Tm be non-
empty compact sets – the prototiles – in Rd , such that cl(int(T j )) = T j for each i ≤ m. Let Q be an expanding linear
map such that

QT j =

m⋃
i=1

Ti +Di j (1 ≤ j ≤ m), (1)
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where the union is not overlapping (i.e., the interiors of the tiles in the union are pairwise disjoint); and each Di j is a

finite (possibly empty) subset of Rd , called digit set. Then

σ(T j ) := {Ti +Di j | i = 1 . . . m}

is called a (tile)substitution. By σ(T j + x) := σ(T j )+ Qx and σ({T, T ′}) := {σ(T ), σ (T ′)}, σ extends in a natural
way to all sets {Ti(k) + xk | k ∈ I }.

The sum T +Di j = T + {di j1, . . . , di jk} means {T + di j1, . . . , T + di jk}, with the convention T +∅ = ∅, if Di j is
empty. The set I in the last line of the definition can be any index set. In particular, if I = N, such a set can describe a
tiling, given that the tiles do not overlap, and the union of all tiles is the entire space Rd . Before stating the definition
of a substitution tiling, let us make two remarks.

Remark: Often, a tile substitution is defined without the requirement (1). To be precise, if the support of σ(T j )

equals QT j – that is, if (1) holds – the substitution is called self-affine. Moreover, if Q is a homothety (i.e., just
a multiplication by a scalar factor λ), the substitution is called self-similar. In this case, λ is called the substitution

factor of the substitution. E.g., the expanding linear map for the Penrose tiling is Q =

(
τ 0
0 τ

)
, where τ = (

√
5+1)/2

is the golden mean. Thus, the substitution factor of the Penrose substitution in Fig. 1 is τ . Whenever the term ‘self-
similar tiling’ (‘self-affine tiling’) is used in the sequel this is to be understood as ‘self-similar substitution tiling’
(‘self-affine substitution tiling’).

Remark: Every symbolic substitution (see Section 1.1) gives rise to a self-similar tile substitution in R1 in a
canonical way, just by replacing each letter by an interval. This can be done in such a way that the tile substitution is
self-similar. Namely, one uses the entries of a positive PF-eigenvector of the substitution matrix, see [16,8].

Definition 2. Let σ be a tile substitution. A tiling T is called a substitution tiling (with substitution σ ), if each finite
subset of T is a translate of some subset of some σ k(T j ), where k ≥ 0, and T j some prototile. The family of all
substitution tilings with substitution σ is the tiling space Xσ .

This definition of a tiling space is equivalent to the usual one [22], whenever σ is primitive. Primitive means that there
is k ≥ 0 such that a power of the substitution matrix (or ‘incidence matrix’) Mσ = (|Di j |)1≤i, j≤m is strictly positive.
Here, |Di j | denotes the cardinality of Di j . It is also consistent with the usual definition of the associated dynamical
system (Xσ , S) arising from σ , see [16], as well as with our definition of Xσ in Section 1.1.

1.3. Iterated function systems

The prototiles of a self-affine substitution can be derived from Q and (Di j )1≤i, j≤m uniquely as follows: Multiplying

the entire equation system (1) by Q−1 yields the corresponding iterated function system (IFS) for the tiles of σ :

T j =

m⋃
i=1

Q−1(Ti +Di j ) (1 ≤ j ≤ m). (2)

Such an IFS is known to possess a unique non-empty compact solution (see for instance [5] and the references
therein). Since the prototiles of σ fulfil (2), they are the unique solution of (2). In particular, by Definition 1, the IFS
(2) is non-overlapping, that means, for each j , the interiors of the sets in the union are pairwise disjoint. Note that two
parts Ti , T j of the solution are allowed to overlap. The point is that (2) induces a partition of each T j up to a set of
measure 0.

Originally, the term IFS was coined for the case m = 1 only. An IFS with m > 1 components is often called
‘graph-iterated function system’ or ‘multi-component IFS’. Here, we use the term IFS for all of them.

Remark: We just mentioned that each self-affine substitution gives rise to a non-overlapping IFS (2). Conversely,
by multiplying (2) with Q, each non-overlapping IFS with a common contracting map Q−1 defines a self-affine
substitution as in Definition 1.

Remark: An IFS as above can be written as a finite state automaton (FSA). The states are the T j . The input
alphabet consists of all elements x in

⋃
1≤i, j≤m Di j . The input of a digit x changes the state from T j to Ti , if x ∈ Di j ,

otherwise the state is changed to FAIL. For an example, see Fig. 3. For details, cf. [23,10].
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The following theorem ensures that it does not matter where the prototiles for a substitution σ are located in space.
The tiling space defined by σ depends only on the way how tiles are dissected into smaller pieces, not where they
are located. In particular, it does not matter whether the prototiles overlap or not. The important property is that the
dissection of each prototile is non-overlapping. This theorem will be useful in the next sections, as well as for future
work.

Theorem 3. Let D be the digit set matrix for an IFS in Rd with a common contraction Q. If (A1, A2, . . . , Am)

is a solution for D, then (A1 + t1, A2 + t2, . . . , Am + tm) is a solution for {Di j + (t j − Qti )}1≤i, j≤m for all

(t1, t2, . . . , tm) ∈ (Rd)m .

Proof. Throughout the proof, let (A1, . . . , Am) be a solution for D, i.e.,

A j =

m⋃
i=1

Q−1(Ai +Di j ) (1 ≤ j ≤ m).

First, let A′j = A j + t for some common t (1 ≤ j ≤ m). Then the approach

A′1 = Q A′1 +D11 + x ∪ · · · ∪ Q A′m +Dm1 + x
...

...
...

A′m = Q A′1 +D1m + x ∪ · · · ∪ Q A′m +Dmm + x

yields

A1 + t = Q A1 + Qt +D11 + x ∪ · · · ∪ Q Am + Qt +Dm1 + x,

and it follows x = t − Qt . It is straightforward to check that (A′1, . . . , A′m) = (A1 + t, . . . , Am + t) is a solution for
{Di j + (t − Qt)}1≤i, j≤m .

Next, let t1 = t2 = · · · = tk = 0, tk+1 = · · · = tm = t and A′j = A j + t j for k + 1 ≤ j ≤ m. Then the approach

A1 =
k⋃

i=1
Q Ai +Di1 ∪

m⋃
i= j+1

Q A′i +Di,1 + x

...
...

...

Ak =
k⋃

i=1
Q Ai +Dik ∪

m⋃
i=k+1

Q A′i +Di,k + x

A′k+1 =
k⋃

i=1
Q Ai +Di,k+1 + y ∪

m⋃
i=k+1

Q A′i +Di,k+1 + z

...
...

...

A′m =
k⋃

i=1
Q Ai +Di,m + y ∪

m⋃
i=k+1

Q A′i +Di,m + z

(3)

yields y = t, x = −Qt and z = t − Qt . With these values, it is straightforward to check that (A1, . . . , Ak, Ak+1 +

t, . . . Am + t) is a solution of (3).
By combining these two results, we obtain the digit matrix for (A1 + t1, A2 + t2, . . . , Am + tm) successively as

follows.
D(1)
= D + (t1 − Qt1) = {Di j + (t1 − Qt1)}1≤i, j≤m has the solution (A1 + t1, A2 + t1, . . . , Am + t1).

D(2)
= D + (t1 − Qt1)+


0 t2 − t1 · · · t2 − t1

−Q(t2 − t1) (E − Q)(t2 − t1) · · · (E − Q)(t2 − t1)
...

...
...

−Q(t2 − t1) (E − Q)(t2 − t1) · · · (E − Q)(t2 − t1)
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has the solution (A1 + t1, A2 + t1 + (t2 − t1), . . . , Am + t1 + (t2 − t1)) (where we use (3) with y = t = t2 − t1, and
E denotes the identity matrix), and so on, until

D(m)
= D(m−1)

+


0 · · · 0 tm − tm−1
...

...
...

0 · · · 0 tm − tm−1
−Q(tm − tm−1) · · · −Q(tm − tm−1) (E − Q)(tm − tm−1)


has the solution (A1 + t1, A2 + t2, . . . , Am−1 + tm−1, Am + tm−1 + (tm − tm−1)). Now, D(m) is of the desired form,
which proves the claim. �

Regarding the action of a common regular linear map T on the solution (A1, . . . , Am) with respect to D rather
than the action of different translations is much simpler. The same is true if all translation vectors ti in the previous
theorem had been equal.

Lemma 4. Let D be the digit set matrix for an IFS in Rd with a common contraction Q. Let T : Rd
→ Rd be any

invertible linear map. If (A1, A2, . . . , Am) is a solution for D, then (T A1, T A2, . . . , T Am) is a solution for T (D),
where T (D) =

(
T (Di j )

)
1≤ j,i≤m , T (Di j ) = {T di jk | di jk ∈ Di j }.

Proof.

A j =

m⋃
i=1

Ai +Di j ⇒ T A j = T
( m⋃

i=1

Ai +Di j

)
=

m⋃
i=1

T Ai + T (Di j ). �

1.4. Model sets

In the sequel we consider self-similar tilings which arise from model sets. Such tilings are known as cut-and-project
tilings [1,14,15]; see also [16], where the cut-and-project method for one-dimensional tilings is called ‘geometric
realization’.

Definition 5. A model set is defined via a cut and project scheme, i.e., a collection of spaces and mappings as follows.
Let G, H be locally compact Abelian groups, Λ be a lattice in G× H (that is, Λ is a co-compact discrete subgroup

of G × H ), π1 : G × H → G, π2 : G × H → H be projections, such that π1|Λ is injective, and π2(Λ) is dense in H .
Let W ⊂ H be a compact set – the window – such that the closure of int(W ) equals W .

G
π1
←− G × H

π2
−→ H

∪ ∪ ∪

V Λ W

Then

V := {π1(x) | x ∈ Λ, π2(x) ∈ W }

is called a model set.
If µ(∂(W )) = 0, then V is called regular model set.
The star map is the map ? : π1(Λ)→ H, x?

= π2(π
−1
1 (x)).

We should mention that in many cases in the literature G = Rd and H = Re hold. One may assume this on reading
this article, without losing much information. However, the notion of star-duality is tailored to the general case, and
this is where we leave the concept of Galois-duality. There are cut-and-project tilings (in fact, a lot of them) of the
line or the plane, where H is the field Qp of p-adic integers, or a product of those with some Euclidean space Re, see
[3,18–20].

In the context of symbolic substitutions [16], the setting is very much the same, but unfortunately the terminology
differs. For instance, the cut-and-project scheme is called geometric realization, the window is usually called
(generalized) Rauzy fractal etc.
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A model set is, by definition, a point set. There are several ways to assign a tiling to it. For instance, one may take
the Voronoi cells of the point set as tiles. Whenever we can obtain a tiling T from a model set in such a way we call
T a cut-and-project tiling. To be precise: If it is possible to assign a tiling T to a model set V such that V and T
are mutually locally derivable (MLD) in the sense of [4], we call T a cut-and-project tiling. Roughly spoken, MLD
means that one can obtain V from T by local replacement rules and vice versa.

The self-similar cut-and-project tilings are the objects we will consider in the following. We should mention that
there is a huge number of such tilings, including the Fibonacci tilings and the Tribonacci tilings [16], the Penrose
tilings and the Ammann–Beenker tilings [11], the Chair tilings and the Sphinx tilings [3]. A collection of several
additional examples is available online [9].

2. The ?-dual substitution

It is known that the window of a self-similar model set is the solution of an IFS, see for instance [12,19,21]. Since
each non-overlapping IFS defines a tile substitution (see the remark after (2)), several authors considered this ‘dual
substitution tiling’ (or better, the substitution) induced by the IFS of the window. In [23], Thurston uses a different
construction based on Galois conjugation in the field Q(λ), where λ denotes the substitution factor of a self-similar
tiling. One can utilise Theorem 3 to show that both approaches yield the same tiling spaces. Thurston called the tilings
arising from this construction ‘Galois duals’ of the original tilings. We proceed by stating the definition of the ?-dual
tiling of a self-similar cut-and-project tiling, which is a generalization of Galois-duality.

In general, the groups G and H in Definition 5 can be arbitrary locally compact Abelian groups. However, dealing
with substitutions and linear maps, we require G and H to be equipped with a vector space structure in the sequel.
This is no rigid restriction, since all examples in the literature fulfil this condition.

Furthermore, in this section we require the expanding linear map Q : G → G to be as follows: Let T : G × H →
G × H be a hyperbolic linear map (i.e., there is no eigenvalue e of T with |e| = 1) such that T |G is an expansion and
T |H is a contraction. Let Q = T |G . Again, this is not really a restriction, the majority of well-studied tilings fit into
this framework.

Definition 6. Let T be a self-similar cut-and-project tiling with substitution σ and expansion Q. Let D =

(Di j )1≤i, j≤m be a corresponding digit matrix as in Definition 1 such that σ is the substitution induced by D.

Furthermore, let Qπ1(Λ) ⊂ π1(Λ), and each d ∈ Di j be in π1(Λ), with π1 and Λ as in Definition 5. Then (D?)T

defines a substitution σ ? with expansion Q′ := (T |H )−1, which is called the ?-dual substitution.

Here, D?
= (D?

i j )1≤i, j≤m , and D?
i j = {d

?
| d ∈ Di j }.

If the substitution is one-dimensional and self-similar with substitution factor λ, where λ is a unimodular PV -
number, then Q′ =

(
diag(λ2, λ3, . . . , λN )

)−1, where λ2, . . . , λN are the Galois conjugates of λ, see [10,8]. Therefore
the name ‘Galois duals’ was coined in [23].

Remark: Note that the star-dual substitution also defines self-similar cut-and-project tilings, with the roles of G
and H in Definition 5 reversed. In particular, a star-dual tiling of some tiling in G is a tiling in H . There are tilings of
the Euclidean plane (or the line) with p-adic internal spaces H , see [3,20]. For instance, the star-dual tiling of a plane
tiling may be a tiling in Qp ×Qp, where Qp is the field of p-adic integers, which is a locally compact Abelian group
as well.

Remark: It follows immediately from the definition that (σ ?)? = σ . By Lemma 4, we can freely choose between
applying the star map to D or Q−1D. The resulting substitutions are the same, up to a scaling of the prototiles.

Example: (Fibonacci squared) Consider the word substitution ζ on the alphabet {a, b} given by ζ(a) =

aab, ζ(b) = ab. The substitution matrix (or ‘incidence matrix’) is Mζ =

(
2 1
1 1

)
. It is well-known – and easy to see

– that the PF-eigenvalue (the leading eigenvalue) of M is the substitution factor for the tile substitution. Moreover, the
entries of a left eigenvector of M , corresponding to the PF-eigenvalue, contains the relative lengths of the prototiles for

a self-affine tile substitution [8,16]. The leading eigenvalue in this case is τ 2
=

√
5+3
2 , which is the substitution factor

of the desired substitution. Requiring the prototiles to be intervals, the lengths can be chosen as `a = 1, `b = τ−1.
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Fig. 2. The automaton for the IFS for the squared Fibonacci substitution and its dual automaton.

(Here is some freedom, we may choose any multiples of these lengths as well.) One appropriate tile substitution is
given by the digit set matrix(

{0, 1} {0}
{2} {1}

)
.

The prototiles Ta = [0, 1] and Tb = [0, τ−1
] arise as the unique compact non-empty solution of the corresponding

IFS

Ta = τ−2Ta ∪ τ−2(Ta + 1) ∪ τ−2(Tb + 2),

Tb = τ−2Ta ∪ τ−2(Tb + 1).
(4)

We proceed by considering the digit set of this IFS, D =
(
{0, τ−2

} {0}
{2τ−2

} {τ−2
}

)
, in agreement with the last remark,

and in order to illustrate the action of Galois conjugation. The IFS (4) can be represented by the automaton in Fig. 2,
left. (Vice versa, the automaton gives rise to the IFS (4)). The dual substitution ζ ? arises from the IFS defined by
(D?)T , or equivalently: from the dual automaton, where the orientation of each edge is reversed and the star map is
applied to each edge label, see Fig. 2, right. In this case, the star map is uniquely defined by 1?

= 1, τ ?
= −τ−1 (each

τ which occurs is replaced by its Galois conjugate −τ−1). Thus,

(τ−2)? = (1− τ−1)? = (2− τ)? = 2+ τ−1
= 1+ τ = τ 2.

The corresponding digit matrix, defining the dual substitution ζ ?, is

(D?)T
=

(
{0, τ 2

} {2τ 2
}

{0} {τ 2
}

)
.

The solution of the corresponding IFS – with digits τ−2di jk , where di jk are the digits in (D?)T – yields the prototiles
[0, τ ] and [τ, τ + 1] for ζ ?. Since this dual tile substitution is nice in the sense that the tiles are intervals – rather
than some disconnected, fractally shaped sets – it can be written as a word substitution a?

7→ a?b?a?, b?
7→ b?a?. In

particular, even though ζ 6= ζ ?, they generate – up to a scaling by τ – the same tiling spaces (the same tilings), resp.
the same biinfinite words.

3. Dimension 2

In dimension one there is a canonical way to associate a tiling to a model set, which is, by definition, not a tiling
but a uniformly dense point set: The points define a partition of the line into intervals, these intervals are the tiles.
Analogously, a tiling of R1 by intervals defines a point set by considering the set of all vertices, i.e., the set of all
boundary points of the intervals. In particular, by assigning each interval to its left boundary point, there is a one-to-
one correspondence between tiles of the tiling and points in the point set.

In two dimensions the situation becomes more difficult, at least if one wants to study the different types of
tiles/points x through their position x? in the window W . It is not obvious which way to identify tilings with point sets
(and vice versa) is the best one, or the most natural one.

On the one hand, it seems natural to consider the vertices of a tiling T . In fact, this point of view is taken in many
cases, see e.g. [2,12]. Then, in general, there is no natural one-to-one correspondence between tiles and points. In
particular, the positions x? in W , where x is some vertex, may give us no relevant information about the tiles in T .
One simple reason is that, in general, the number of tiles per unit area differs from the number of vertices per unit
area.
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Fig. 3. The automaton of the IFS of the Penrose tiles (left), compare (5), and its dual automaton (right).

On the other hand, in order to assign a point to each tile, one can use control points [22]. Then there is a one-to-one
correspondence between tiles and points. But there are many ways to choose such control points, thus one may end
up with different windows for different choices.

In the sequel we avoid all the problems mentioned above by computing some ?-dual substitutions of prominent
two-dimensional tilings. These computations follow the methods in [10] closely. In the framework of Definition 1, the
number of prototiles of a two-dimensional substitution is considerably large, since we identify prototiles only up to
translation, not up to isometries. For instance, the Penrose tiling uses only two different triangles (up to isometries) as
prototiles, see Fig. 1. But each of those occurs in 10 different orientations in the tilings. Moreover, we need to distinct
a tile and its mirror image (see the dots in Fig. 1), thus there are 40 prototiles altogether with respect to translations.
Rather than working with a 40×40 digit matrix, we will slightly change our framework: Instead of digits representing
translations, we go over to ‘digits’ which are isometries. The entries in the according matrices now are functions rather
than translation vectors. Each function is of the form x 7→ Q Rx + d, where Q is – as usual – an expanding linear
map which is the same for all functions, R is some rotation or reflection, and d is a translation vector, as above. In
other words: We consider matrix function systems instead of digit matrices, cf. [13]. Since we are considering plane
tilings, we will identify R2 with the complex plane C. Then, a rotation about the origin is just a multiplication with
some complex number z with |z| = 1. Each reflection in the complex plane can be expressed as complex conjugation,
followed by some rotation. The expanding map Q will always be a homothety in the remainder of this section. Our
goal is to express all translations and rotations, and thus all maps fi occurring in the IFS under consideration, in the
ring Z[ξ ], where ξ is some root of unity. To obtain the dual substitution, we consider the inverse maps f −1

i and apply
a primitive element of the Galois group Gal(Z[ξ ]/Z) to them. In plain words: we replace each ξ occurring by an
appropriate Galois conjugate ξ ′ in order to obtain the desired maps ( f −1

i )?. This is in fact how the star map acts in the
following cases, compare [2]. To simplify notation, we denote ( f −1)? by f ].

3.1. The ?-dual of the Penrose tiling

Consider the prototiles of the Penrose tiling as in Fig. 1. It is known that the vertices of a Penrose tiling are closely

related to the cyclotomic field Q(ξ5), where ξ := ξ5 = e
2π i
5 . E.g., all vertices, and all edge lengths, can be expressed

in the ring Z[ξ ] of integers in Q(ξ). Thus, let the small triangle S have vertices 0, −τ−1 and e
2π i3
10 = −ξ4, and the

large triangle have vertices 0, τ and e
2π i
10 = −ξ3. Then, the IFS for these tiles – arising from the substitution – uses

the common contracting factor τ−1
= ξ + ξ4, and the IFS reads:

S = f1(S) ∪ f2(L), L = f3(L) ∪ f4(S) ∪ f5(L), (5)

where

f1(x) = (ξ + ξ4)(−ξ4)x − 1− ξ3,

f2(x) = (ξ + ξ4)(−ξ)x − 1− ξ3
− ξ4,

f3(x) = (ξ + ξ4)ξ3x + 1+ ξ,

f4(x) = (ξ + ξ4)(−ξ2)x + 1− ξ3,

f5(x) = (ξ + ξ4)(−1)x + 1− ξ2
− ξ3.

The corresponding automaton is shown in Fig. 3 (left). Note, that in [10] the maps are different and do not define the
Penrose substitution. Thus, the author of [10] did not compute the ?-dual (or ‘Galois-dual’) of the Penrose substitution,
but of a different one, using the same triangles S and L as prototiles.
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Fig. 4. A numerical computation of the solution of the dual IFS of the Penrose substitution (left), and the Tübingen triangle substitution (right).
One may guess from the images that this is the ?-dual of the Penrose substitution, which turns out to be true.

Fig. 5. The substitution rule for the Ammann–Beenker tiling (left), with prototiles S, L , and the star-dual substitution (right), with prototiles S?, L?.
Even though the two substitutions look different on a first glance, they define very similar tilings, see Fig. 6.

In order to calculate the ?-dual substitution, consider the dual automaton (see Fig. 3, right), resp. the dual IFS. Let
ϕ ∈ Gal(Z[ξ ]) with ϕ(ξ) = ξ3. Note that ϕ is uniquely defined by this requirement. The f ]

i are obtained by applying
ϕ to f −1

i :

f ]
1 (x) = (ξ + ξ4)(ξ3x + ξ3

+ ξ2)

f ]
2 (x) = (ξ + ξ4)(ξ2x + ξ + ξ2

+ ξ4)

f ]
3 (x) = (ξ + ξ4)(−ξ x + ξ + ξ4)

f ]
4 (x) = (ξ + ξ4)(ξ x − ξ + ξ2)

f ]
5 (x) = (ξ + ξ4)(x − 1+ ξ + ξ4).

The corresponding dual IFS reads:

S?
= f ]

1 (S?) ∪ f ]
4 (L?), L?

= f ]
2 (S?) ∪ f ]

3 (L?) ∪ f ]
5 (L?). (6)

A numerical computation of the solution yields the image in Fig. 4 (left). In the figure, the two components of the
solution are torn apart; actually, the solutions do overlap. This fact is not relevant, due to Theorem 3. The important
point is that the dissection of each prototile is non-overlapping.

It is reasonable to assume that the solution consists of two triangles similar to the Penrose triangles. In order to
make this precise we list the coordinates of the triangles:

L?
: 1+ ξ2

+ ξ4, 1+ ξ + ξ3, 1+ ξ2
+ ξ3, S?

: ξ2, ξ3, 2ξ2
− ξ + ξ4

− 2ξ3.

All this information provided, it is an easy – but pretty lengthy – exercise to check that these triangles are in fact a
solution of (6). The tile substitution arising from (6) is well-known: It is the Tübingen Triangle tile substitution (see
Fig. 4, right). See [9] for more details and images of this substitution, as well as several others. Altogether we have
established:

Theorem 7. The ?-dual of the Penrose substitution is the Tübingen triangle substitution, and vice versa.

3.2. The ?-dual of the Ammann–Beenker tiling

In a very similar fashion, one can compute the star-dual of the Ammann–Beenker tiling [11]. The substitution
rule of the Ammann–Beenker tiling is shown in Fig. 5 (left). A part of an Ammann–Beenker tiling is shown in
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Fig. 6. Patches of the Ammann–Beenker tiling (left) and its star-dual (right). The patches are equivalent in the sense, that one obtains the right patch
by dividing each tile in the left patch into four tiles.

Fig. 6 (left). The Ammann–Beenker tiling is closely related to the cyclotomic field Q(ξ8), where ξ := ξ8 = e
2π i
8 .

Its ?-dual can be calculated in a very similar fashion as in the case of the Penrose tiling. The substitution factor is
λ = 1 +

√
2 = 1 + ξ + ξ7

= 1 + ξ + ξ−1, its inverse λ−1
= −1 + ξ + ξ−1. Let S be the triangular prototile, with

vertices 0, i, 1+ i , and let L be the rhombic prototile with vertices 0, 1, 1+ ξ, ξ . The IFS for these prototiles is

L = f1(L) ∪ f2(L) ∪ f3(L) ∪ f6(S) ∪ f7(S) ∪ f8(S) ∪ f9(S),

S = f4(L) ∪ f5(L) ∪ f10(S) ∪ f11(S) ∪ f12(S),

where

f1(x) = λ−1ξ4x + 1+ ξ, f7(x) = λ−1ξ3x + 1+ 2ξ + ξ2
+ ξ7,

f2(x) = λ−1ξ x + 1+ ξ + ξ2
+ ξ7, f8(x) = λ−1ξ6x + 2+ ξ + ξ2

+ ξ7,

f3(x) = λ−1ξ7x + 1+ ξ + ξ2, f9(x) = λ−1ξ7x + 1,

f4(x) = λ−1x + ξ + ξ2, f10(x) = λ−1ξ5x + ξ + ξ3,

f5(x) = λ−1ξ2x + ξ, f11(x) = λ−1ξ6x + 1+ ξ + ξ2,

f6(x) = λ−1ξ2x + ξ, f12(x) = λ−1ξ3x + 2ξ + ξ2.

The functions f ]
i of the dual IFS are easily obtained by considering the inverse functions f −1

i , and replacing each
ξ occurring by its Galois conjugate ξ3 (or ξ5 or ξ7, the resulting dual tiling is always the same). The dual IFS reads:

L?
= f ]

1 (L?) ∪ f ]
2 (L?) ∪ f ]

3 (L?) ∪ f ]
4 (S?) ∪ f ]

5 (S?),

S?
= f ]

6 (L?) ∪ f ]
7 (L?) ∪ f ]

8 (L?) ∪ f ]
9 (L?) ∪ f ]

10(S?) ∪ f ]
11(S?) ∪ f ]

12(S?).

Its solution are the two tiles shown in Fig. 5 (right): S? is an isosceles orthogonal triangle, and L? is a thin orthogonal
triangle. Note that the original triangular prototile S can be dissected into two copies of S?, and the rhombic prototile
L can be dissected into four copies of L?. In fact, unlike in the Penrose case, the ?-dual tiling of the Ammann–Beenker
tiling is closely related to the Ammann–Beenker tiling itself, compare Fig. 6: dissecting each L into four tiles, and
each S into two tiles, yields the ?-dual tiling of the Ammann–Beenker tiling. Altogether we have established:

Theorem 8. The ?-dual of the Ammann–Beenker tiling is mutually locally derivable with the Ammann–Beenker tiling.

4. Self-duality

The last example, the Ammann–Beenker tiling and its ?-dual, motivates the question whether there are substitutions
which are strictly self-dual.

Definition 9. Let σ be a tile substitution such that Xσ consists of cut-and-project tilings. If Xσ = Xσ ? , then σ is
called self-dual (with respect to ?-duality).
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Thus, the example in Section 2, Fibonacci squared, is self-dual. Since the star-dual tiling of a tiling in G is a tiling
in H (cf. Definition 5), a trivial necessary condition for a tiling to be self-dual is G = H . Hence, if the substitution
factor λ of a self-dual substitution is a unimodular PV-number, then λ must be a quadratic algebraic number. A refined
necessary condition is obtained by considering the substitution matrix Mσ .

Lemma 10. If σ is a self-dual substitution in Rd , then the following property holds for the substitution matrix
Mσ = (|Di j |):

(Mσ )T
= P Mσ P−1, (7)

where P is some permutation matrix.

Proof. The result follows immediately from Mσ ? =
(
|(Di j )

?
|
)T , by definition of σ ?. The tiling spaces Xσ defined by

a substitution are unique up to enumeration of the tiles, thus the permutations enter. �

In fact, permutations has to be taken into account. There are self-dual substitutions where (Mσ )T
6= Mσ ; in

other words: where Mσ is not symmetric. For instance, the dual substitution of σ : a → ab, b → aab is
σ ?
: a?
→ b?b?a?, b?

→ b?a?. By identifying the first tile – a – of σ with the second tile – b? – of the dual substitution
σ ?, one obtains that the two substitutions define the same tiling spaces. Hence σ is self-dual. The substitution matrix

Mσ =

(
1 1
2 1

)
is not symmetric, but

P−1 Mσ P =

(
0 1
1 0

) (
1 1
2 1

) (
0 1
1 0

)
=

(
1 2
1 1

)
= (Mσ )T ,

thus (7) holds.
A sufficient condition for a substitution to be self-dual is an immediate consequence of Theorem 3.

Corollary 11. Let σ be a substitution with digit matrix D and σ ? its dual substitution, with digit matrix D′ = (D?)T .
If there are vectors t1, t2, . . . , tm ∈ Rd , A := (t j − Qti )1≤i, j≤m and a permutation matrix P such that

PD′P−1
= D + A,

then σ is self-dual. �

This result gives a purely algebraic test for self-duality.

5. Outlook

The notion of star-duality is a concept tailored to arbitrary model sets in any locally compact Abelian group.
Restricted to the unimodular case, it coincides with other notions of duality, in particular the ‘natural decomposition
method’ in [21], and the dual tilings considered by P. Arnoux, S. Ito and others, see for instance [7,17]. This is the
reason why we were lazy at some occasions, using the term ‘self-dual’ instead of ‘self-?-dual’ or ‘self-dual w.r.t.
star-duality’. Theorem 3 can be utilised to show the equivalence of the concepts mentioned.

The benefit of star-duality seems to be its generality, and its accessibility by purely algebraic methods. This paper
tries to make first steps in this direction. For future work, it should be promising to apply star-duality to the case of
word substitutions on two or three letters. In the case of Sturmian substitutions (symbolic substitutions on two letters,
where the corresponding biinfinite words contain exactly n + 1 subwords of length n, for all n ≥ 0, see [16]) the
results in [6] can be used to give a complete characterisation of self-dual (Sturmian) substitutions. For details we refer
to future work.

A further question is: are there self-dual substitutions in dimension d ≥ 2? The Ammann–Beenker tiling is
very close to be self-dual, but it is not exactly self-dual. In dimension one, there are several self-dual substitutions.
Trivially, these examples generalise to higher dimensions, by using the Cartesian product (for instance, Fibonacci
times Fibonacci). But it remains to find a two-dimensional self-dual substitution apart from that.
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